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Abstract

We discuss how to combine exponential time differencing technique with multi-step
method to develop higher order in time linear numerical scheme that are energy stable
for certain gradient flows with the aid of a generalized viscous damping term. As an
example, a stabilized third order in time accurate linear exponential time differencing
(ETD) scheme for the epitaxial thin film growth model without slope selection is
proposed and analyzed. An artificial stabilizing term Aτ 3 ∂�3u

∂t is added to ensure energy
stability, with ETD-based multi-step approximations and Fourier pseudo-spectral
method applied in the time integral and spatial discretization of the evolution
equation, respectively. Long-time energy stability and an �∞(0, T ; �2) error analysis are
provided, based on the energy method. In addition, a few numerical experiments are
presented to demonstrate the energy decay and convergence rate.
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1 Introduction
Numerical schemes that preserve certain structures/properties for the underlying system
are highly desirable since these schemes usually perform better in terms of capturing
certain behavior of themodels under approximationwhen compared to classicalmethods.
Well-known examples include absorbing boundary condition method for acoustic and
elastic wave equations in the whole space [19], symplectic integrator for Hamiltonian
systems [21], SSP and TVD for hyperbolic conservation laws [26], dispersion relation
preserving schemes for the acoustic equations [52], asymptotic preserving schemes for
the kinetic equations [31], and energy stable schemes for gradient flows, the focus of this
paper, among many others.
The desire to derive energy stable schemes for gradient flows is obvious since the energy

law is usually the most prominent property of the PDE system. In addition, for gradient
flows such as thinfilmepitaxial growthmodels, the coarseningprocess,which succeeds the
relatively fast phase separation process, occurs on a very long-time scale for large systems
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(or small parameter ε as shall be introduced below). Stability is of particular importance
for such kind of long-time numerical approximations, and an appropriate energy law of
the scheme that mimics the energy law of the original system would certainly be very
beneficial in ensuring the stability of the simulation among others.
A variety of techniques exist for developing energy stable schemes for gradient flows

such as convex splitting [20,53], invariant energy quadratizationmethod (IEQ) [56], scalar
auxiliary variable (SAV) method [51].
On the other hand, accuracy order is another highly desirable issue. To seek higher order

in time algorithms, exponential time differencing (ETD) seems to be a very effective way
tominimize time discretization errors [29]. The basic idea of ETD is to utilize the solution
operator of the linear evolutionary equation without truncation. Since ETD cannot be
applied to nonlinear equations alone, a natural idea is to combine ETDwith othermethods
that can be used to efficiently approximate the nonlinear part, and multi-step method is
one of the natural candidates for such approximations [28]. The other natural choice
is the Runge–Kutta method; see [29] for ETD-RK approaches. The nonlinear term is
customary treated explicitly for efficiency in the ETD-MS approach. However, such an
explicit treatment may induce instability. Application of the ETD-MSmethod to epitaxial
growth model without slope selection can be found in [32] among others. Meanwhile,
the stability of these ETD-MS is non-trivial due to the instability induced by the explicit
treatment of the nonlinear term. Unconditionally stable second-order ETD-MS is derived
only recently with an artificial stabilizing term [9]. See also [14] for a slightly different
approach in terms of stabilization.
The main contribution of this paper is to formulate a general strategy for the devel-

opment of efficient energy stable higher-order linear ETD-MS algorithms for certain
gradient flows. A key ingredient of the strategy is an appropriate stabilization term which
could be interpreted as a higher-order viscous term. Roughly speaking, for an evolutionary
equation of the form

du
dt

+ Lu = N (u),

whereL is a positive operator andN is a nonlinear operator, we apply the ETD-MSmethod
to

du
dt

+ Lu + Aτ k
d
dt

Lp(k)u = N (u),

in order to derive a kth order energy stable scheme with time-step size τ and appropriate
choice of exponent p(k). The term Aτ k d

dt L
p(k)Lu can be interpreted as a higher-order

viscous regularization part; see the Cahn–Hilliard case [43]. The artificial viscous term is
kept in the continuum version which is consistent with the spirit of ETDmethod. Explicit
treatment of the nonlinear term is desirable for efficiency consideration. However, higher-
ordermulti-step treatment of the nonlinear term leads to strong instability which requires
a higher-order artificial viscous term to stabilize the scheme. This stabilization term could
be understood as a continuum version of classical Dupont–Douglas type regularization.
Special care is needed for the explicit treatment of the nonlinear part, even with the
stabilization term, in order to ensure energy stability. Lagrangian approach seems to be an
appropriate choice in this case. We would need the nonlinear term to be “not too bad” for
such an explicit treatment to work out. We are not sure whether our approach works for
systems with stronger nonlinear term such as epitaxial growthmodel with slope selection.
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As a specific example, we consider the following epitaxial growth model without slope
selection.Weoffer a third-order energy stable ETD-MS scheme for thismodel. The energy
stability as well as the third-order convergence analysis will be presented.
Consider the following nonlinear diffusion equation that models no-slope-selection

epitaxial growth:

∂u
∂t

= −ε2�2u − ∇ ·
( ∇u
1 + |∇u|2

)
, x ∈ Ω , t ∈ (0, T ], (1)

whereΩ = [0, L]2, u : Ω×[0, T ] → R is a scaled height function of thin filmwith periodic
boundary condition, and ε > 0 is a constant. Due to the periodic boundary condition, the
solution u(x, t) is mass conservative, namely

∫
Ω
u(x, t) dx = ∫

Ω
u(x, 0) dx = 0.

In this case, L = ε2�2,N (u) = −∇ ·
( ∇u
1+|∇u|2

)
in our general framework. The exponent

in the regularization term will be p(3) = 3/2, as we shall see below.
The equation (1) turns out to be the L2 gradient flow of the following energy functional:

E(u) =
∫

Ω

ε2

2
|�u|2 − 1

2
ln(1 + |∇u|2) dx, (2)

where the first term represents the surface diffusion, and the logarithm term models the
Ehrlich–Schwoebel (ES) effect which describes the effect of kinetic asymmetry in the
adatom attachment–detachment; see [18,37,38,48] for more detailed descriptions.
The reason why this model is referred as “no-slope-selection”(NSS) is based on the

fact that (1) predicts a time-dependent mound slope m(t) = O(t
1
4 ) before saturation

[24,38]. On the other hand, with the ES effect term in E(u) replaced by 1
4 (|∇u|2 − 1)2, the

corresponding growth equation is called slope-selection (SS), which predicts a uniform,
constantmound slope for themound-like structures in the surface profile.Well-posedness
of the initial-boundary-value problem for both SS and NSS equations has been given by
[37,38] through the perturbation analysis and Galerkin spectral approximations.
In the epitaxial growth model field, scaling laws of the energy E, the average surface

roughness h(t) = 1√|Ω| ‖u(·, t)‖ and the average slope m(t) = 1√|Ω| ‖∇u(·, t)‖ have been
physically interesting quantities, and it is generally accepted that E ∼ O(− ln t), h(t) ∼
O(t

1
2 ) andm(t) ∼ O(t

1
4 ); see [24,36,37,39,44]. The coarsening process is expected to scale

like L4 for the NSS case (L3 for the SS case) which is long for large system (large L) [38].
Hence, long-time energy stability is needed to accurately simulate the coarsening process.
One popular way to construct energy stable numerical schemes is to split the energy

functional into convex and concave parts and apply implicit and explicit treatments [20],
respectively; the first such numerical scheme for the molecular epitaxy growth model
is proposed in [53]. Since then, there have been various works applied to the epitaxial
growth equation under this framework, such as [8,10,12,42,45,46,50]. On the other hand,
the splitting approach is known to have difficulty in constructing unconditionally stable
higher-order schemes for a nonlinear concave term. To overcome this subtle difficulty,
one prevalent approach is to introduce an artificial stabilizing term in the growth equation,
which balances the explicit treatment of the nonlinear term; see [22,40,41,55]. In addition,
there have been some other interesting energy stable approaches, such as the invariant
energy quadratization (IEQ) [56] and the scalar auxiliary variable (SAV) methods [16,51],
etc.
Other than the approaches mentioned above, another idea to obtain higher-order tem-

poral accuracy while explicitly computing nonlinear terms is the time exponential time
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differencing (ETD) method. In general, the ETD-based scheme contains an exact integra-
tion of the linear part of the NSS equation, with the temporal integral of the nonlinear
term approximated by multi-step explicit approximation [3,4,17,29,30]. Applications of
such an idea to various gradient flow models have been reported in recent works [14,32–
35,54,57], with the high order accuracy and preservation of the exponential behavior
observed in the numerical experiments. In particular, the energy stability analysis for the
first-order (in time) scheme is established in [32]; the one for the second-order scheme is
reported in amore recentwork [9].Generalizing the idea from [9,14] presents a third order
in time ETD-based scheme for the no-slope-selectionmodel, in whichAτ 2�2

