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A second order accurate numerical scheme is proposed and analyzed for the periodic three-
component Macromolecular Microsphere Composite(MMC) hydrogels system, a ternary Cahn-
Hilliard system with a Flory-Huggins-deGennes free energy potential. This numerical scheme
with energy stability is based on the Backward Differentiation Formula(BDF) method in time
derivation combining with Douglas-Dupont regularization term, combined the finite difference
method in space. We provide a theoretical justification of positivity-preserving property for
all the singular terms, i.e., not only the two phase variables are always between 0 and 1,
but also the sum of the two phase variables is between 0 and 1, at a point-wise level. In
addition, an optimal rate convergence analysis is provided in this paper, in which a higher
order asymptotic expansion of the numerical solution, the rough error estimate and refined
error estimate techniques have to be included to accomplish such an analysis. This paper
will be the first to combine the following theoretical properties for a second order accurate
numerical scheme for the ternary MMC system: (i) unique solvability and positivity-preserving
property; (ii) energy stability; (iii) and optimal rate convergence. A few numerical results are
also presented.

1. Introduction

Macromolecular microsphere composite (MMC) hydrogels, a class of polymeric materials, have attracted theoretical and
experimental studies due to their well-defined network microstructures and high mechanical strength.

A binary mathematical model was presented in [1] to describe the periodic structures and the phase transitions of the MMC
hydrogels based on Boltzmann entropy theory. The corresponding model leads to the MMC-TDGL equation, with a similar structure
to the Cahn-Hilliard equation, but with certain singular gradient coefficients, is discussed in [2-5]. Also see the related works [6-10]
for the hydrogel model. The binary Cahn-Hilliard equation with either polynomial Ginzburg-Landau or singular Flory—-Huggins-type
free energy models spinodal decomposition, phase separation, and coarsening in a two-phase fluid. There have been many theoretical
analyses and numerical approximations for these kinds of gradient flows in the two-phase case [11-18].

For the ternary Cahn-Hilliard system, the general framework is to adopt three independent phase variables (¢, ¢, ¢;) while
enforcing a mass conservation (or “no-voids”) constraint ¢, + ¢, + ¢; = 1. See the related works [19-22]. A ternary system with
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Flory-Huggins-deGennes energy potential [9] has been of great scientific interests, which turns out to be an improvement over
the model proposed in [1], as it removes certain limiting assumptions. The singular Flory-Huggins-deGennes energy potential is as
follows:

3 e
Go(b1. by, ) = / {SO(¢1,¢2,¢3) + % > LIVt + H,,<¢1,¢2,¢3)} dx
Q Pl

where S,(¢;, o, h3) + H,(p), ¢y, ¢3) is the reticular (Flory-Huggins style) free energy density:
¢ ap ¢ B
S,(¢1 2. b3) = ﬁ‘l F; 7201 Tz +¢5In s,

Hy (@1, b2, $3) = x1201P2 + 2139193 + X323

S, is the ideal solution part and H, is the entropy of mixing part. The domain £ c R? is assumed open, bounded, and simply
connected. We focus on the 2-D case for simplicity of presentation, while the extension to the 3-D gradient flow is straightforward.
The mass-conservative phase variables ¢,, ¢, and ¢5, represent the concentration of the macromolecular microsphere, the polymer
chain, and the solvent, respectively. These three phase variables are subject to the “no-voids” constraint ¢, + ¢, +¢3; = 1. We denote
by M, the relative volume of one macromolecular microsphere, and by N, the degree of polymerization of the polymer chains. The
coefficient ¢; is called the statistical segment length of the ith component, which is always positive. The parameters « and # depend

on M, and Nj:
1 1

My\5 Njy\2 My 3
a=x((Z2)+ ). p=2(22) 4N
b4 2 T
BY x12, x13, and yx,3; we denote the Huggins interaction parameters between (i) the macromolecular microspheres and polymer chains,

(ii) the macromolecular microspheres and solvent, and (iii) the polymer chains and solvent, respectively. All these parameters are
positive, and the following inequality is assumed to guarantee the concavity of the entropy of mixing H|, term:

4xsas — G — 213 — 123)* > 0.

Making use of the no-voids constraint ¢; = 1 — ¢, — ¢,, we can rewrite the energy functional as

Gy ¢ >—/{5(¢ gy AVOEGIVOP V-9 0P .
1-92) = Q 1-%2 36¢), 36¢, 36(1 — ¢y — by) .

+H(¢1,¢2)}dx

where

b ap P ﬂ¢

S @) = g7 In 7+ T In T (1= = d)InCl = by = )
H($y,d2) = x1nd192 + )(13451(1 - ¢1 = $2) + 13hr(1 — ¢y — ).

The ternary MMC dynamic equations are H~! gradient flows associated with the given energy functional (1.1):

oy = MyApy, 0,y = MyAu,, (1.2)

where M, M, > 0 are mobilities, which are assumed to be positive constants. The terms x; and y, are the chemical potentials with
respect to ¢, and ¢,, respectively, i.e.,

=08y, G = MLO In % —In(1 =&y — ¢2) = 211301 + (x12 — X13 — 123)92
2 2 2
1 11Vl £V,
tat g 1o o5 V(50 (1.3)
. 2V -, - ) oy e2V(1 = ¢y — )
36(1 — ¢ — ¢y)? 18(1 = ¢y — @)
My i=04,G = NL In ﬂiboz —In(1 — @1 = $2) = 212302 + (X12 — X13 — X23)91
2 2 2
1 &Vl £V,
bt ol v v 55 (1.4)
. IV - - ) V(1 - ¢y — )
36(1 — ) — ¢y)? 18(1 =) — ¢,)

For simplicity, periodic boundary conditions are assumed. These equations would reduce to the classical ternary Cahn-Hilliard system
if the gradient energy coefficients e[.z /(36¢,) were replaced by 2’_2 /2. In any case, it is then easy to see that the energy is non-increasing
for the ternary MMC model. The evolution Egs. (1.2) are mass conservative; the mass fluxes are proportional to the gradients of the
respective chemical potentials. Clearly the phase fields must satisfy ¢; > 0, ¢, > 0, and 1 — ¢; — ¢, > 0 for the model to make sense
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physically and mathematically. We define the following Gibbs Triangles for use later:

G:= {12 €R* | 0< . o b1+ <1} (1.5)
and, for 6 > 0,

Gs = {19 € |5 <1y, b1 +y < 1-5].

Of course, G, = G, and G5 C G, for each 6 > 0. If (qbl(- D, o (-, t)) € G, point-wise, for all ¢+ > 0, we say that the positivity-preserving
property holds for the equation. If, for some strictly positive § > 0, (¢1(~ 1), o A,t)) € G;, point-wise, for all 7 > 0, we say that a
strict separation property holds for the equation.

There have been some numerical works for the ternary MMC system, while most existing works have focused on first order
accurate (in time) algorithms. Such as the recent literature [23,24], the authors presented a first order discrete finite difference
numerical scheme based on the convex splitting method of the free energy with logarithmic potential, established a theoretical
justification of the positivity property and convergence analysis. Also see the related finite element work [22]. One well-known
drawback of the first order convex splitting approach is that an extra dissipation added to ensure unconditional stability also
introduces a significant amount of numerical error [25]. Due to this fact, second-order energy stable methods have been highly
desirable, which preserves all important theoretical features, i.e., unique solvability, positivity preserving, mass conversation, energy
stability and convergence analysis.

The goal of this paper is to extend the convex-splitting framework to develop a second order in both time and space for the
ternary MMC system. We propose and analyze a numerical scheme with four theoretical properties justified: unique solvability and
positivity-preserving, mass conservation, energy stability and convergence analysis. This scheme is based on the 2nd BDF temporal
approximation and the finite difference method in space for the ternary MMC system. Based on the idea of convex splitting, we
treat the convex part implicitly and the linear part explicitly using the second-order Adams-Bashforth extrapolation formula. In
addition, a second order Douglas-Dupont regularization of the form A,-AtA,,((i)l’.’Jrl —¢}) is specifically introduced to ensure the energy
stability in this paper, this technique is similar in [13,18,26,27]. Moreover, the highly nonlinear and singular nature of the surface
diffusion coefficients makes the system turn to be a very challenging issue. In this paper, we will adopt similar techniques in [23,28]
to estimate the positivity property. First, the fully discrete numerical scheme is equivalent to a minimization of a strictly convex
discrete energy functional, so we can transform the positivity preserving problem of the numerical solution into the problem that
the minimizer of this functional could not occur on the boundary points. A more careful analysis reveals that, the convex and
the singular natures of these implict nonlinear parts prevent the numerical solutions approach the singular limit values of 0 and
1, so that the phase variables are always between 0 and 1. At the same time, the sum of these two phase variables is between 0
and 1, at a point-wise level. Although the extra term AiAtAh(¢;’+1 — ¢!) is added into the numerical scheme, it does not matter
because the logarithmic function always changes faster than the linear function as the phase variable approaches the boundary
points. For convergence analysis, to control the explicit part of the extra regularization term, a higher order asymptotic expansion
(up to third order temporal accuracy and fourth order spatial accuracy) has to be involved. To overcome the highly nonlinear and
singular nature of the surface diffusion coefficients, a rough error estimate has to be performed, so that the #* bound for ¢, could
be derived. This #* estimate yields the upper and lower bounds of the three variables, and these bounds play a crucial role in the
subsequent analysis. Finally, the refined error estimate is carried out to accomplish the desired convergence result.