N (u
n+1−un)

(with τ the time step size) is added as the stabilization term with A = O(ε−2).
In this article, we propose another third order in time accurate energy stable ETD-based

scheme, with Fourier pseudo-spectral approximation in space, which avoids the singular
dependence on the coefficient in the regularization term in terms of ε. Following the idea
in [9], an artificial stabilizing term Aτ 3 ∂�3u

∂t is added in the growth equation, where A is a
positive constant independent of ε. In addition, we apply a three level Lagrange approxi-
mation to the nonlinear term. This approach enables us to derive a decay property for a
modified discrete energy functional, which in turn leads to a uniform in time bound for the
original energy functional. Besides, in the error analysis, we start from the continuous in
timeODE system satisfied by the error function as in [9], instead of analyzing the operator
form of the numerical error function. With a careful treatment of the aliasing error and
H3 estimate of the numerical solution, we are able to derive an �∞(0, T ; �2) error estimate
for the proposed scheme.
The rest of this article is organized as follows. In Sect. 2, we present the fully dis-

crete numerical scheme. The numerical energy stability is provided in Sect. 3, followed
by �∞(0, T ;H2

h ) and �∞(0, T ;H3
h ) bounds of the numerical solution. Subsequently, an

�∞(0, T ; �2) error analysis is provided in Sect. 4, consisting of two lemmas concerning the
error of the nonlinear term at any time t ∈ [0, T ] and the error of the numerical solu-
tion at t = t1, respectively. In addition, numerical experiments are presented in Sect. 5,
including temporal convergence test and simulation results of the scaling laws for energy,
average surface roughness and average slope. Finally, some concluding remarks are given
in Sect. 6.

2 Stabilized third order in time ETDmultistep scheme (sETDMs3)
Some space definitions in [2] are recalled. Denote by Wm,p(Ω) the Sobolev space and by
‖ · ‖m,p the standard norm on Wm,p(Ω). In particular, if p = 2, we write Wm,p(Ω) and
‖·‖Wm,2 asHm(Ω) and ‖·‖Hm , respectively.DefineHm

per(Ω) = {v ∈ Hm(Ω) | v is periodic}.
Also, we follow the notations used in the Fourier pseudo-spectral method; see [5,6,13,

15,25,27,32,49], etc. Let N be a positive integer, ΩN be a uniform 2N × 2N mesh on Ω ,
with (2N + 1)2 grid points (xi, yj), where xi = ih, yj = jh with h := L

2N , 0 ≤ i, j ≤ 2N . Set
the time step size τ = T

Nt
and denote ti = iτ for 0 ≤ i ≤ Nt . Define MN as the space of

2D periodic grid functions on ΩN and let BN be the space of trigonometric polynomials
in x and y of degree up to N . In this paper, we denote C one generic constant which may
depend on ε, the exact solution u, the initial value u0 and time T , but is independent of
the mesh size h and time step size τ .
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Now, we introduce an interpolation operator IN onto BN that reserves the function
value on (2N + 1)2 grid points, i.e., (INg)(xi, yj) = g(xi, yj) for 0 ≤ i, j ≤ 2N :

(INg)(x, y) =
N∑

k,l=−N+1
(ĝc)k,l exp

(
2π i
L

(kx + ly)
)
, with i = √−1, (3)

where the coefficients {(ĝc)k,l} are given by the discrete Fourier transform of the 4N 2 grid
points:

(ĝc)k,l = 1
4N 2

2N∑
i,j=1

g(xi, yj) exp
(

−2π i
L

(kxi + lyj)
)
. (4)

For any g ∈ MN , denote g̃ = INg as the continuous extension of g . When g and ∂αg
(|α| ≤ m) are continuous and periodic onΩ ,IN has the following approximation property
( [7, Theorem 1.2, p. 72]):

‖∂kg − ∂kINg‖N ≤ C‖g‖Hm
h
hm−k , for 0 ≤ k ≤ m, m > 1 (5)

with the discrete norm and derivatives defined below.
Given INg , the discrete spatial partial derivatives can be defined as:

(Dxg)i,j =
N∑

k,l=−N+1

2kπ i
L

(ĝc)k,l exp
(
2π i
L

(kxi + lyj)
)
,

(D2
xg)i,j =

N∑
k,l=−N+1

−4k2π2

L2
(ĝc)k,l exp

(
2π i
L

(kxi + lyj)
)
.

The operators Dy and D2
y . could be similarly defined. For any g, g̃ ∈ MN , and g =

(g1, g2)T , g̃ = (g̃1, g̃2)T ∈ MN ×MN , we introduce the discrete gradient, divergence and
Laplacian operators:

∇N g =
(
Dxg
Dyg

)
, ∇N · g = Dxg1 + Dyg2, �N g = D2

xg + D2
yg.

Also, to measure the discrete differentiation operators defined above, we introduce the
discrete L2 (denoted as �2) inner product (·, ·)N and norm ‖ · ‖N :

(g̃ , g)N = h2
2N∑
i,j=1

g̃ij ḡij , ‖g‖N = √(g, g)N ,

(g̃, g)N = h2
2N∑
i,j=1

(g̃1ij ḡ
1
ij + g̃2ij ḡ

2
ij ), ‖g‖N = √(g, g)N ,

where ḡ is the conjugate of g . Similarly, we can define the discrete Sobolev norm ‖ · ‖H2
h

and the discrete Sobolev semi-norm | · |H2
h
:

‖g‖H2
h

=
(∑

|α|≤2
‖Dαg‖2N

) 1
2 , |g |H2

h
=
(∑

|α|=2
‖Dαg‖2N

) 1
2 ,
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whereas above α = (α1,α2) is a 2-tuple of nonnegative integers with |α| = α1 + α2, and
Dα = Dα1x Dα2y . Furthermore, the following summation by parts formulas are available in
[32, Proposition 2.2]:

Lemma 1 For any g̃ , g ∈ MN , and g = (g1, g2)T ∈ MN × MN , we have the following
summation by parts formula:

(g̃ ,∇N · g)N = −(∇N g̃ , g)N , (g̃ ,�N g)N = −(∇N g̃ ,∇N g)N = (�N g̃ , g)N .

Let ue be the exact solution to (1) and define u := ue |ΩN . Also, denote uns (tn) as uns for
n ≥ 0. The continuous form of the sETDMs3 scheme is given by:
sETDMs3: For n ≥ 2, find un+1

s (t) : [tn, tn+1] → MN
0 such that

dun+1
s (t)
dt

− Aτ 3
d�3

Nun+1
s (t)

dt
+ ε2�2

Nun+1
s (t) = −

2∑
i=0

�i(t − tn)f (∇Nun−i
s ), (6)

where

�0(s) = 1 + 3s
2τ

+ s2

2τ 2
, �1(s) = −2s

τ
− s2

τ 2
, �2(s) = s

2τ
+ s2

2τ 2
,

β(x) = x
1 + |x|2 , f (∇N v) := ∇N · β(∇N v).

The regularization term has the exponent p(3) = 3/2 in our general framework. Higher
exponents would also work at the expense of introducing higher-order error, especially
for the high frequency part.
Note that we have applied the Lagrange approximation to the nonlinear term. Since the

previous three steps are needed to compute the next time step, uis, k = 0, 1, 2 are needed
the initial step. Let u0s = u(0), as for the first step, find u1s (t) : [0, t1] → MN

0 such that

da1s (t)
dt

− Aτ 3
d�3

Na1s (t)
dt

+ ε2�2
Na1s (t) = −f (∇Nu0s ), (7)

du1s (t)
dt

− Aτ 3
d�3

Nu1s (t)
dt

+ ε2�2
Nu1s (t) = − t

τ
f (∇Na1s ) + t − τ

τ
f (∇Nu0s ). (8)

As for the second step, find u2s (t) : [t1, t2] → MN
0 such that:

du2s (t)
dt

− Aτ 3
d�3

Nu2s (t)
dt

+ ε2�2
Nu2s (t) = − t

τ
f (∇Nu1s ) + t − τ

τ
f (∇Nu0s ). (9)

Note that the following consistency identity holds:

uk+1
s (tk ) = uks (tk ), for k = 0, 1, . . . , n. (10)

Integrating (6)–(9) from tn to tn+1, we obtain the explicit expression of u1s , u2s and un+1
s .



W. Chen et al. Res Math Sci            (2020) 7:13 Page 7 of 27    13 

sETDMs3 (matrix form):

un+1
s = e−Kτuns − φ0(K )f̂ (uns )

− φ1(K )
[
3
2
f̂ (uns ) − 2f̂N (un−1

s ) + 1
2
f̂ (un−2

s )
]

− φ2(K )
[
1
2
f̂ (uns ) − f̂ (un−1

s ) + 1
2
f̂ (un−2

s )
]
, (11)

a1s = e−Kτu0s − φ0(K )f̂ (u0s ),

u1s = e−Kτu0s − φ0(K )f̂ (u0s ) − φ1(K )[f̂ (a1s ) − f̂ (u0s )],

u2s = e−Kτu1s − φ0(K )f̂ (u1s ) − φ1(K )[f̂ (u1s ) − f̂ (u0s )],

in which

φ0(K ) = K−1(I − e−Kτ ),

φ1(K ) = K−1[I − (Kτ )−1(I − e−Kτ )],

φ2(K ) = K−1{I − 2(Kτ )−1[I − (Kτ )−1(I − e−Kτ )]},
K = ε2M−1�2

N , f̂ (v) = M−1f (∇N v), M = I − Aτ 3�3
N .

Because of the Fourier pseudo-spectral method applied in space, the sETDMs3 scheme
has similar computational complexity as that of the sETDMs2 scheme in [9].

Remark 2.1 Note that the stabilization term −Aτ 3
∂�3

N u(t)
∂t can be replaced by a

Dupont–Douglas type regularization term −Aτ 2(�3
Nun+1 − �3

Nun), similar to results
in [10,14]. It is possible to construct higher-order schemes by adding a stabilization
term A(−1)kτ k ∂�k

N u(t)
∂t = Aτ k

∂(�2
N )k/2u(t)

∂t = Aτ k
∂(�2

N )p(k)u(t)
∂t with p(k) = k/2, or

A(−1)kτ k−1(�k
Nun+1 − �k

Nun) if the exact solution is smooth enough. The choice of
p(k) is based on the consideration of (1) it is small so that the artificial error remains as
small as possible, especially in the high frequency part; and (2) it is big enough so that
the artificial dissipation when combined with the original dissipation term can dominate
the nonlinear term which is treated explicitly. The minimal value of p(k) turns out to
be k/2 if we wish to keep the coefficient A bounded independent of ε. As for long-time
computation, one way to accelerate convergence is to use various adaptive strategies, see
[11,23,47,58], etc. The higher-order regularization term might introduce relatively large
error for high frequency solution. Therefore, for a generic situation with random small
scale initial data, it might be reasonable to take a hybrid approach similar to the blended
linear response algorithm [1]: use an alternative higher-order method without regulariza-
tion for the initial (phase separation) stage. The ETD-MS can be applied for the coarsening
process after the elimination of very high frequency components in the solution.

3 Energy stability of sETDMs3
For simplicity, from now on we denote ‖ · ‖L2(ti ,tj ;�2) by ‖ · ‖L2(Ii,j ;�2). The following inter-
polation inequality is used in this section.

Lemma 2 For any v ∈ MN
0 ,

‖∇N v‖2N ≤ ‖v‖
4
3
N ‖∇N�N v‖

2
3
N . (12)
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Proof By Lemma 1, one can obtain

‖∇N v‖2N = (∇N v,∇N v)N = −(v,�N v)N ≤ ‖v‖N ‖�N v‖N , (13)

‖�N v‖2N = (�N v,�N v)N = −(∇N v,∇N�N v)N ≤ ‖∇N v‖N ‖∇N�N v‖N . (14)

Substituting (13) into (14), one gets

‖�N v‖N ≤ ‖v‖
1
3
N ‖∇N�N v‖

2
3
N . (15)

A substitution of (15) into (13) completes the proof. ��

Consider the following numerical energy functional:

Ẽ(un+1
s (t))

= EN (un+1
s (t)) + α

6

(√
47
10

+
√
31
30

)∥∥∥∥du
n+1
s (t)
dt

∥∥∥∥
2

L2(In,n+1;�2)

+ τ 3

12α2

(√
47
10

+
√
31
30

)∥∥∥∥d∇N�Nun+1
s (t)

dt

∥∥∥∥
2

L2(In,n+1;�2)
(16)

+ α

6

√
31
30

∥∥∥∥du
n
s (t)
dt

∥∥∥∥
2

L2(In−1,n;�2)
+ τ 3

12α2

√
31
30

∥∥∥∥d∇N�Nuns (t)
dt

∥∥∥∥
2

L2(In−1,n;�2)
,

where

EN (v) =
(

−1
2
ln(1 + |∇N v|2), 1

)
N

+ ε2

2
‖�N v‖2N , ∀v ∈ MN , (17)

α = 6

9 +
√

47
10 +

√
31
30

. (18)

The main result of this section is the following theorem.

Theorem 1 Assume that

A ≥ 1
2α3 ,

where α = 6
9+
√

47
10+

√
31
30

. Then, system (6) is energy stable in the sense that

Ẽ(un+1
s ) ≤ Ẽ(uns ), ∀n ≥ 2. (19)

Proof Taking the inner product with dun+1
s (t)
dt on both sides of (6) gives that

∥∥∥∥du
n+1
s (t)
dt

∥∥∥∥
2

N
+ Aτ 3

∥∥∥∥d∇N�Nun+1
s (t)

dt

∥∥∥∥
2

N
+ d

dt
EN (un+1

s (t))

=
( 2∑

i=0
�i(t − tn)β(∇Nun−i

s ) − β(∇Nun+1
s (t)),

d∇Nun+1
s (t)

dt

)

N
. (20)
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Integrating from tn to tn+1 and denoting βk = β(∇Nuks ), one gets

∥∥∥∥du
n+1
s (t)
dt

∥∥∥∥
2

L2(In,n+1;�2)
+ Aτ 3

∥∥∥∥d∇N�Nun+1
s (t)

dt

∥∥∥∥
2

L2(In,n+1;�2)

+ EN (un+1
s ) − EN (uns )

=
∫ tn+1

tn

(
βn − β(∇Nun+1

s (t)),
d∇Nun+1

s (t)
dt

)
N

dt

+
∫ tn+1

tn

[
3(t − tn)

2τ
+ (t − tn)2

2τ 2

](
βn − βn−1,

d∇Nun+1
s (t)

dt

)
N

dt

+
∫ tn+1

tn

[
t − tn
2τ

+ (t − tn)2

2τ 2

](
βn−2 − βn−1,

d∇Nun+1
s (t)

dt

)
N

dt. (21)

It can be easily verified that

‖βn − β(∇Nun+1
s (t))‖N ≤ τ

1
2

∥∥∥∥d∇Nun+1
s (t)

dt

∥∥∥∥
L2(In,n+1;�2)

, (22)

‖βn−k − βn−k+1‖N ≤ τ
1
2

∥∥∥∥∥
d∇Nun−k+1

s (t)
dt

∥∥∥∥∥
L2(In−k,n−k+1;�2)

, k = 0, 1. (23)

Substituting (22)–(23) into (21) and applying the Cauchy–Schwarz inequality, one can
obtain

RHS of (21)

≤ τ

∥∥∥∥d∇Nun+1
s (t)

dt

∥∥∥∥
2

L2(In,n+1;�2)

+ τ

2

√
47
10

∥∥∥∥d∇Nuns (t)
dt

∥∥∥∥
L2(In−1,n;�2)

∥∥∥∥d∇Nun+1
s (t)

dt

∥∥∥∥
L2(In,n+1;�2)

+ τ

2

√
31
30

∥∥∥∥d∇Nun−1
s (t)

dt

∥∥∥∥
L2(In−2,n−1;�2)

∥∥∥∥d∇Nun+1
s (t)

dt

∥∥∥∥
L2(In,n+1;�2)

≤ τ

4

(
4 +

√
47
10

+
√
31
30

)∥∥∥∥d∇Nun+1
s (t)

dt

∥∥∥∥
2

L2(In,n+1;�2)
(24)

+ τ

4

√
47
10

∥∥∥∥d∇Nuns (t)
dt

∥∥∥∥
2

L2(In−1,n;�2)
+ τ

4

√
31
30

∥∥∥∥d∇Nun−1
s (t)

dt

∥∥∥∥
2

L2(In−2,n−1;�2)
.