The rest part of this paper is organized as follows. In Section 2, we present a finite difference scheme basd on the 2nd BDF method
and the idea of convex splitting method of the energy functional. In Section 3, the unique solvability and the positivity preserving
property of the numerical solutions are analyzed. The energy stability analysis is provided in Section 4. The detailed convergence
analysis is given by Section 5. Some numerical results are presented in Section 6. Finally, concluding remarks are made in Section 7.

2. The fully discrete numerical scheme
2.1. The finite difference spatial discretization

We use the notation and results for some discrete functions and operators from [13,29,30]. Let 2 = (0, L,) x (0, L), where for
simplicity, we assume L, = L, =: L > 0. Let N € N be given, and define the grid spacing / := ﬁ, i.e., a uniform spatial mesh size is
taken for simplicity of presentation. We define the following two uniform, infinite grids with grid spacing 2 > 0: E := {p;,.), | i € Z},
C :={p; | i € Z}, where p; = p(i) := (i — 1/2) - h. Consider the following 2-D discrete N2-periodic function spaces:

Cper := {v :CxC-R ‘ Vij = VitanN,j+pN> Vi j,a, B, € Z},

X . . _ P
é'per = {v :EXC—>R ‘ vl_+%‘j _vi+%+uN’j+ﬁN, Vt,J,a,ﬁEZ},

in which identification v, ; = v(p;, p;) is taken. The space &Y., is analogously defined. The functions of Cper are called cell-centered

per
functions, and the functions of £}, Sger are called east-west, north-south face-centered functions, respectively. We also define the mean

_ 2 a = o .
0=v:= I}-l(_ZI ZZ.=1 vi;}, and denote £, 1= €5 X Sger. The space Cger is defined as

(nyotin ) €G, iJ €L},

zero space Cyr i= {v € Cpr

CS = {(ul,uz) € Cper X Cper

per

where G is the Gibbs Triangle (1.5). In addition, the following difference and average operators are introduced:
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1 1

AVipipy = 3 (Vi+1,j + Vi,j)’ D\viypy = n (Vi+1,j - Vi,j)’
1 1

AyVijpip = 5 (Vi,j+l +Vi,j)’ Dy = n (Vi,j+| - Vi,j) >

with A, Dy 1 Cpor = EXps Ay, Dy & Cpop = Epey. Likewise,

per? per*

1 1

axVij =5 (Visryay +vicag) s doviy 1= 7 (Vierya = Vieypy)
1 1

hVij =5 (Vijsip +Vigop) . dyviy o= n (Vijsra = Vijoi) »

with a,, d, : €%, = Cppsand ay, d,, Sgﬂ — Cpe,- The discrete gradient Vj, : Cper — gpe, and the discrete divergence V,,- : gper = Cper
are given by

Viviy = (DxVieryjs Dyvigu) s V- fig = Sy +dy 7

where f = (f*, f¥) € fper. The standard 2-D discrete Laplacian, 4, : Cy; =

per> Decomes

1
Apvij = dX(DXv),»’j + dy(Dyv),-,j = ﬁ (VHLJ- + Vot FVijer Vo1 — 4v,~’j) .

More generally, if D is a periodic scalar function that is defined at all of the face-centered points and f € g'per, then Df e fper,
assuming point-wise multiplication, and we may define V,, - (D f )1,' = d,(Df*);; + d,(Df”);;. Specifically, if v € Cpers then
Vi (DV}, ) & Cper = Cper is defined point-wise via V, - (Dth)ij =d, (DDXv)l.j +d, (DDyv),.j. In particular, suppose that v, ¢ € Cp;
are grid functions and ¢ : R — R is a continuous function. Then we define '

Vi (6(ApIVyo), ; i=d, (0(A VD), +d, (5(A,V)D), ..
where A,v is understood to be a periodic function defined at the face-centered points obtained by doing appropriate east-west and
north-south averages.
In addition, the following grid inner products are defined:

N
(&) =0 Y vij&ij viE€Cu AL =N A A B fi=UT ) € b
ij=1

Vi€l 1= (a, (v 1), v E€ &, [V.&ly i=(a(vé), 1), v, &€ Er

Subsequently, we define the following norms for cell-centered functions. If v € C

2 . . .
pers then [[VI[ := (v,v); |IVID = (|v|?, 1), for

1 <p<oo,and ||vlg = max,g; jon |"i,j|' The gradient norms are introduced as follows:

VAVl 1= [Vav. Vvl = [D,v. DV, + [Dyv. D] . forvec

per>
1
IVavll, = (121 1] + 1D 1)) 1< p <o,

The discrete H! norm is defined as ||V||§,| = ||v||§ + ||th||§.
h

Lemma 2.1 ([30,31]). Let D be an arbitrary periodic, scalar function defined on all of the face center points. For any y,v € C,, and any
fe fper, the following summation by parts formulas are valid:

W,V Fy ==V, fl, (W, V- (DV,v)) = =[V,w, DV 1.

To facilitate the analysis, we need to introduce a discrete analogue of the space Hp’ei (£2), as outlined in [31]. Suppose that D is
a positive, periodic scalar function defined at edge-center points. For any ¢ € C

pers
Lpw) ==V, (DVyy) =¢ -9
where ¢ := |2|~'(¢, 1). We equip this space with a bilinear form: for any ¢,, ¢, € ¢

per>
(b1, 4’2)%‘ = [DVyyy, Vsl

there exists a unique y € épe, that solves

define

where y; € Cp;

Lp(y) ==V, - (DVyy) =¢;, i=12
The following identity [31] is easy to prove via summation-by-parts:

(b1, b2) g1 = (b1, L3 (d2)) = (L5 (D)), ),

is the unique solution to

and since Ly, is symmetric positive definite, ( -, - ),-1 is an inner product on C,.

When D = 1, we drop the subscript and write

D
Ly = L = —4,, and introduce the notation ( -, - ),-1 =: (-, - )_; - In the general setting, the norm associated to this inner product
> .
is denoted ||¢||£51 =, /(¢ 47)%1, for all ¢ € Cpers but, if D = 1, we write || - ”LZ’I = ll-ip-

4
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2.2. A convex-concave decomposition of the discrete energy

In this section, we will recall a convex-concave decomposition of the energy (1.1). The detailed proof of the following preliminary
and lemma results could be found in the work [23].
G

Define x(¢) := ﬁ. The discrete energy G, (¢,.d,) : Epe, — R is introduced as

Gy, $2) = (S(d1,P2) + H(dy, o). 1)
+(a, (K(A (D)) + a,(k(A, (Db, 7
+(a, (K(A ) (D)) + a,(k(A,,)(Dyhy)7). €3)
+(a(c(A (1 = ¢y — d))D (1 = by — h)7). €3)
+(a,(k(Ay(1 = dy = §))Dy(1 = ¢ = $2))).€3). @1

Lemma 2.2 (Existence of a Convex-Concave Decomposition). Suppose (¢, $,) € 5§5r. The functions
Gho(d1, ) 1= (S(dy, ), 1) (2.2)
+ (@ (k(A,p (D)D) + a,(k(A, ) )(Dy) )P, €7)
+(a,(K(A ) (D y)?) + a,(k(A, (D, b)), 5
+{(a (c(A (1 = ¢y — p))(D (1 = by — b)), €3)
+(a,(c(A,(1 = ) = gD, (1 — by — ). €3),
Go(b1, ) 1= —(H (1. b)), 1), (2.3)

where G, . and G, are linear combination of certain convex functions. Therefore, G,(¢),¢,) = Gp (1. $)) — Gy (1. $y) is a
convex-concave decomposition of the discrete energy.

Proposition 2.1. Suppose (¢,,p,) € 5pger' The variational derivatives of G, . and G, with respect to ¢, and ¢, are grid functions
satisfying
89, Gne(dr ) = a%swl, )
+ €2a, (" (A ) (Dy)?) — 262d (k(A,$) D))
+e2a,( (A, p)(D,)*) — 262d (x(A, ) Db,
—&3a, (" (A, (1 = b — gD, (1 = by — $2))
+263d, ((A,(1 = b; = )D(1 = b; — )
—£5a,(K'(A,(1 = ¢ — $)(D,(1 = By — )%
+2e3d,((A,(1 — ¢ — ))D, (1 — ) — ).

59, Gnelbrs dy) = —a%_ H(by. ).

fori=1,2.

Lemma 2.3. Suppose that ¢, € CY,.. Consider the canonical convex splitting of the energy Gh($) in (2.1) into G, = G, — Gy, given

per*

by (2.2)—(2.3). The following inequality is available
Gu(®) = G () < (84, G o (D) — b, G (). by — wy)
+ (08, Go (D) — 85, G (). by — w12).

Using the idea of the convex splitting and the backward differentiation formula, we consider the following semi-implicit, fully
discrete scheme: for n > 1, given (¢", ) € Cpger, @i he Cger, find (¢!, g% € Cger such that
+1 -1
3¢+ - 4gh + @)

24 = Midi™, @4
ut =8y, G (DL B5T) — 8y, G (B ) — Ay a1~ )
1 a¢n+l
= Mlo —In(1 = ¢} = @) = 25130 + (r12 — 113 — 123) )
2 12 2 N1
e IVt e Vb
~ (s ) V(S ) - A - 6
(A A
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2
e V(= git = gt &2 V(=i — gith
*36 h( n+1 n+1 ) gV ( n+1 nt+ly )’ (2.5)
36 (Ap(1 = @1 = )2 18 Ap(1 = @1 =5
Wy A+ !
P i i B A, 't 2.6
241 Modnity (2.6)
W =6, G (@ B0 — 6, G (B, B — As AtAL (B3 — Bh)
n+1
1 n n n on
=N, In No In(l = ¢+ = 5+ = 21038 + (12 — 113 — 22309
62 |V ¢n+1 |2 62 \vi ¢n+1
2 h% 2 h% n+1 n
- 2= ) = =2V () - Ayt A (i — )
36 ((Ah¢g+l)2) 18 <Ah¢g+l > 2 2
2 n+1 nt1y12 2 n+1 n+1
+6_3 h(lvh(1_¢l+ —-3*hI ) 6—3V ‘(Vh(1_¢1+ —¢2+)) @7
36 TN (A1 =yt — g2/ 18 A1 =it — gith
where
Vul? D,ul? |D,ul*
Ay, [Vl =a, |Du +a, Y ,
(Apu)? (A u)? (Ayu)?
v D D u
Vi (S22 =a, (22) +4, (=2,
Apu Au Ay
for all u € C,,, provided u does not vanish at any grid points. And &" :=2u" - w1,
The initialization step comes from a combination of convex splitting and a second order numerical correction:
¢1 ¢0 )
AI - MlAh/"lﬂ
1 At 92
=3 (6¢lGh,c(¢},¢§>+5¢lGh,c(¢°,¢2>) + EH("&O 9 + —7H<¢° NP,
q% ~ ¢g 1
= Madnky
1 At 07
=5 (5¢2Gh,c(¢},¢;> + 5¢26h,c(¢°,¢2)) + 7H(¢°,¢2) + —7H(¢°,¢2>(¢2>°. (2.8)

The local truncation error of this initialization step is second order, which matches the overall second-order accuracy of the scheme
and is consistent with the high order consistency analysis, as will be shown in later sections. In addition, this initialization step
method satisfies the positivity-preserving property and energy stability.

Remark 2.1. The construction of a second order accurate, positivity-preserving and energy stable numerical scheme for the ternary
MMC system turns out to be more challenging than the first order accurate algorithm [23,24]. Because of the complicated structure
of the nonlinear and singular surface diffusion energy, as well as its functional derivatives, a Crank-Nicolson style approximation
could hardly ensure both the positivity-preserving and energy stability properties. In turn, such a numerical effort has to be focused
on the BDF style approach. With the BDF2 approximation, the nonlinear and singular terms could be treated in a similar manner as
in the first order numerical method, while the computation of the concave and expansive terms becomes more tricky. Because of the
negative eigenvalues in the concave expansive terms, an explicit treatment is necessary for the sake of both the unique solvability
and energy stability. In the first order numerical method, an explicit treatment to the concave terms is able to ensure a dissipation
of the associated energy; however, a direct application of second order Adams-Bashforth extrapolation for the concave terms would
not enforce such an energy stability at a theoretical level. To remedy this numerical effort, we have to add artificial regularization
terms, for both ¢, and ¢,, to establish such a theoretical analysis of energy stability, as will be demonstrated in the later section.
Moreover, since a multi-step approach is applied in the second order accurate scheme, the initialization step turns out to be more
challenging, and a careful computation in the initial step, as given by (2.8), is needed to ensure the theoretical properties at the
initial time step.

3. Unique solvability and positivity-preserving property
The proof of the following lemma can be found in [28].

Lemma 3.1. Suppose that ¢, ¢, € Cper, With (py — ¢y, 1) =0, that is, ¢ — ¢, € éper, and assume that ||¢,
we have the following estimate:

”(—Ah)_1(¢1 - ¢2)Hw <G,
where C, > 0 depends only upon M and €. In particular, C, is independent of the mesh size h.

<1, ||¢s]loo £ M. Then,

lle
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In fact, in the ternary MMC model, all the phase variables have to stay within (0, 1), due to the positivity-preserving property,
ie, 0 < ¢y, ¢, 1 — ¢, — ¢, < 1, at a point-wise level. Therefore, we could take M = 1 to justify an application of this lemma,
and appropriate functional space could be set to enforce such a point-wise bound. The following theorem is the main result of this
section.

Theorem 3.1. Given (9%, %) € C per k=n—-1,n and (¢” ¢") O ! P 1) € G, then there exists a unique solution (q&"’f1 ¢"+1) ecC per
to (2.4)—(2.7), with ¢T = ¢*1’+‘ and ¢2 ¢;+‘.

3.1. The equivalent form of solving (2.4)—-(2.7)

For bookkeeping, we introduce the following notation:

85, Gne(dr, )= Y Op(r. o),

=1

where
01(¢y. o) 1= a%lswﬁl,qbz),

0s(d1. #2) = £1a, (" (A b )(D b)),

Q5(¢y. ¢y) = —267d (k(A, b)) D, y),

04(dy-#) = £1a, (' (A, p))(Dyd1)),

O5(¢1. b)) = —262d (K(A,)D, ).

Oy #) = —€3a, (" (A, (1 =y — p)) (D (1 = by — b)),
O7(¢1. by) = 262d, (K(A,(1 — b — $)D, (1 — b; — ),
Ox(¢y. #) = —€3a, (" (A, (1 — ) — $))(D, (1 — by — $))7).
Oy #y) :=2e3d (x(A,(1 =y — p2)D,(1 — ) — ).

The numerical solution of (2.4)-(2.7) is a minimizer of the following discrete energy functional:
T3 @192 = Rz 19— 400+ 17 I+ 130 49+ 47,
+(S(1. ). 1) + (a, ((A, ) (D)) + a,(k (A, )(Dyp))™), €3)
+(a,(c(A ) (D)) + a,(k(A,,)(Dyy)7), €3)
+(a,(c(A (1 = ¢y — P))D (1 = by — $2)%)
ta (:c(A (1-¢ - ¢2))<D 1=y — ). €3)

+( H(¢" ). 1) +( H(d’",d)z) &)
A
+ Tllvh(¢l -3 + T||Vh(¢2 - D3
over the admissible set
A= { @b €CY, | (@1 1) = 19183, (b)) = 12160 | < RV,

It is clear that J}' is a strictly convex functional.
3.2. Proof by contradiction

Now, consider the following closed domain:
Ans = {1262 € Coer X Coey | 1,622 80), 551 +y<1-5,
($1.1) = 12195, (b, 1) = 12183 } < B2V,
where g(5) > 0 will be given later. Define the hyperplane
Vi={@1o0) | (61.1) = 12180 (d21) = 1219] | < RV,

Since A, 5 is a bounded, compact, and convex subset of V, there exists (not necessarily unique) a minimizer of T (b1, ) over Ay 5.
The key point of the positivity analysis is that, such a minimizer could not occur at a boundary point of A, ;, if § and g(5) are
sufficiently small. Assume the minimizer of J;'(¢;,¢,) over A, ; occurs at a boundary point of A, ;.

7
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3.2.1. The minimizer (¢}, ¢3) € A could not occur at ¢} = g(3).