And also, by the interpolation inequality (12), one gets

τ

∥∥∥∥∥
d∇Nuks (t)

dt

∥∥∥∥∥
2

N
≤ τ

⎛
⎝α

2
3 τ− 2

3

∥∥∥∥∥
duks (t)
dt

∥∥∥∥∥
4
3

N

⎞
⎠
⎛
⎝α− 2

3 τ
2
3

∥∥∥∥∥
d∇N�Nuks (t)

dt

∥∥∥∥∥
2
3

N

⎞
⎠

≤ 2α
3

∥∥∥∥∥
duks (t)
dt

∥∥∥∥∥
2

N
+ τ 3

3α2

∥∥∥∥∥
d∇N�Nuks (t)

dt

∥∥∥∥∥
2

N
, ∀k ≥ 0. (25)
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A substitution of (25) and (24) into (21) yields

0 ≥ EN (un+1
s ) +

[
1 −

(
4 +

√
47
10

+
√
31
30

)
α

6

]∥∥∥∥du
n+1
s (t)
dt

∥∥∥∥
2

L2(In,n+1;�2)

+
[
A −

(
4 +

√
47
10

+
√
31
30

)
1

12α2

]
τ 3
∥∥∥∥d∇N�Nun+1

s (t)
dt

∥∥∥∥
2

L2(In,n+1;�2)

+
√
31
30

α

6

∥∥∥∥du
n
s (t)
dt

∥∥∥∥
2

L2(In−1,n;�2)
+
√
31
30

τ 3

12α2

∥∥∥∥d∇N�Nuns (t)
dt

∥∥∥∥
2

L2(In−1,n;�2)

− EN (uns ) − α

6

(√
47
10

+
√
31
30

)∥∥∥∥du
n
s (t)
dt

∥∥∥∥
2

L2(In−1,n;�2)

− 1
12α2

(√
47
10

+
√
31
30

)
τ 3
∥∥∥∥d∇N�Nuns (t)

dt

∥∥∥∥
2

L2(In−1,n;�2)

−
√
31
30

α

6

∥∥∥∥du
n−1
s (t)
dt

∥∥∥∥
2

L2(In−2,n−1;�2)

−
√
31
30

τ 3

12α2

∥∥∥∥d∇N�Nun−1
s (t)

dt

∥∥∥∥
2

L2(In−2,n−1;�2)
. (26)

Since α = 6
9+
√

47
10+

√
31
30

and A = 1
2α3 , one gets

1 −
(
4 +

√
47
10

+
√
31
30

)
α

6
>

α

6

(√
47
10

+
√
31
30

)
, (27)

A −
(
4 +

√
47
10

+
√
31
30

)
1

12α2 >
1

12α2

(√
47
10

+
√
31
30

)
. (28)

This completes the proof of the theorem. ��

A direct consequence of Theorem 1 is the following corollary.

Corollary 3.1 Under the same assumption inTheorem 1, we have the following inequality,
for any n ≥ 2,

EN (un+1
s ) ≤ Ẽ(un+1

s ) ≤ Ẽ(u2s ). (29)

The following estimates of ‖∇N (u1 − a1s )‖N and ‖∇N (u1 − u1s )‖N are needed in later
analysis.

Lemma 3 Assume that the exact solution ue(t) to (1) satisfies

ue ∈ H1(I0,1;Hm+6) ∩ W 2,∞(I0,1;H2).

Define u(t) := ue(t) |ΩN and denote u1 = u(t1). The numerical solutions a1s and u1s to (7)
and (8) satisfy that:

‖∇N (u1 − a1s )‖N ≤ Cε,ue (τ
1
4 hm + τ

5
4 ), ‖∇N (u1 − u1s )‖N ≤ Cε,ue (τ

1
4 hm + τ

7
4 ).



W. Chen et al. Res Math Sci            (2020) 7:13 Page 11 of 27    13 

Proof To bound ‖∇N ea(t1)‖N , we subtract (7) from (1) and compute the inner product
with −�N ea(t) on both sides:

1
2
d‖∇N ea(t)‖2N

dt
+ Aτ 3

2
d‖�2

N ea(t)‖2N
dt

+ ε2‖∇N�N ea(t)‖2N

= (Ra(t),−�N ea(t))N ≤ 1
2
√

τ
‖�N ea(t)‖2N +

√
τ

2
‖Ra(t)‖2N , (30)

whereRa(t) =∑3
i=1Ri(t) + R4,1(t) and

R1(t) = −ε2(�2ue(t)|ΩN − �2
Nu(t)), R2(t) = −Aτ 3

d�3
Nu(t)
dt

, (31)

R3(t) =
[
∇N · β(∇Nu(t)) − ∇ · β(∇ue(t))

∣∣∣
ΩN

]
, (32)

R4,1(t) = ∇N · β(∇Nu0) − ∇N · β(∇Nu(t)). (33)

Since

1
2
√

τ
‖�N ea(t)‖2N ≤ 1

2
√

τ
‖∇N ea(t)‖N ‖∇N�N ea(t)‖N

≤ 1
2τε2

‖∇N ea(t)‖2N + ε2

2
‖∇N�N ea(t)‖2N , (34)

we define φa(t) = 1
2‖∇N ea(t)‖2N + Aτ 3

2 ‖�2
N ea(t)‖2N and get

dφa(t)
dt

≤ 1
τε2

φa(t) +
√

τ

2
‖Ra(t)‖2N . (35)

Integrating (35) from 0 to t1 and recalling that ea(0) = 0, one obtains

‖∇N ea(t1)‖2N ≤ √
τe1/ε

2‖Ra(t)‖2L2(I0,1;�2). (36)

Note thatRi(t) = R̃i(t)
∣∣∣
ΩN

for 1 ≤ i ≤ 3, with

‖R̃1(t)‖L2 = ‖ − ε2
(
�2ue(t) − �2INu(t)

) ‖L2 ≤ Cε2hm‖ue(t)‖Hm+4 , (37)

‖R̃2(t)‖L2 =
∥∥∥∥Aτ 3

d�3INue(t)
dt

∥∥∥∥
L2

= Aτ 3
∥∥∥∥�3IN due(t)

dt

∥∥∥∥
L2

≤ Cτ 3hm
∥∥∥∥due(t)dt

∥∥∥∥
Hm+6

+ Aτ 3
∥∥∥∥due(t)dt

∥∥∥∥
H6

, (38)

‖R̃3(t)‖L2 = ‖∇ · [β(∇INue(t)) − β(∇ue(t))] ‖L2 ≤ C‖INue(t) − ue(t)‖H2

≤ C‖ue(t)‖Hm+2hm, (39)

where we have applied the approximation property of IN in (5). Combining with the
estimate forR4,1(t) in (33), one arrives at

‖Ra(t)‖2L2(I0,1;�2) ≤ C(h2m + τ 2)
[
‖ue(t)‖2H1(I0,1;Hm+6) + ‖ue(t)‖2W 1,∞(I0,1;H2)

]
. (40)

A substitution of (40) into (36) leads to

‖∇N ea(t1)‖2N ≤ Cε,ue (τ
1
2 h2m + τ

5
2 ). (41)



   13 Page 12 of 27 W. Chen et al. Res Math Sci           (2020) 7:13 

To estimate ‖∇N e(t1)‖N , by subtracting (8) from (1) and computing the inner product
with −�N e(t), one gets

1
2
d‖∇N e(t)‖2N

dt
+ Aτ 3

2
d‖�2

N e(t)‖2N
dt

+ ε2‖∇N�N e(t)‖2N
=
(
Ru1s (t),−�N e(t)

)
N

− t
τ

(
β(∇Nu1) − β(∇Na1s ),∇N�N e(t)

)
N

≤ 1
2τε2

‖∇N e(t)‖2N + ε2

2
‖∇N�N e(t)‖2N +

√
τ

2
‖Ru1s (t)‖2N

+ Cε,ue
2ε2

(τ
1
2 h2m + τ

5
2 ) + ε2

2
‖∇N�N e(t)‖2N , (42)

where (41) and the Cauchy–Schwarz inequality have been applied. Besides, we have
Ru1s (t) :=

∑3
i=1Ri(t) + R4,2(t), in which

R4,2(t) = t
τ

∇N · β(∇Nu1) − t − τ

τ
∇N · β(∇Nu0) − ∇N · β(∇Nu(t)) (43)

=
∫ τ

t

t(τ − s)
τ

∂tt f (∇Nu(s)) ds +
∫ 0

t

s(t − τ )
τ

∂tt f (∇Nu(s)) ds,

satisfying that

‖R4,2(t)‖2L2(I0,1;�2) ≤ τ‖R4,2(t)‖2L∞(I0,1;�2) ≤ Cτ 5‖f (∇Nu(t))‖2W 2,∞(I0,1;�2). (44)

Note that e(0) = 0. Repeating the analyses as in (35)–(36), one gets

‖∇N e(t1)‖2N ≤ 2e1/ε
2
(√

τ

2
‖Ru1s (t)‖2L2(I0,1;�2) + Cε,ue (τ

3
2 h2m + τ

7
2 )
)

≤ Cε,ue (τ
7
2 + τ

1
2 h2m). (45)

This completes the proof. ��

Given above energy stability and the fact that un+1
s (t) ∈ MN

0 , we can derive a uniform
in time bound of ‖un+1

s (t)‖2H2
h
.

Lemma 4 Assume that A ≥ 1
2α3 , and the exact solution ue satisfies

ue ∈ H1(I0,1;Hm+6) ∩ W 2,∞(I0,1;H2).