We suppose the minimizer (¢* ¢2) € A, ;, satisfies (qS*)ao = g(8), for some grid point @, := (iy, jo). Assume that qS* reaches
its maximum value at the grid point & := (if,j;). It is obvious that (¢]);, 2 d)* = d)?. A careful calculation gives the following
directional derivative

d, Jh"<¢1* + 5w, )0
(=47 (3¢} — 44} + ¢7“) W) — A A AT = 9 w)

ZM At
+ (8, G (DT, 7). w)+( H(¢",¢2> W),

for any y € 5'per. Let us pick the direction
=06;;06;; —06;;0;

i.ig “JsJo LiyCsgr?

where §; ; is the Dirac delta function. Note that y is of mean zero. The derivative may be expressed as

ﬁd:J:<¢l*+sw,¢;>|s=0 a6 o), 3.1

2MA( 4,7 (307 —4¢] + )7,
+Q5(¢*a¢’2 o _Qf(¢*v¢2 @

¢ S H (@ Pz, ~ H<¢",¢2>|al

— a0 (4,07 - ¢7>a0 — 44 = HDs, ) -

For the first and second terms appearing in the right hand side of (3.1), we apply Lemma 3.1 and obtain

8C _ n o ane 1 _ 0 e 8C
3 < —( 7 (367 —4d] + #7);, = A0 (6T —4d] + 47, < (32)
For the O, terms, the following inequality is available:
Q1<¢*,¢2* i — C1(@F. b)),
¢ LS s, - (‘;l S@E Dz,
— 1 a(b;( * * 1 a¢T * *
_<mln A —In(1 =g} =93 ) Iz, — mln A —In(l = ¢} =) ) I3,
(@)™ (@)™
=\ Jla (I )l
Timerer )\ e er )
1 FONVY
i @@ @D
6 1-6
(g@)/™ 1 . =5
glnT - mlnqsl. (3.3)

Using the logarithm property In(ab) = Ina + Inb, we have eliminated the constant ML In Mi The next-to-last step comes from the
0 0

facts that (d)f)ao = g(d), (qbf)a] > qT‘l) and 6 < ¢ + ¢, < 1— 6. The last step comes from the inequality that In(1 — §) < 0. For the O,
terms, we have
0,(¢7. ¢;)5,0 - 0,97, ¢§)a,
=e1a, (K" (A pT)D 7))z, — €10, ( (A PTID )z,
< - 10, (K (A P(D 1))z,

2
€

<—. 3.4
~on? 3.4
The second step above comes from the fact that

6 a (x'(A, ¢*)(D <l’>*)2 G, <
since «’'(¢p) = —ﬁ < 0. The last step is based on the definitions of x'(¢), a,, A,, and D,, as well as the fact that | | <1,

Va > 0,b > 0. In details, we observe the following expansion
2
6% [(qﬁf)ilﬂsh B (qu)fw'] ]

W AGDPIN Y = 157 | G, T B
h+hn a1
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+
18k (qu)il—lsjl +(¢T)i1,j1
2
<L
= on?
The Q, terms can be similarly handled:
Q@] b)), — Qu(d], ¢z, = €1a,(" (A, $1)D, 1))z, (3.5)
—ela,(K' (A, 67D, b7 ) );,
i
~on?’
For the Q5 terms, we see that
057, 83)z, — Q3(d7. 03z, = —2e3d, (K(A$)D, bz, (3.6)
+2€7d, (K(A,¢7)D, b,
<0,

in which the last step comes from the fact that (D ¢}); _1, < 0, (Dxd))ior1/2jy = 0, (Dx} )i —1ynj, 2 0, and (Dyd); iy, <0
A bound for the Q5 terms could be similarly derived:
Os(@7, 93z, — Os(d}. 3z, = —ZE%dy(K(quﬁf)Dy(Iﬁf)ao
+2e7d,(k(A, 7D, ),
<0. 3.7)

Use a technique similar to that used for Q,, the Qg terms could be controlled as follows:
Qs(d7> 3z, — Q6 B}, b))z,
= - e3a, (K'(A(1 = ¢f = (D1 = ¢f = 47)))
+ 30, (K(A (1= ¢f = 3ND( = ¢} = ¢))))
<= e3a, (KA1 = ¢f = D1 = ¢F = ¢7)))

Eg 3.8
<_' .
o (3.8)
A similar inequality could be derived for the Qg terms:

Os(d}. b3z, — Os(d7. 3z,

- e3a, (K'(A,(1 = & = oD, (1 = ¢ = 7))

+ €50, (K'(A,(1 = ¢ = p))(D,(1 = ¢} — 7)),
<= e3a, (K'(A,(1 = & = oD, = bF = 7)),

€3
Sﬁ- 3.9)

Nel

For the O, terms, we have
07(¢7, 3z, — Q1(B} . b))z,
=2e3d, (K(A,(1 — ¢} — p3)ND(1 - ¢F — $3));,
- 263d, (K(A,(1 = ¢ — $3ND, (1 — bF — $))z,

& (D=7 —¢)) & [ D1 -} - o)
SR\ Ad-¢t-en ) . BR\AA-¢-0D )

2 2
_e_3<Dx<1—¢,*—¢;>> +e_3<Dx<1—¢,*—¢;>)
* * * *
B\ A =¢7 0D ), BR\AG-0T-¢D) )
48%
Sﬁ. (3.10)
The last step above is based on the definitions of A, and D,, as well as the fact that |Z;+[b’| <1,VYa>0,b>0.
Similarly, for the Q, terms, we have
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0@}, 93z, — Qo(d} . b3)a, = 2£§dy(K(Ay(1 =@ = ND,(1 = d} — 3))g, (3.11)
- 26§dy(K(Ay(1 —d7 —3ND, (1 — ¢ — 3z,
~ 9n?
For the numerical solution ¢, qb;"l at the previous time step, the a-priori assumption 0 < ¢! < 1 indicates that
1 <@z, = @Dz, <L =1 <@g =@ g, <1, i=12, (3.12)
then, we have
-3 <(@Ng, — PNz <3, i=12 (3.13)

For the fifth and sixth terms appearing in (3.1), we see that
O @ dls — 2 H@ s
9, H(¢1, 9515, 30, H(¢Y, )5,
== 20130z, — @Da, 1+ G2 = 213 = 2@z, — Bz, ]
<3(x12 + 3713 + X23)- (3.14)
For the last term appearing in the right hand of (3.1), we see that
8 . ; 8
APz, — Mn(d])z, 20, e < Ap(@))z, — Ap(P)z, < 7 (3.15)
this means

. . N . 8A At
—A At (Ah(¢1 — Dz, — An(P] _¢1)51) < W (3.16)

Putting every terms together, we have

(g(8))"/Mo 4c,

a— o4

2¢2 1023 8A At
h2

1 1 —
—d, J) @ + sy, d))| = < In - — In¢® +
2 4sIn 2 s "

+ 9712 + o T30t 3+ )+
The following quantity is introduced:
4c, +ﬁ+&e§+3( 3 A, At
Mai T o T Pt )t =5
Notice that Dy, is a constant for a fixed 4r, h, while it becomes singular as 4z, h — 0. For any fixed 4z, h, we could choose g(5) small
enough so that
1
n (g (525) /Mo n
In particular, we can choose

8(38) := (S exp(=Dy — )Mo,

1 =5
Dy 1= —— In¢? +
0 M, né,

1 D, <0. (3.17)

This in turn shows that
1
ﬁdx.j:(fﬁf + sy, ¢;)|S=o <0,

provided that g(5) satisfies (3.17). But, this contradicts the assumption that Jp! has a minimum at (¢‘l*,¢; ), since the directional
derivative is negative in a direction pointing into (4, 5)°, the interior of A4 ;.

3.2.2. The minimizer (¢],¢3) € A5 could not occur at ¢3 = g(5)
Using similar arguments to Section 3.2.1, we are able to prove that, the global minimum of J;' over 4, 5 could not occur on the
boundary section where (¢;),;0 = g(6), if g(8) is small enough, for any grid index a,.

3.2.3. The minimizer (¢}, ¢)) € Az could not occur at ¢} + ¢ =16
Suppose the minimum point (¢}, ¢5) satisfies
@D, + @)z, =16,

with @, := (iy, jo).- We could choose 6 € (0, 1/3). Without loss of generality, it is assumed that (qbf),; >im addition, we see that

0 = 3°
1 < > . Ix
* * — H* *
e D @7+ b3, = dF + 5
ij=1
There exists one grid point & := (i}, j), so that ¢} + ¢ reaches the minimum value at @,. Then it is obvious that (¢]);, +(¢3)z, <

E + qf)_; = q.'T(l) + ¢72’. In turn, the following directional derivative could be derived:

10
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d J:<¢* + 59, Dm0

“2M (T (30T 4+ 7)) = Ay @
+ (69, Gae @791 + (o HE9.v)
1

for any y € éper. Setting the direction as

=06;; 6;; —0;;0;

iig “JsJo iy %1

then the derivative may be expanded as

1
ﬁdsj;f(qﬁf + sy, ¢;)|5=0

M At( 4,7 (307 —4¢] + ) 7'),

+ Qm&, )z, Qf(qb* Pz

¢ S H(@. )z, ~ H(¢",¢2)|al

~ At (2,07 - ¢7 70 = 46T = Bz, )

For the first and second terms appearing in (3.18), we apply Lemma 3.1 and obtain

8C, _
-—t< —< 4)

- (0t 40+ 97)5, = 3 a0 (0] 4+ ),

For the Q, terms, we have
Q1(¢f7¢§)50 - Q|(¢T,¢§)al
(¢T)I/M0 (¢?)]/M0
= ) la - (I —— ) I
(e (3 )
Lyi/mg
>1In (3)
1)

1
1= ¢y -4}

—In

T=oDw)

— e (90

Journal of Computational and Applied Mathematics 462 (2025) 116463

(3.18)

.8
3.19
< Ml ( )

(3.20)

The last step above comes from the facts that (¢T)ao > %, (<]5*)5,l + (X i < qb_o +¢T and ((;5*)5,1 <1

For the Q, terms, we have

0y(#7. 83z, = Qa(@} .83z,

=€1a, (K" (A )Deh!) )z, = €10, (k" (AT HD b))z,

>eta (K" (A )D b1 ),
g

2= P

T 9n?

in which the second step comes from the fact that —eza (KT (A, ¢*)(D <;>“‘)2)al > 0, since k' (¢) =

(3.21)

-3 ¢2 < 0, and the last step is based
on the definitions of «/(¢), a,, A,, and D,, as well as the fact that |—| <1,Va>0,b>0.

For the Q, terms, similarly, we get
04}, Bz, — Qu(d}. ¢z, = €1a,(' (A, $1)D, 1))z,
—e1a, (<" (A, (D, $1))z,
g
o
The Q; and Qs terms could be analyzed as follows

Z_

037 5z, — Qs (7. dF)z, = —~262d k(A dF)D P )z,

+267d (K(ApF)D, )z
9h2’
~2¢1d,(k(A,61)D, b )z,
+ 2sfdy(r<(Ay¢f)Dy¢f),;l
9h2"

057, 85z, — Os(F. ¢T)z, =

11

(3.22)

(3.23)

(3.24)
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The estimates for the Q¢ and Qg terms are similar:
Qs(@F. b3z, — Q6(d7, 3z,
= - e3a, (K/(A,(1 = ¢f = D1 = ¢f = 7))
+ e3a, (K (A1 = ¢F = )DL = ¢F = 7)),
230, (k'(A,(1 = & = p)ND(1 = b} = $3))°)
£

>— 3.25
T 9n? (3.25)

Os(#F. 93z, — Os(b7- 3z,
= e3a, ("(A,(1 = ¢ = oD, = of = 7)),
+ e3a, (K'(A,(1 = ¢ = pND,(1 = ¢F = 7))
>e3a, (K'(A,(1 = ¢F = $))D,(1 = & = d))°),

>— i (3.26)
T 9n?
For the O, terms, we see that
04(e7, d);),;o - 07(¢7, ¢;),;l = 28§dx(K(Ax(1 -7 —#;))D(1 - o] - ¢;))a0 (3.27)
- 26§dx(K(Ax(1 —¢F =)D (1 — b} - ¢;))a,
>0.

The last step above comes from the fact that
(D;(1 = @7 = &3Niy-1/2jy <O,
(Dol = bF = &3 Dy s1y2g 2 0.
(D1 = §% = N 1y, 20,
(DL =7 =&, 4125, SO.
Similarly, for the Q, terms, we see that
Oo(@7, 97z, — Qo(d] . b3)a, = ngdy(K(Ay(l =@ = ND,(1 - d} — 3))g, (3.28)
- Zegdy(K(Ay(l —d7 =)D, (1 - ¢ — b))z,
>0.

For the numerical solution q&lf"l , ¢! at the previous time step, similar bounds could be derived for the fifth and sixth terms appearing
in (3.18), we have

a9 o in _ i s Any|
0751H(¢ 9)a, 36, H (¢, 93z,
== 27130z, — (@Dz, 1+ (o — 213 — 225z, — (@5)z,]
2 =3(x12+ 3013 + 123)- (3.29)

For the last term appearing in (3.18), similar bounds could be derived
164, At

A8 (807 = Bz, ~ 4T =B, ) 2 - — (3.30)
Putting estimates together, we arrive at
Lyym,y
1 () 1 4c,
—d Ty (@Y + 5w, 9]l 2 In - ———-
p2 U 27 0_0 M
1-g)-¢y M
1067 23 5 ; 16A, At
“om T om (12 + )(13"‘)(23)—7
The following quantity is introduced:
D, = I3+ LS T s BRSNS 1T 3.31)
1= 3~ 1n n————— — t— Xizt3x3+ x3)t —5—- .
M, 1= ¢(]) _ ¢(2) MAt  9h2 9h? h?
For any fixed At, h, we could choose 6 small enough so that
—Iné-D, >0, (3.32)

in particular, § = min{exp(—D; — 1),1/3}. This in turn shows that

12
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1
ﬁdSJ,,”(qﬁl* + 59, 3|50 > 0,

provided that § satisfies (3.32). This contradicts the assumption that J; has a minimum at (q.’)f,qﬁ; ).

3.2.4. The minimizer (¢}, ¢) € Aj; could not occur at ¢¥ + ¢p5 =6

Using similar arguments to Section 3.2.3, we can also prove that, the global minimum of J;' over A4, ; could not occur on the
boundary section where (qﬁf),;o + (q.':; )iy = 05 if 6 is small enough, for any grid index &,. The details are left to the interested readers.

Finally, a combination of these four cases reveals that, the global minimizer of J;'(¢;.¢,) could only possibly occur at interior
point of (A,,’(;)0 C (4,)°. We conclude that there must be a solution (¢;,¢,) € (4,)° that minimizes T} ($1, $y) over Ay, which is
equivalent to the numerical solution of (2.4)-(2.7). The existence of the numerical solution is established.

In addition, since J}'(¢;,¢,) is a strictly convex function over A,, the uniqueness analysis for this numerical solution is
straightforward. Using similar argument, the positivity-preserving property is established for the initialization step, the details are
left to the interested readers. The proof of Theorem 3.1 is complete.

4. Energy stability

Due to the fully discrete scheme (2.4)-(2.7) is three-level scheme, here, we define the modified discrete energy as

2 2
n+l _ gn n+1 n
En+1ﬂ =G (¢n+l ¢n+1)+ At ¢1 ¢1 At —¢ ¢2
h M, At 4M2 At
~Lh ~Lh
20043013 203 || anet anl . 202t 20133203 || it anl?
+f‘¢l —¢,2+f|¢ =9,

in which n > 0.

)2 2
Theorem 4.1 (Energy Stability). When n > 1, A| > M, Ay > w, the fully discrete scheme (2.4)—(2.7)
has the energy-decay property

n+1,n n,n—1
Eh < Eh .

Proof. Due to the mass conservation, £ ’l(qﬁ”“ —¢!) is well-defined. Taking a discrete inner product with (2.4) by MLC"(qb’l““ —q&’f),
1
with (2.5) by @1*! - ¢, with (2.6) by M = L7N @5 — ), with (2.7) by ¢3! — ¢ yields

Gort —agh + oL L@ = D) + T - a)

2M At

STV S O =40+ LT @ = ) + (g - ).

The equivalent form is the following identity

0= <3¢n+1 4¢n+¢n 1 E (¢n+l ¢n)>+A At ”Vh(d)n+l ¢n)

ZM At
+ (80, G @} B3 = 89, G ). 417 = 6

+<5¢lGhe(¢",¢;> = 8y, Gl B, 81 — 1)

B+t — Al + @i LTI — @) + Ay At “Vh(d)gﬂ —4)

2M At
+ (8, Gp o @1, 5 = 6,4, G (@], B5), $5T" — )
+ (8, G B 95) = B9, G o B 3, 957 = 0. @D

For the first and fifth term of the right hand side of (4.1), we have
o Gt =4 + ol LN g - g

2M At
n+l _ gn 2 n _ pn—1 2
L B At NS Y ik
M; | 4 At i 4 At Zih
At3 ¢n+l _ 2¢n ¢;’171 2
4M Atz Lk
—1 12
At ¢n+l _ ¢n 1 ¢ ¢7 1 o
= 4 a Y =L “-2
M ! —Lh ! -Lh

13
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For the third and seventh term of the right hand side of (4.1), using Lemma 2.3, we have
(8, G (DT 5T = 8, G o (), B5). T — B])
+ (84, Gp o@D = 64, G o (B, B5), 95T — ¢5)
2G, (¢, @3t - G (@], ).
For the fourth term of the right hand side of (4.1), we have
(89, G,,,e(qs",qb;) — by, G,, P B T — )
=- <a H($}. ) - Py 2 H@, o). 1 = o)
=<2)(13(¢7 - ¢'1') - — a3 — }(23)(¢2 - d’z), ¢’1'+l - ¢'1'>
== 2013(8] = @7 BT = ) + o — 213 — a) (B — 5 B - 9)
= a3l — 7715 + gt - 7115)
x - X - x n n— - n n n— - n
+ S (g~ 0 I N~ IS — 11 — ! - i+ )
2= 23Ul — 775 + g - 1115)

X3 +)(zz ( X12

e e e [ e e S R A
>- ;m(lld)" =S+ 1T = @113)
e (Rl R TR |y
- m(ll¢2 =05 + 11T = ¢t113)

_ 3xiz+ 3 +2xn
=— yllgt — i3 - =22

2
2xi+ xi3+ 13 —1)2
- flkﬁg -5 lI5

1 2
gt = ¢li3

in which the fourth step is based on the formula 2ab < a® + b?, 2ab = a® + b*> — (a — b)?, the next-to-last step comes from inequality
(a —b)? < 2(d® + b?).
For the last term of the right hand side of (4.1), similarly, we have
(04, Gh,e(¢",¢2) 5¢2Gh P D). 0T — )
=- <a H($. ) - 5% H(¢",¢2 ), ¢t — @)