Then, one has a global in time bound for solutions of (6): for 0 ≤ n ≤ Nt − 1,

EN (un+1
s ) ≤ EN (u0s ) + Cε,ue (τ

5
2 + τ

1
2 h2m), ‖un+1

s (t)‖2H2
h

≤ C1,

where C1 only depends on ε, X, u0 and ue.
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Proof Taking the inner product with du2s (t)
dt on both sides of (9), and repeating the analyses

as in (21)–(26), we get

∥∥∥∥du
2
s (t)
dt

∥∥∥∥
2

L2(I1,2;�2)
+ Aτ 3

∥∥∥∥d∇N�Nu2s (t)
dt

∥∥∥∥
2

L2(I1,2;�2)
+ EN (u2s ) − EN (u1s )

≤ 5α
6

∥∥∥∥du
2
s (t)
dt

∥∥∥∥
2

L2(I1,2;�2)
+ 5τ 3

12α2

∥∥∥∥d∇N�Nu2s (t)
dt

∥∥∥∥
2

L2(I1,2;�2)

+ α

6

∥∥∥∥du
1
s (t)
dt

∥∥∥∥
2

L2(I0,1;�2)
+ τ 3

12α2

∥∥∥∥d∇N�Nu1s (t)
dt

∥∥∥∥
2

L2(I0,1;�2)

≤
(
4 +

√
47
10

)
α

6

∥∥∥∥du
2
s (t)
dt

∥∥∥∥
2

L2(I1,2;�2)

+
(
4 +

√
47
10

)
τ 3

12α2

∥∥∥∥d∇N�Nu2s (t)
dt

∥∥∥∥
2

L2(I1,2;�2)

+
√
47
10

α

6

∥∥∥∥du
1
s (t)
dt

∥∥∥∥
2

L2(I0,1;�2)
+
√
47
10

τ 3

12α2

∥∥∥∥d∇N�Nu1s (t)
dt

∥∥∥∥
2

L2(I0,1;�2)
, (46)

where α = 6
9+
√

47
10+

√
31
30

is defined as above. Rearranging terms, one obtains

Ẽ(u2s ) ≤ EN (u1s ) +
(√

47
10

+
√
31
30

)
α

6

∥∥∥∥du
1
s (t)
dt

∥∥∥∥
2

L2(I0,1;�2)

+
(√

47
10

+
√
31
30

)
τ 3

12α2

∥∥∥∥d∇N�Nu1s (t)
dt

∥∥∥∥
2

L2(I0,1;�2)
. (47)

On the other hand, taking the inner product with du1s (t)
dt on both sides of the equation

satisfied by u1s (t) and repeating the analyses as in (21)–(24), we also have

∥∥∥∥du
1
s (t)
dt

∥∥∥∥
2

L2(I0,1;�2)
+ Aτ 3

∥∥∥∥d∇N�Nu1s (t)
dt

∥∥∥∥
2

L2(I0,1;�2)
+ EN (u1s ) − EN (u0s )

≤ ‖∇N (a1s − u1s (t))‖L2(I0,1;�2)
∥∥∥∥d∇Nu1s (t)

dt

∥∥∥∥
L2(I0,1;�2)

+ τ

∥∥∥∥d∇Nu1s (t)
dt

∥∥∥∥
2

L2(I0,1;�2)
. (48)

Splitting ‖∇N (a1s − u1s (t))‖L2(I0,1;�2) into three parts, combined with an application of
Lemma 3 and the Cauchy–Schwarz inequality, we arrive at

‖∇N (a1s − u1s (t))‖L2(I0,1;�2)
∥∥∥∥d∇Nu1s (t)

dt

∥∥∥∥
L2(I0,1;�2)

≤ √
τ
(‖∇N (a1s − u1)‖N + ‖∇N (u1 − u1s )‖N

) ∥∥∥∥d∇Nu1s (t)
dt

∥∥∥∥
L2(I0,1;�2)

+ ‖∇N (u1s − u1s (t))‖L2(I0,1;�2)
∥∥∥∥d∇Nu1s (t)

dt

∥∥∥∥
L2(I0,1;�2)

≤ Cε,ue (τ
5
2 + τ

1
2 h2m) + 5τ

4

∥∥∥∥d∇Nu1s (t)
dt

∥∥∥∥
2

L2(I0,1;�2)
. (49)
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Substituting (49) into (48), applying (12), one gets

EN (u0s ) + Cε,ue (τ
5
2 + τ

1
2 h2m)

≥ EN (u1s ) +
(
1 − 9

4
· 2α
3

)∥∥∥∥du
1
s (t)
dt

∥∥∥∥
2

L2(I0,1;�2)

+
(
A − 9

4
· 1
3α2

)
τ 3
∥∥∥∥d∇N�Nu1s (t)

dt

∥∥∥∥
2

L2(I0,1;�2)
. (50)

Meanwhile, it can be verified that

1 − 9
4

· 2α
3

=
(√

47
10

+
√
31
30

)
α

6
, A − 9

4
· 1
3α2 =

(√
47
10

+
√
31
30

)
1

12α2 .

Therefore, a combination of (47), (50) and Corollary 3.1 leads to

EN (un+1
s ) ≤ EN (u0s ) + Cε,ue (τ

5
2 + τ

1
2 h2m). (51)

Finally, applying Lemma 3.2 and Remark 3.3 in [10, p. 586], we complete the proof. ��
Next, we provide a finite timeH3

h bound for the numerical solution un+1
s (t), which shall

be used in the convergence analysis.

Lemma 5 Assume that the initial solution u(0) has H6
h -regularity and A satisfies the

requirement in Theorem 1. Then, we have the finite time H3
h bound for the numerical

solution

‖un+1
s (t)‖2H3

h
≤ C1, for 0 ≤ n ≤ Nt − 1, (52)

where C1 only depends on ε, Ω and ‖u(0)‖H6
h
.

Proof Taking an inner product with −�3
Nun+1

s (t) on both sides of (6) leads to

1
2
d‖∇N�Nun+1

s (t)‖2N
dt

+ Aτ 3

2
d‖�3

Nun+1
s (t)‖2N
dt

+ ε2‖∇N�2
Nun+1

s (t)‖2N

=
2∑

i=0
�i(t − tn)

(
∇N∇N · β(∇Nuns ),∇N�2

Nun+1
s (t)

)
N
. (53)

For any v ∈ H2
h (Ω) with periodic boundary conditions, recall that ṽ = INv is the contin-

uous extension of v. As in [9, Proposition 3.4], by using (5), for ṽ = ũns , ũn−1
s , ũn−2

s , one
has

‖∇N∇N · β(v)‖N = ‖∇∇ · IN (β(∇ ṽ))‖ ≤ C‖β(∇ ṽ)‖H2 ≤ C‖∇�ṽ‖, (54)

in which we have used the H2 bound of ṽ. Substituting the above estimates into (53) and
applying Lemma 4, one gets

1
2
d‖∇N�Nun+1

s (t)‖2N
dt

+ Aτ 3

2
d‖�3

Nun+1
s (t)‖2N
dt

+ ε2‖∇N�2
Nun+1

s (t)‖2N

≤ ε2

2
‖∇N�2

Nun+1
s (t)‖2N + Cε−2

2∑
k=0

‖∇N�Nun−k
s ‖2N . (55)
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In turn, an integration from tn to tn+1 implies that

1
2
(‖∇N�Nun+1

s ‖2N − ‖∇N�Nuns ‖2N
)+ Aτ 3

2
(‖�3

Nun+1
s ‖2N − ‖�3

Nuns ‖2N
)

≤ Cε−2τ
2∑

k=0
‖∇N�Nun−k

s ‖2N . (56)

Note that for n = 0 and 1 the same expression as (56) can be obtained, except that
the summation part on the RHS only contains two terms. In particular, when n = 0, the
‖∇N�Na1s ‖2N term is on the RHS. To analyze this term, repeating the process in (53)–(56)
on (7), we get

‖∇N�Na1s ‖2N ≤ (1 + Cε−2τ )‖∇N�Nu0s ‖2N + Aτ 3‖�3
Nu0s ‖2N . (57)

Now, a summation of (56) from 0 to n shows that

1
2
‖∇N�Nun+1

s ‖2N + Aτ 3

2
‖�3

Nun+1
s ‖2N

≤ Cτε−2
n∑

i=0
‖∇N�Nuis‖2N + ‖∇N�Nu0s ‖2N + Aτ 3‖�3

Nu0s ‖2N .

An application of the discrete Gronwall’s inequality leads to

‖∇N�Nun+1
s ‖N ≤ C, (58)

where C depends only on ε, u(0) and T . ��

4 Error analysis of the sETDMs3 scheme
Here, we recall a modified version of Lemma 4.3 in [9]:

Lemma 6 For any v, w, MN
0 ∩ H3

h and g ∈ MN ∩ H2
h , we have

(
β(∇N v) − β(∇Nw),∇N g

)
N

≤ Cv,w(1 + h)
(

1
4λ1ε2

+ 1
4λ2

)
‖v − w‖2N + λ1ε

2‖�N g‖2N + λ2‖g‖2N ,

where Cv,w is a constant depending on Ω , ‖w‖H3
h
and ‖v‖H3

h
, λ1 and λ2 are any positive

constants.

Proof With Lemma 5, the proof is almost the same as in [9, Lemma 4.3], except that the
parameters in the Cauchy–Schwarz inequalities in the last step are chosen as λ1 and λ2.��

The following estimate for the initial step error is needed in the later analysis.

Lemma 7 Assume that A satisfies the assumptions in Lemma 5, u(0) has H11
h -regularity,

and the exact solution ue to (1) satisfies the regularity

ue ∈ H1(0, T ;Hm+7
per (Ω)) ∩ H2(0, T ;H3

per(Ω)).
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Then, one obtains

1
2
‖u(t1) − u1s ‖2N + Aτ 3

2
‖∇N�N (u(t1) − u1s )‖2N ≤ C(h2m + τ 6). (59)

Proof Recall that f (∇N v) = ∇N · β(∇N v). An application of Taylor expansion indicates
that

f (∇Na1s ) = f (∇Nu0s ) + τ
df (∇Nu0s )

dt
+
∫ τ

0

d2f (∇Na1s (l))
dl2

(τ − l)dl, (60)

f (∇Nu(t)) = f (∇Nu0s ) + t
df (∇Nu(0))

dt
+
∫ t

0

d2f (∇Nu(l))
dl2

(t − l)dl, (61)

in which

df (∇N v)
dt

= ∇N ·
( ∇N vt
1 + |∇N v|2

)
− 2∇N ·

( |∇N vt ||∇N v|∇N v
1 + |∇N v|2

)
. (62)

Recall thatM = I − Aτ 3�3
N , K = ε2M−1�2

N . By (7) and (1), one gets

du0s
dt

= M−1 [−KMu0s − f (u0s )
]
, (63)

du(0)
dt

= M−1
[
−KMu0s − f (u0s ) +

3∑
i=1

Ri(0)
]
, (64)

where
∑3

i=1Ri(0) are defined as in (31)–(32). A substitution of (60)–(64) into (7) gives

du1s (t)
dt

+ Aτ 3
d�3

Nu1s (t)
dt

+ ε2�2
Nu1s (t) = −f (u(t)) +

3∑
i=1

R̂i(t), (65)

with

R̂1(t) = t
(
df (∇Nu(0))

dt
− df (∇Nu0s )

dt

)
, (66)

R̂2(t) =
∫ t

0

d2f (∇Nu(l))
dl2

(t − l) dl, (67)

R̂3(t) = − t
τ

∫ τ

0

d2f (∇Na1s (l))
dl2

(τ − l)dl. (68)

Define the error function as e(t) = u(t) − u1s (t), then one gets

de(t)
dt

+ Aτ 3
d�3

N e(t)
dt

+ ε2�2
N e(t) = −

3∑
i=1

R̂i(t) +
3∑

i=1
Ri(t). (69)

Taking the inner product with e(t) on both sides, and denoting

ω(t) := 1
2
‖e(t)‖2N + Aτ 3

2
‖∇N�N e(t)‖2N , (70)
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one gets

dω(t)
dt

+ ε2‖�N e(t)‖2N ≤ ‖e(t)‖2N
4τ

+ 3τ
3∑

i=1
‖Ri(t)‖2N +

3∑
i=1

(
R̂i(t), e(t)

)
N . (71)

For
(
R̂1(t), e(t)

)
N , using integration by parts, the Cauchy–Schwarz inequality, and u(0) =

u0s , one has

(
R̂1(t), e(t)

)
N

= −
⎛
⎜⎝∇N

(
du0s
dt − du0s

dt

)
1 + |∇Nu0s |2

,∇N e(t)

⎞
⎟⎠

N

+ 2

⎛
⎜⎝
(∣∣∣∇N du(0)

dt

∣∣∣− ∣∣∣∇N
du0s
dt

∣∣∣) |∇Nu0s |∇Nu0s
1 + |∇Nu0s |2

,∇N e(t)

⎞
⎟⎠

N

≤ 3‖∇N e(t)‖N
3∑

i=1
‖∇NRi(0)‖N

≤ 3(‖e(t)‖N + ‖�N e(t)‖N )
3∑

i=1
‖∇NRi(0)‖N

≤ 1
4τ

‖e(t)‖2N + ε2

2
‖�N e(t)‖2N +

(
27
2ε2

+ 27τ
) 3∑

i=1
‖∇NRi(0)‖2N . (72)

Next,
(
R̂i(t), e(t)

)
N with i = 2, 3 can be analyzed using (44):

3∑
i=2

(
R̂i(t), e(t)

)
N

≤ τ
3
2 ‖e(t)‖N

(∥∥∥∥d
2f (∇Nu(t))

dt2

∥∥∥∥
L2(I0,1;�2)

+
∥∥∥∥d

2f (∇Na1s (t))
dt2

∥∥∥∥
L2(I0,1;�2)

)

≤ 1
4τ

‖e(t)‖2N + τ 5
∥∥f (∇Nu(t))

∥∥2
W 2,∞(I0,1;�2) + τ 5

∥∥f (∇Na1s (t))
∥∥2
W 2,∞(I0,1;�2)

≤ 1
4τ

‖e(t)‖2N + Cτ 5(‖u(t)‖2H2(I0,1;H3
h )

+ ‖a1s (t)‖2H2(I0,1;H3
h )
), (73)

where the regularity of a1s (t) is obtained by its closed form in (11), the assumption that
u(0) has H11

h -regularity:

‖a1s (t)‖2H2(I0,1;H3
h )

≤ Cτ

∥∥∥∥�
3
2
NK 2u(0)

∥∥∥∥
2

N
+ Cτ

∥∥∥∥�
3
2
NK f̂ (u(0))

∥∥∥∥
2

N

≤ Cτ

∥∥∥∥�
3
2
N (I − Aτ 3�3

N )−2�4
Nu(0)

∥∥∥∥
2

N
≤ Cτ‖u(0)‖2H11

h
. (74)

Therefore, combining (71)–(73) and using Lemma 5 gives

dω(t)
dt

≤ 3
2τ

ω(t) + Cτ 5 +
(

27
2ε2

+ 27τ
) 3∑

i=1
‖∇NRi(0)‖2N + 3τ

3∑
i=1

‖Ri(t)‖2N . (75)
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Multiplying both sides by e− 3t
2τ and integrating from 0 to τ , using (40) and ω(0) = 0, one

gets

ω(t1) ≤ Cτ 6 +
(

27
2ε2

+ 27τ
) 3∑

i=1
‖∇NRi(0)‖2L2(I0,1;�2) + 3τ

3∑
i=1

‖Ri(t)‖2L2(I0,1;�2)

≤ C(τ 6 + h2m). (76)

This completes the proof of the lemma. ��
Below is the main result of this section.

Theorem 2 Assume that the exact solution satisfies the regularity

ue ∈ H1(0, T ;Hm+7
per (Ω)) ∩ H2(0, T ;H3

per(Ω))

∩ W 2,∞(0, T ;H2
per(Ω)) ∩ H3(0, T ;H2

per(Ω)).

Define u(t) := ue(t)|ΩN and denote by {uns }Nt
n=0 the numerical solution of (11) with u0s =

u(0) ∈ H11
h (Ω). If τ < 1

16 , h < 1, one gets

‖u(tn) − uns ‖N ≤ C(τ 3 + N−m), 1 ≤ n ≤ Nt, (77)

with C > 0 independent on the time step size τ and the spatial discretization parameter
N .

Proof Define the error function e(t) = u(t) − un+1
s (t) ∈ MN . Denote ue(tn) and u(tn) as

une and un, respectively. Subtracting (6) from (1), one gets: for t2 ≤ t ≤ tn+1,

de(t)
dt

− Aτ 3
d�3

N e(t)
dt

+ ε2�2
N e(t)

= −
2∑

i=0
�i(t − tn)∇N ·

[
β(∇Nun−i) − β(∇Nun−i

s )
]

+ R(t), (78)

in whichR(t) =∑4
i=1Ri(t), with

∑3
i=1Ri(t) defined as in (31)–(32), and

R4(t) =
2∑

i=0
�i(t − tn)∇N · β(∇Nun−i) − ∇N · β(∇Nu(t)). (79)

Taking the inner product with e(t) on both sides of (78), one gets:

1
2
d‖e(t)‖2N

dt
+ Aτ 3

2
d‖∇N�N e(t)‖2N

dt
+ ε2‖�N e(t)‖2N

=
2∑

i=0
�i(t − tn)

(
β(∇Nun−i) − β(∇Nun−i

s ),∇N e(t)
)
N

+ (R(t), e(t))N

:= (NL) + (R(t), e(t))N . (80)

The truncation error term could be bounded by the Cauchy–Schwarz inequality:

(R(t), e(t))N ≤ ‖R(t)‖2N
2

+ ‖e(t)‖2N
2

. (81)
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An application of Lemmas 5 and 6 (with λ1 = 1
8 , λ2 = 1

2 to (NL)) results in

(NL) ≤ C(1 + h)
(

2
ε2

+ 1
2

) 2∑
i=0

‖e(tn−i)‖2N + 7ε2

8
‖�N e(t)‖2N + 7

2
‖e(t)‖2N , (82)

where C only depends on ‖u(0)‖H6
h
and ΩN .