= = B = G2 = 113 — 1)@ — B, T — 1)
== 205(d5 — @5 5T — B0 + Cria — 213 — 23 — B BT — )
= xs(lldy = 57115 + s = B5115)
+ —“ - ”2” A3 (g — @V 2 + N1t — @hII2 — Nl — ¢ — it + B112)
> — sl — #5715 + 5™ = B515)
— BT (g7 - g G + 5 - 91E) -
>- m(ﬂda2 o575+ st = d5l15)
e (Tl ER TR |y

}(12(||¢" &S+ s = al13)
_ X3+ 303+ 2112
==yl — g3 - 22

)(12
[ R 4 [

1 2
g3+ = hli3

2
2xi+ xi3+ 13 _
- TR e - 7
Going back (4.1) and by simple calculation, we arrive at
1 n 2 n n—1 2
At ¢7+ — ¢ 1|4~
= |||l — - || —_— LA AV, (" — "
M |4 At 4 At ! H W = d)
~1,h ~1h
1 n 2 n n—1 2
At ¢;+ _d’z ¢2 _¢2
iy [ | L | P A + A ALV, (" —
M, | 4 At L4 At ; 2 ” Wy =)
-1, -1,

+GR@T, ) - G )

14
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2010+ 3013+ 13 _
B e (T e [P e [Fy)

2
X13+3x3+2y _
= S (I = 957 — e = 515)
2 2
< GBxiz+3x3+2x10) <| ¢'11+| A L+ ‘ ¢g+1 — ¢ 2>. (4.3)
For the right hand side of (4.3), we have
1 n 2
2 A 2 g | -
n+l _ gn < 2 n+l _ gn aat 1 1
|¢1 Al < 2a ”V"(‘ﬁl POl 2 At ’
—1,h
and
+1 n 2
2 A 2 pAr || BT — @)
n+l _ gqn < = n+l _ gn e
57t - a5, < 35 [vas = ol + 5 | =5
—1h

3x13+3203+24 3x13+3203+2 M GBrizH3as+210)* MyBri3+33+2x12)*
Let o = 3413 2);23 L2 5= 30 2/1/;23 412 when A, > 18213 4)(23 x12) Ay > 26113 4123 X12)
1 2

n+l,n n,n—1
Eh < Eh .

, we have

This completes the proof. []
In fact, for the fourth term of the right hand side of (4.1), it can be analyzed in another way:
(8, o (P}, B5) = 84, G o B, I, 7 — @)
== 275} = @17 BT = )+ Gria — 13 — 1) — 5L - o)
=(ro = 113 — 13 — 5 BT = @)
= sl = &5 = Nt =26 + &0 S + 1T = &7115). (4.4)
Similarly, the following estimate is valid for ¢,:
(84, G o (P}, B5) — 84, G o( B, B3, 45 — @)
=(ti2 — 113 — 230 — &) 5T — )
= xsly = &5 — gt =26 + 515 + llh™ = 3115). (4.5)
Meanwhile, the following vector norms are introduced:
™" =112, , == 1™ = @12, + 185 = Bhl12, s
g™ — @™ 113 := llg"+ — @115 + 3+ — @113

For simplify, we set the mobility parameters M; = M, =1 in the model. Substituting (4.2), (4.4) and (4.5) into (4.1), and applying
Lemma 2.2, we obtain

l é n+l _ n
5 (Gl
n+1 n 2 n+1 n 2
+ A At ”Vh(q‘)l - )|, + Azat Hv,,(¢2 -,
= 2l = @15 = 1t = #1013) — sl — @375 — et — #213)
<= (i — a3 — )y — 5 T = ) — G — s — @) — &1L 0t — ¢5)

+ 23180 = @113 + 23l — 3113 (4.6)
For the first term of the right hand of (4.6), it is observed that

=G = 13 — ) — 5L T — ¢

At
<lxi2 — x13 — 223l <2_ﬁlllv"(¢7+l -l +

2 1
“1h 4

2
¢ — ! ”_u,> + G 5 - Gu(@). )

b

T ||3,,h> . “.7

Similarly, for the second term of the right hand of (4.6), the following inequality is available:
— (e = a3 — 238 — &)L 5t - 85)

At B
<212 — 113 — 223 <ﬁ||v,,<¢;“ — DI+ =
2

190 - 1! ||3L,,> : (4.8)

For the third term of the right hand of (4.6), we see that

At a
23187+ = #1115 < 21 <a— IVA@}™ = oI5 + Ll = ¢?||il,h.> : (4.9)
1

15
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A similar estimate could also be derived for the fourth term of the right hand of (4.6):

At a
231195 = B3 < 13 <a—2 IVa(@5™" = I3 + Ll = ¢;||il,h.> : (4.10)
Subsequently, the following constant quantities are denoted:
1 1
o=, php=—7"T—",
213 |x12 — 213 — 2231

a = L b= ;
203 lx12 = 113 — X231
and
23 lx12 — 213 —}(23|’ A, = A3 lx12 — 213 —Zz3|.
a 25, a 2p,
A careful calculation reveals that

A =

A= 2)(123 +0.5(x10 — 113 — a3’ Ay = 2}(223 +0.5(z12 = 213 — 123)"

In turn, with an introduction of the following quantity
3
Fr =Gyt gt + o (I = 012, + 1957 = 4212, )
+ il = @115 + aasllds! = B5115,
a substitution of (4.7)—(4.10) into (4.6) results in

n+1 n
F*l < Fp.

5. Optimal rate convergence analysis in £°(0,T; H, Hne20,T; H ;)

Now we proceed into the convergence analysis. Let @, @, be the exact solution for the ternary Cahn-Hilliard flow (1.2)—(1.4).
With sufficiently regular initial data, we could assume that the exact solution has regularity of class R:

Dy, Dy € R 1= H (0,T; Cpor(@) 0 H* (0.T5C2,(@)) n L= (0.75C5,(2).

per per per
In addition, we assume that the following separation property is valid for the exact solution: for some §,,
(D,9,) € gﬁo’ (5.1)

which is satisfied at a point-wise level, for all # € [0, T]. Define @ y(-,1) := Py®(-,1), @y y(-,1) := PyD,(-,1), the (spatial) Fourier
projection of the exact solution into BX, the space of trigonometric polynomials of degree up to and including K (with N = 2K +1).
The following projection approximation is standard: if @; € L*(0,T; H (), for some 7 € N,

per
[ e

YO<k<?, j=1,2. (5.2)
By cb;?fN, cb;" we denote D; N(- 1) and D(- 1), respectively, with ¢, =m - A1, j =1,2.

Since the exact solution has regularity of class R, the separation property (5.1) for the exact solution and the projection
approximation (5.2), we are able to obtain a discrete W bound and the separation property for the projection of the exact

solution:

IVi@inllw <C* j=12, (@ . Do) E Gy,

L>®(0,T;H¥) L®OT;H?)’

Since @; y € BK, the mass conservative property is available at the discrete level:

1 1 —
QzN = al /Q D; NC.1y,)dx = al /_{2 D N(o 1) dX = @;."’N , VmeN. (5.3)
On the other hand, the solution of (2.4)—(2.8) is also mass conservative at the discrete level:
@:qs;."-l, vmeN, j=1,2. (5.4)

Defined the grid projection operator, P, : Cge () = Cper, by Py fi; = f(pip)), for all f € Cge (). For the initial data, we have
¢) =Py®; y(-.1=0), that is

@), =P NP Pt =0), (@D =Dy N (i pj 1 =0).

The error grid function is defined as

e =Py — @Y, e = Pu®y — ¢, Vme({0,1,2,3,..). (5.5)
Therefore, it follows that g =0, for any m € {0,1,2,3,...}, j = 1,2, so the discrete norm || - ||_, , is well defined for the error grid
functions ef' and ¢7'. Before proceeding into the convergence analysis, we introduce a new norm || - ||_; i [32]. Let £ be an arbitrary
bounded domain and p = [u, v]” € [L2(22)]?. We define || - ll_1c to be a weighted inner product

16
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L |
IplZ, ¢ = (0.G(=4)7'p), G = <_2 >

Since G is symmetric positive definite, the norm is well-defined. Moreover,

ER— 1 0 0
G=| 2 5 =1 2 + 1 )= G +G,.
-1 = -1 2 0o =
2 2
By the positive semi-definiteness of G, we immediately have
- _ 1
IPIZ, 6 = (. (G1 + Go)(=4,)7'P) 2 (0, Ga(=4)™'P) = 2 IIWIIZ, .

In addition, for any v; € Co'per,i = 1,2, the following equality is valid:

3 4l 1 -1 n+1
<§U7 —2U:’+EU? (=470
2
ot — 2 4 ! “

o - eI+ | — 5.6)

4

. 1 1 —
with p**! = [o", o7, p = [vr!, 0T

The optimal rate convergence result is stated in the following theorem.