A substitution of (81) and (82) into (80) yields

1
2
d‖e(t)‖2N

dt
+ Aτ 3

2
d‖∇N�N e(t)‖2N

dt
+ ε2

8
‖�N e(t)‖2N

≤ C(1 + h)
(

2
ε2

+ 1
2

) 2∑
i=0

‖e(tn−i)‖2N + 4‖e(t)‖2N + ‖R(t)‖2N
2

. (83)

Denote ω(t) = 1
2‖e(t)‖2N + Aτ 3

2 ‖∇N�N e(t)‖2N . Multiplying both sides by e−8t gives

d
dt

e−8tω(t) ≤
[
C(1 + h)

(
2
ε2

+ 1
2

) 2∑
i=0

‖e(tn−i)‖2N + ‖R(t)‖2N
2

]
e−8t . (84)

Integrating (84) from tn to tn+1 and multiplying both sides by e8tn , one gets

e−8τω(tn+1) − ω(tn)

≤ 1 − e−8τ

8
C(1 + h)

(
2
ε2

+ 1
2

) 2∑
i=0

‖e(tn−i)‖2N + ‖R(t)‖2L2(In,n+1;�2). (85)

Furthermore, since ex ≥ 1 + x for x ∈ R, it is observed that

ω(tn+1) − ω(tn) − 8τω(tn+1)

≤ C(1 + h)τ
(

2
ε2

+ 1
2

) 2∑
i=0

‖e(tn−i)‖2N +
4∑

i=1
‖Ri(t)‖2L2(In,n+1;�2). (86)

As forR4(t), note that

R4(t) =
2∑

i=0
�i(t − tn−i)

∫ tn−i

t
(tn−i − s)2∂ttt (∇N · β(∇Nu(s))) ds. (87)

Applying Hölder’s inequality and (5) implies that

‖R4(t)‖N ≤ Cτ
5
2 ‖∇N · β(∇Nu(t))‖H3(In−1,n+1;�2) ≤ Cτ

5
2 ‖ue(t)‖H3(In−1,n+1;H2). (88)

Recalling the estimates ofR1 ∼ R3 in (37)–(39), one arrives at

4∑
i=1

‖Ri(t)‖2L2(In,n+1;�2)

≤ C(h2m + τ 6)
[
‖ue(t)‖H1(In,n+1;Hm+6) + ‖ue(t)‖2H3(In−1,n+1;H2)

]
.



   13 Page 20 of 27 W. Chen et al. Res Math Sci           (2020) 7:13 

A substitution of the above estimates into (86) and summing up from 2 to n implies that

ω(tn+1) − ω(t2) − 8τ
n+1∑
i=2

ω(ti) ≤ C(1 + h)τ
(

2
ε2

+ 1
2

) n∑
i=0

‖e(ti)‖2N + C(h2m + τ 6),

where C depends on ‖ue‖H1(0,T ;Hm+6) and ‖ue‖H3(0,T ;H2). Since 8τ < 1
2 , one gets

ω(tn+1) ≤ C(1 + h)
(

1
ε2

+ 1
)

τ

n∑
i=0

ω(ti) + C(h2m + τ 6) + Cω(t2). (89)

As for ω(t2), because of the fact that u0s = u0, for t1 ≤ t ≤ t2, one gets

de(t)
dt

+ Aτ 3
d�3

N e(t)
dt

+ ε2�2
N e(t)

= − t
τ

∇N · [β(∇Nu1) − β(∇Nu1s )
]+

3∑
i=1

Ri(t) + R4,2(t), (90)

where
∑3

i=1Ri(t) are defined in (31)–(32),R4,2(t) is defined in (43).
Similar to (83), one gets

1
2
d‖e(t)‖2N

dt
+ Aτ 3

2
d‖∇N�N e(t)‖2N

dt
+ 3ε2

4
‖�N e(t)‖2N (91)

≤ C(1 + h)
(

2
ε2

+ 1
2

)
‖e(t1)‖2N +

(
1 + 1

2τ

)
‖e(t)‖2N

+
3∑

i=1

‖Ri(t)‖2N
2

+ τ

2
‖R4,2(t)‖2N .

Repeating the analyses as in (84)–(85), one arrives at

ω(t2) ≤ e2τ+1
[
ω(t1) + C(1 + h)

(
1
ε2

+ 1
)

τ‖e(t1)‖2N + C(h2m + τ 6)
]
, (92)

where C also depends on ‖ue‖W 2,∞(0,T ;H2).
A substitution of Lemma 7 and (92) into (89) results in

1
2
ω(tn+1) ≤

[
C(1 + h)

(
2
ε2

+ 1
2

)
+ 8
]

τ

n∑
i=0

ω(ti) + C(h2m + τ 6). (93)

An application of the discrete Gronwall’s inequality yields the desired convergence result,
ω(tn+1) ≤ C(h2m + τ 6), i.e.,

‖e(tn+1)‖2N + Aτ 2‖�N e(tn+1)‖2N ≤ C(h2m + τ 6), (94)

where C is independent of h and τ . ��
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Remark 4.1 We have taken the artificial dissipation term of the form of Aτ k
∂(�2

N )p(k)u(t)
∂t

with p(k) = k/2 for schemes of order k in time. The value of p(k) plays a very important
role in the energy stability and in the convergence property for the numerical scheme,
both at theoretical and numerical values. For instance, to obtain a third-order temporal
accuracy, p(3) = 3

2 turns out to be a critical value to theoretically preserve the energy
stability with anO(1) artificial regularization coefficientA. In fact, the Lipschitz condition
on the nonlinear term gives (22)–(23), due to which we roughly need to control τ d�N u

dt
with the aid of the dissipation termsAτ 3 d

dt (−�N )2p(3)u and du
dt , thenp(3) = 3

2 is the choice
that makes A ofO(1) magnitude. If the power index is taken to be p(3) < 3

2 , such as p = 1
as in an existing work [14], an energy stability has been proved with A = O(ε−2). In this
case, the artificial diffusion power has been reduced, while the corresponding coefficient
has been drastically increased, which may lead to much larger truncation error, while the
temporal accuracy order is kept unchanged. If the power index is taken to be p(3) > 3

2 , the
theoretical justification of both the energy stability and third-order convergence analysis
remains valid, with the artificial regularization coefficient A = O(1); on the other hand,
the truncation error is expected to be larger than the one with the critical power index
p(3) = 3

2 , especially for high frequency part, although the temporal accuracy order is still
kept as the third order. Because of these two considerations, we take the critical value of
the artificial regularization p(3) = 3

2 , for the sake of both the theoretical property and
numerical performance.
The convergence test results for five difference values of p: p = 1, p = 1.4, p = 1.6,

p = 3
2 and p = 2 are presented in the next section, as illustrated in Tables 1, 2 and

3, respectively. It is observed that, the proposed scheme preserves very nice third-order
temporal convergence rates with a refined time step size, with all these values of p(3) and
anO(1) artificial regularization coefficientA. In fact, for all these choices of p(3) andA, the
optimal rate convergence analysis is always available. And also, an O(ε−2) requirement
forA in the case of p = 1 in the energy stability analysis turns out to be a theoretical issue;
the energy dissipation has always been observed in the practical computations even for
p = 1 andA = O(1) case.We also observe that the errors increase as the power index p(k)
increases, consistent with our intuition that stronger artificial dissipation leads to larger
errors.

5 Numerical results
5.1 Temporal convergence of sETDMs3

In this section, we test the temporal convergence of sETDMs3. Let Ω = [0, 2π ]2, ε2 =
0.01, T = 1, N = 128, A = 1

2α3 with α defined as in (18). With an additional time-
dependent forcing term, we set the exact solution to be ue(t) = e−t cos(2x) cos(2y). Also,
consider three different ways to compute u1s , namely using the exact value, a1s or as in (8).
For this exact profile, a careful calculation gives

g = (−1 + 64ε2)u − 8u
1 + 2e−2t [1 − cos(4x) cos(4y)]

+ 16e−2tu
[1 + 2e−2t (1 − cos(4x) cos(4y))]2

[cos(4x) + cos(4y) − 2 cos(4x) cos(4y)].
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Table1 Temporal convergence of sETDMs3 (ue(t) = e−t cos(2x) cos(2y), p(3) = 3/2)

τ u1s = a1s u1s = u1 u1s by (8)

Error Order Error Order Error Order

2.50E−03 1.25E−04 1.37E−04 0.000 1.38E−04 0.000

1.25E−03 1.40E−05 3.152 1.72E−05 2.993 1.73E−05 2.995

6.25E−04 1.35E−06 3.375 2.16E−06 2.998 2.16E−06 2.999

3.13E−04 7.01E−08 4.271 2.70E−07 2.999 2.70E−07 3.000

1.56E−04 1.71E−08 2.032 3.37E−08 3.000 3.37E−08 3.000

7.81E−05 8.43E−09 1.022 4.22E−09 3.000 4.22E−09 3.000

3.91E−05 2.63E−09 1.682 5.31E−10 2.988 5.32E−10 2.988

1.95E−05 7.25E−10 1.857 6.62E−11 3.005 6.62E−11 3.005

Table2 Temporal convergence of sETDMs3 (ue(t) = e−t cos(2x) cos(2y), p(3) = 1.4)

τ u1s = a1s u1s = u1 u1s by (8)

Error Order Error Order Error Order

2.50E−03 6.06E−05 7.33E−05 7.36E−05

1.25E−03 5.99E−06 3.340 9.20E−06 2.994 9.22E−06 2.996

6.25E−04 3.51E−07 4.092 1.15E−06 2.998 1.15E−06 2.999

3.13E−04 5.98E−08 2.554 1.44E−07 2.999 1.44E−07 3.000

1.56E−04 3.26E−08 0.874 1.80E−08 3.000 1.80E−08 3.000

7.81E−05 1.04E−08 1.651 2.25E−09 3.001 2.25E−09 3.001

3.91E−05 2.88E−09 1.851 2.79E−10 3.012 2.79E−10 3.012

1.95E−05 7.60E−10 1.923 3.35E−11 3.057 3.35E−11 3.057

Table3 Temporal convergence of sETDMs3 (ue(t) = e−t cos(2x) cos(2y), p(3) = 1.6)

τ u1s = a1s u1s = u1 u1s by (8)

Error Order Error Order Error Order

2.50E−03 1.56E−04 1.68E−04 1.69E−04 0.000

1.25E−03 1.79E−05 3.119 2.11E−05 2.992 2.12E−05 2.994

6.25E−04 1.84E−06 3.285 2.64E−06 2.998 2.65E−06 2.999

3.13E−04 1.30E−07 3.821 3.31E−07 2.999 3.31E−07 3.000

1.56E−04 9.88E−09 3.721 4.13E−08 3.000 4.14E−08 3.000

7.81E−05 7.49E−09 0.399 5.17E−09 3.000 5.17E−09 3.000

3.91E−05 2.52E−09 1.574 6.44E−10 3.003 6.45E−10 3.003

1.95E−05 7.20E−10 1.805 7.16E−11 3.171 7.16E−11 3.171

Results for p(3) = 3
2 , p(3) = 1.4, p(3) = 1.6, p(3) = 1 and p(3) = 2 are shown in

Tables 1, 2, 3, 4 and 5, respectively. Third-order temporal convergence rates have been
observed for all these values of p, as the time step size is refined. For p(3) = 1, the loss of
accuracy in the last row is due, perhaps, to rounding errors.

5.2 Simulation results of coarsening process

In this subsection, we set Ω = [0, 12.8]2, ε2 = 0.005, T = 40000, A = 1
2α3 with α defined

as in (18) and use a random initial data within [− 0.05, 0.05]. We use a coarser uniform
mesh with N = 128 and set time step size τ = 0.001.
Figure 1 shows the snapshots of the numerical solution (11) at time t = 1, 1E4, 1.5E4,

2E4, 3E4, 4E4. It can be observed that the solution has saturated to a one-hill-one-valley
structure at the final time.
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Table4 Temporal convergence of sETDMs3 (ue(t) = e−t cos(2x) cos(2y), p(3) = 1)

τ u1s = a1s u1s = u1 u1s by (8)

Error Order Error Order Error Order

2.50E−03 4.44E−06 1.72E−05 1.73E−05

1.25E−03 1.10E−06 2.007 2.15E−06 2.997 2.17E−06 2.999

6.25E−04 5.41E−07 1.029 2.70E−07 2.999 2.71E−07 2.999

3.13E−04 1.69E−07 1.682 3.37E−08 2.999 3.39E−08 2.999

1.56E−04 4.63E−08 1.864 4.21E−09 3.000 4.24E−09 3.000

7.81E−05 1.21E−08 1.936 5.26E−10 3.001 5.29E−10 3.001

3.91E−05 3.10E−09 1.967 6.06E−11 3.118 6.10E−11 3.117

1.95E−05 7.93E−10 1.966 1.58E−11 1.943 1.58E−11 1.951

Table5 Temporal convergence of sETDMs3 (ue(t) = e−t cos(2x) cos(2y), p(3) = 2)

τ u1s = a1s u1s = u1 u1s by (8)

Error Order Error Order Error Order

2.50E−03 9.62E−04 9.70E−04 9.73E−04 0.000

1.25E−03 1.31E−04 2.877 1.34E−04 2.857 1.34E−04 2.859

6.25E−04 1.64E−05 2.999 1.72E−05 2.963 1.72E−05 2.964

3.13E−04 1.96E−06 3.067 2.16E−06 2.994 2.16E−06 2.995

1.56E−04 2.19E−07 3.156 2.70E−07 2.999 2.70E−07 2.999

7.81E−05 2.11E−08 3.375 3.37E−08 3.000 3.37E−08 3.000

3.91E−05 1.10E−09 4.270 4.21E−09 3.000 4.21E−09 3.000

1.95E−05 2.60E−10 2.077 5.35E−10 2.977 5.35E−10 2.977
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Fig. 1 Snapshots of the numerical solutions

Recall the discrete energy functional in (17), for convenience we repeat it here:

EN (u) =
(

−1
2
ln(1 + |∇Nu|2), 1

)
N

+ ε2

2
‖�Nu‖2N , ∀u ∈ MN . (95)
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Fig. 2 Semi-log plot of the energy EN of sETDMs3. Fitted line has the form a ln(t) + b, with coefficients
a = −38.85, b = −55.24

Also, consider the average surface roughness hN (u) and the average slopemN (u):

hN (u, t) =
√√√√ h2

|Ω|
∑
MN

|u(xi,j , t) − ū(t)|2, with ū(t) := h2

|Ω|
∑
MN

u(xi,j , t). (96)

mN (u, t) =
√√√√ h2

|Ω|
∑
MN

|∇u(xi,j , t)|2. (97)

For the no-slope-selection growth model (1), recall that EN ∼ O(− ln(t)), hN ∼ O(t
1
2 )

andmN ∼ O(t
1
4 ) as t → ∞ (see [24,38,39] and references therein). The evolution of EN ,

hN andmN is demonstrated in Figs. 2 and 3, respectively. The linear fitting results for the
solution of sETDMs3 in time interval [1, 400] are also presented in corresponding figures.
The evolution of the discrete energy for the case of p(3) = 1 with the same regularization
coefficientA as in the case of p(3) = 3/2 is illustrated in Fig. 4. The difference in numerical
results is small indicating the performance of the scheme is insensitivity of the value of
p(k) despite the theoretical requirement.
We also observe that the errors increase as the power index p(k) increases, consistent

with our intuition that stronger artificial dissipation leads to larger errors.

6 Concluding remarks
We have introduced a strategy for designing higher-order in time, energy stable linear
numerical schemes by combining ETD method , multi-step method and a higher-order
continuousDupont–Douglas type regularization for gradient flowswithmildnonlinearity.
As an example, a linear, third order in time accurate, energy stable ETD-based scheme for
a thin filmmodel without slope selection is presented. An unconditional long-time energy
stability is justified at a theoretical level. In addition, anO(τ 3)-order convergence analysis
is established in the �∞(0, T ; �2) norm. Moreover, various numerical experiments have
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Fig. 3 The log–log plot of (1) the average surface roughness hN and (2) the average slopemN of sETDMs3.
Fitted lines have the form atb , with coefficients (1) a = 0.4113, b = 0.4983 and (2) a = 2.162, b = 0.2578
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Energy evolution of sETDMs3 solution (p(3)=1)

Fig. 4 Semi-log plot of the energy EN of sETDMs3 with p(3) = 1. Fitted line has the form a ln(t) + b, with
coefficients a = −39.48, b = −52.04

demonstrated that the proposed third-order scheme is able to produce accurate long-time
numerical results with a reasonable computational cost.
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