. o _ 6 _ . . .
Theorem 5.1.  Given initial data ®@;(-,t = 0) € Cper(Q) and @;(-,t = 0) € G, point-wise, suppose the exact solution for ternary

MMC flow (1.2)—(1.4) is of regularity class R. Then, provided At and h are sufficiently small, and under the linear refinement requirement
C h < At £ C,h, we have

2 n
£ 1/2 .
lefll_pn + (%Ar > ||vhe;."||§) SCUP+RY), gy =min(e, 2,62), j=1.2, (5.7)
m=1

for all positive integers n, such that t,, = nAt < T, where n > 1. C > 0 is independent of At and h.

5.1. Higher order consistency analysis

A direct substitution of the projection solution @ ;N into the numerical scheme (2.4)—(2.7) gives the second order accuracy in
both time and space. However, due to the explicit part of the extra regularization term, this leading local truncation error will not
be sufficient to recover an L% bound of the discrete temporal derivative of the numerical solution, which is needed in the nonlinear
convergence analysis. This technique has been reported for a wide class of nonlinear PDEs, such as incompressible fluid flow, various
gradient models, the porous medium equation based on the energetic variational approach, nonlinear wave equation, et cetera. Such
a higher order consistency result and the detailed proof is stated below.

Proposition 5.1. Given the exact solution ®; for the ternary MMC system (1.2)~(1.4) and its Fourier projection @; v. There exist auxiliary
fields, @; 4, ®; p, so that the following
b, =@,y + PNAPD 4+ HPD; ), j=1.2, (5.8)

satisfies the numerical scheme up to a higher O(4t> + h*) consistency:
3én+l —4‘13" 4 (iS"_]
1 1 1

24t
1 ad‘sn+1
=M, 4, <Vo In Mlo —In(1 = @M1 — @) — 24,207 - BI7)

sl 2
IV, @

gl
+ (2 = 03— 223 — ) — — Ay ———=
12 13 23 2 2 ((Ah¢r11+l)2>

% h

2 (vhds';“ ) e ( V(1 — ! — et )
o\ T o 2 Vh Y <
Ah(p;ﬁl 6 (Ah(l _ CD;‘-H _ (1);+1))2

=+
3
& (Vh(l -t — @t

+2v, (——— L2 7 )+A14m,,(q3"+1 —43"))
18 A, (1 _¢T+l _q)g+l) 1 1
+ 1_;1+17 (59)
$n+l % Hn—1
35t — 4d) + B
24t
1 FHn+1
2 ¥ ¥ ¥ $n—
=M2Ah<VOln N, —In(l = &M — I+ — 24,205 — Dy

17
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v 2
egA (|v,,<pg+‘| )

+ - 13— 20" — @y 24, (—2—
(12 = 113 — 223) 2P 1) 367 h (Ahégﬂ)z

v ¥ x 2
e <Vh<1>;+1) e <|V,,(1—q>';+1 - @) )
h* M 2zt h < M
Ay @yt 360 T (A, (1 - @t — )2

2 Fn+1 FHn+1
e V(1= @1 — gt 3 3

+ 2V (S ) e, @ - ng))
18 Ap(1 = T )

b, (5.10)

with ||rf+] [ ||z';'+] loip < C(AP + h*), n > 1. The constructed functions, D; 4> ®P; p, depend solely on the exact solution @, and their
derivatives are bounded. For the initialization step, we have

0 _ 50 Hl — p!
=0, & =0,

Proof. In terms of the temporal discretization, the following local truncation error can be derived by a Taylor expansion in time,
combined with the projection estimate (5.2):

+1 -1
3O, —4d] |+ DT

24t
|y .
=M, 4 < A In —= —In(1 = @) - &1H) = 2530]
2
( @ = Vo] = v Vot
+ X2 — X3 — X3 2N__T__ ( y )
3 2 n+1
36 ((DI,N) 18 d)l,N

+1 +1y,2 +1 +1
V(1 — @14 —apth| V(1 -t - )

2 2
+£—3( N )+i <—)
W\ ey ey T Va— ey - e
+ A MA@ - D] ) > +4r7g\" + 0(4r*) + O(h™), (5.11)
+1 —1
3 — 40t |+ O
24t
n+1
“Mod [ i 2N (1 - @ — @y — 2,0
2 N, o LN~ T2N X3P N
+1,2 +1
+ (2 — 13 — 139 & V2l Egv M ?Y
12 7 A13 = 423 lsN__Tz__ ( +])
36 @y 180\ et

+1 +1y,2 +1 +1
|V(1—@;’,N _QZ,N)l va _(D;,N —@g,

2

5( )+ .<—N))
_ +1 _ +1\2 _ +1 _ +1

B\ a-epy-emy /BT ey -

+ Ay MA@ — @) ) +42g" + 0(48°) + O(h™). (5.12)

with the projection accuracy order m > 4. In fact, the spatial functions g(lo), gg)) are smooth enough in the sense that their derivatives
are bounded.
Subsequently, the leading order temporal correction function @; 4 turns out to be the solution of the following equations:
ar(pl,At
M, <L Dy + P+ Poa
My®,y 1-®x-Dyy
2 2 2 2
E2AVO NI Dy £ 2VP N VP, £ v. (V¢1,Az Dy 4 VP N )

= 2x13P1a + (12 — X153 — 223)P2 41

1

3 2
36 o 36 oy 18

LG ( 2V = @)y = Dy (@ 4+ Py 4)
(1= y - Dy )’
2V - D N — CDZ,N) V(D g+ Dy )
- (1-® y —Pyn) )
+ ﬁ ) <_V(¢1,At + Dy 1) N (D1 g + Pop)VI =Py y — ‘Dz,N))) _ 40,
18 1-® y—Dy (A —®) y — Dy n)? !

D 2
LN D

(9

(5.13)
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0D 5

1 Poa P+ Po
=MoAl — 2 — 2T DD, + — 13— 1)@
2 <N0 Oy T-@ Ny 223Poa + (12 = 213 = X423)P1 a1

2 2 2
€1 2|V, y PP, 4 _E VDN VP & (V‘Dz,m _ ‘Dz,ArV‘Dz,N)
3 2 2
3 ‘Dz,N 36 CDZ,N 18 Dy N q&z,N
€ <2|V<1 — @y — D, @ 4 + D) 4)
36 (I—QI,N _QZ,N):i
VA =Dy N =Dy n) - V(D 4 + ¢’2,Az))
(I=@ y — Dy n)?
2
£ -V(® +@D,,4) (P + @, IV - D — D5 N)
Gy Lat Poad)  (Prat Do LN 2N _ g, (5.14)
18 1-® y—Dyn (1-@) y — Dy \)? 2

+

Initial data @; 4(-, = 0) = 0. In fact, existence of a solution of the above linear PDE system is straightforward . It depends only on

the projection solution @; . And also, the derivatives of @, ,, in various orders are bounded. In turn, when » > 1, an application
of the semi-implicit discretization to (5.13)-(5.14) gives
n+1 n n—1
307y~ 4Pt Py
24t

n+1 n+1 n+1
M A( 1 Pl Piwt Pou
=M,

M, n+1 —_ "t _ pntl
0Py 1=y Py

—1
- 2}(13(2(1)7,41 - (D?,Ax)

2
2 2|V<D"+]| q)"“ 2 ZVCD"'H . V(D"H
€ €
1 i N Pra 8 1N 1,41
+ O — 13— 123) 2P, — P ) + -z

+1 +1
B @ % @y

2 V(Dn+1 (Dn+1 V¢n+1

I3
1 1,41 Lat ¥ LN 1 u
- V. - + A MA@ — " )
1 < +1 +1y2 ) 1 1,4t 1,4t
8 tary @)
2
. e2 (2|V(1 — DU =YD (@ O 2V - @ — @) - V(@ + @g;})>
—_ "t _ pntly3 _ ] _ pntly2
36 a Py CD;,N) a DN ‘Dz,N)
+1 +1 +1 +1 +1 +1
+ éV ) (_v(¢?,At + ‘I);,At) + (d)';,m + ¢;,AI)V(1 - d)’ll,N - ¢;,N) ))
18 —_ "t _ prtl —_ "l _ pntly2
1 DIy~ Py a Py (DZ,N)
- &7+ 4%n! + 0(4r®), (5.15)
+1 -1
34);,41 - 4¢;,Ar + gbg,m
24t
¢n+l ¢n+l +¢n+1
1 T2 1,4t 2,4t _q
=M2A<——’ 2 2T 00, — @)
+1 +1 +1 2,4t 2,4t
No d)g,N 1= tpql,N - (D;,N
2 +12 gn+1 2 41, +1
+()( 7 x )(ZID" (D”_1)+ & 2|V@;’N| (D;,At & ZVQ;,N Vd&;,m
12~ X13 ~ X23 14— Pla = v
Al AT 36 (qsgj\}p 36 (q;;j\})z
2 +1 n+1 +1
& VO u  PouVPin bl en
- EV' ( ' - @1y ) + AZAIA(‘Dzm - ‘Dz,m)
2N o)
2 — o _ @ty 2 (gt +1 —prtl _ pntly . +1 +1
L5 (2|V<1 Py~ Py (@, + @) 2VA - @ - @) - V@, +‘D§,m>>
—_ "t _ prtly3 _ i+l _ gpntly2
36 -2y —P5) (1 =-@yy —P)
2 _ +1 +1 +1 +1 _ +1 _ +1
+ E—3V < V((DT,At + d)g,m) (tpql,m + (D;,At)v(l (D:I,N (D;,N) >>
1 _ +1 _ +1 _ +1 _ +1\2
8 M-y ey (-2 - Py
- &0 + 42 + O(4r). (5.16)

The initial data (D? o= d)j‘_ 4 =0A combination of (5.11)-(5.12) and (5.15)-(5.16) results in the third order temporal truncation

error for dvzl-yl =@; v+ At%PNdiij,, j=12,whenn>1:
3o —dor + !

24t

19
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(Dn+1
:MIA<ML1 m 1n(1—d>';f1 qb"“)—z;m(z@ <I>" o)
0 0

2 |V¢Dn+1
_ _ FHn n—1y _ 1 L1
+ G2 — 213 — 123)(29; | @ ) 36 @,,H)z

2 Vé;ﬁ]—l g§ |V(1 _ ¢n+l _ @n+l)|

_fiy. ( ) L3
Fn+1 _ +1 +1\2
18 & 36 (1 -t - dpth

2
&
+_‘V.(
18

2,1
_ "l _ gpntl
1 <D1,1 (D2,I

v(l - é';+1 d5"+1) y y
) A aia@ - 45?41))

+ 0(4?) + O(R™),

(5.17)
Hn+1 5 Hn—1
305 — 4+ B
24t
1 d5n+1
2,1 M
=M2A<mln N —In(l - &4 — ) ~ 2155285 | ~ DL
2 |V(pn+1|
Hn n— 1
+0na = 213 = 123 QP | — )—36W
€2 Végjl €2 |V(1—<i>’;f1 zp"+1)|
() i
18 Vet /36 a-dp -ty
+1 +1
e V(- —ngl) .
+—V-<—)+A2A1A(d> )
18 1_@n+1 _ ¢n+1 1
1,1 2,1
+ 0(4%) + O(h™), (5.18)

in which the initial data is dvi? = CD? N <I>Il_ L= cDI'. N In the derivation of (5.17)—(5.18), the following linearized expansions have
been utilized
2

M A
lnd)j,1 = ln(tbl,’N + Atztpijt) =In ‘Dj,N + - t n 0(414)’ =12,
Js
In(1 =&, -, ) =In(1 - @ y — Oy y — APD| 4, — AP D, 4)
D g+ Dy gy
1- @I,N - ¢2,N

2
Vo, ° V@, + 47D, )

<p}2_’| (D) n + 4°2D; 4,2

Vo, y|? VO, \|*®; Vo, - VO,
= — P oA o PR o), j=1.2,
J:N J.N qu,N
Ve, V@, n+ AP ,) VO, LV, _Atquj,mw
@, @y +APD; D; N PN o

=In(l - @, y — D, y) — 4 +0(4r),

Ny ourt,

V(1= by, b, DI (VU= @)y =B,y — APD, ;, — AP, )|
(1= —,,) Coa- Dy — Dy — APD 4 — AP D, 4)?
VU —@ Dy ) 12 VU =Py —Pon) V@i + Pra)
T (- Dy ) - (1-® xy~Pyn)

2421V(1 = @)y — Dy (D) 4 + P a)
(I-@y -~ Py n)

V(1 -&, - b)) VA -® Ny =Py - APD) 4 — AP D, )

(-, -d,)) - Dy — Dy — APD 4 — AP D, )
_ VA - @y — Dy N) A2 V(@ 4 + Poar)

l-® y-Dy l-® y-Dy
(@ a1+ Pop)V - @y — Py )
(I1-@, 5 — Py n)?

+ 0(4r),

+4r?

+ 0.
For the sake of representation, the operator Py is omitted from the above formulas.
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In terms of spatial discretization, we construct the spatial correction term @; ,, to improve the spatial accuracy order when n > 1.

The following truncation error estimate for the spatial discretization is available, by using a straightforward Taylor expansion for

the constructed profile &"*':

31 — 4 <i>‘1-11

24t
ID"‘H
=MIA,,<ML1n L1 —In(l = B — ity 24,27 | - )
0 0
R
H1n n—1 _| A
+()(12—}(13—}(23)(2¢'2 45 )_36 <(Ahd5"+1)2)

£ ( V€ A V(1 = 1 —
- —V,- —V> + — n — 2 )
18 A,,zp';fll 36 (A,01 —qs';jl - tpgfll))z

€ Vh(l _¢n+l @n+l)
i (D s -,
Ayl — o7 P )

+2HO + 048 + h*), (5.19)
Fn+1 % $n—1
3 —4dl |+ B
241

1 ﬂd)n+l

=M2Ah<ﬁoln z1

= In(l = & = D) = 250} | - D)

5 1 % |Vhd5n+1|
n n—
+ O = 213 = 2032 | — DT ~ 36 ((Ah¢n+1)2)

e Vbl 2 V(- - drth

_ﬁvh.( Vn+l>+% ( Fn+1 Fn+1 2)
Ah¢z,1 (Ap(l = 471,1 - ‘pz,l )

Hn+l1 +1

Vil =@ — il

&

3 FHn+1 Hn
+ = ~(v—)+AAtA " _

18 h Ah(l _@I;Jrl d;nJrl) 2 h( 2,1 2,1)

+ 2 HY + 04 + h'), (5.20)

Similarly, the spatially discrete functions Hj(.o) are smooth enough in the sense that their derivatives are bounded. Because of the
symmetry in the centered finite difference approximation, there is no O(h?) truncation error term. In turn, the spatial correction

function @, ,, is determined by solving the following linear PDE system:
arq)l,h
(] D+ D
—M, 4 < L Pun PontPon

———— " 2x3Pip+ (12— 213 — 223)P
MO‘DH -, -y, | '

+52|vq>11|qs1,, eﬁzvqﬁl,l-vqh e%v (wpu, qbl’hvdbl’l)

3 2 - =
6 &) 36 & 8\, @
y L2
. & (2|V(1 —& =Dy DI (@, + Dy )
36 - -d,,)
2v(1 - d31,1 - j’z,l) V(@ + ¢’2,h))
1-d -,
ﬁv [ V@it Do) (‘pl,h + @y )V =By | — by ) ) _HO (5.21)
8 1-&,,—d,, (1=, —,,)? !
0, Py py

1 Do Dy, + Dy

=M, <—v—+——2}(23‘152 + (2 = X3 = 423)P
No &y, 1-1, b, nt(n 13 = 223)P1

36 @ 36 @2 18

2 5 2 2 5
£ 2|V, @y 5_1 VD, - VO, , “y. (V‘Dz,h Do h VP, )
1.1 ‘pg,l
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+

%(ZW(] b, —‘D21)| (@ +Dyy)

36 (-, —d,,)
V(1 =) — Dy ) - V(P + q>2,,,))
(1= —d,,)?
€2 V@, , + D D, +D, )V1-D, -
+§V' (D) 2h) (@ 2.V ( 11 2.1) )—H;O), (5.22)

-, -, 1-d; -d,,)?
in which the initial data @; (-, = 0) = 0. Again, the solution depends only on the exact solution @;, with the divided differences
of various orders stay bounded. In turn an application of a full discretization to (5.21)-(5.22) leads to
+1 -1
347;'," - 4(15’1“,h + ¢T,h
24t
+1 +1 +1
1 cVllh (Drf,h + d)g,h
+1 Fn+1 FHn+1
M, <1>” - -

=M A,,( - 27320, - @}

1 = 2|Vh(pn+l| d5n+1
+ (112 — X3~ 123)(2(1); ‘Dn )+ R

6 (@"+1)3
B g_%zv,,é';jl V! g .(V,,tpi‘;l B @”“V,,(pfjl)
Hrt1y2 h Hn+l +1y2
36 ((p;"l ) 18 (p" (q;;"l )

e% 2|Vh(1 _ é;’:“ ¢n+l)| (lp)’l+1 +d)n+l)
% (1 _ ¢n+l dr,n+1)3
2 2Vh(1 _ (D;l+1 (Dn+1) Vh(¢”+1 (Dn+l)

+ AlAmh@';fhl -] )

36 a1- (pn+l ¢n+1)2
. 6% v (_Vh(®n+l + (Dn-H) (¢n+1 + ®n+l)vh(1 éqﬁl (Dn-H)
1i8'h 1 _ gntl S+l _ gntly )
18 1- (DT,I P (-7 —@1)
_ H](0> + 042 + 1), (5.23)
+1 -1
34’3,;; - 4(152,}’ + cb;’h
24t
1 n+1 d)n+l ¢n+l
2,h _ no_ gn—1
_MZA"(FO Pl + 1 — @™ _ gl 20329, ), = Py5)
2,1 1,1 2,1

1 E 2lvh¢n+l| ¢n+1

n n—

+ G2 — 213 — x23) 2P, — P + 6W
22V, &t v, ot g2 Vsl ontly, ot

1
36 @y 18" ( ! @1y )

Eg 2|Vh(1 _ d’,;::e—] ¢n+l)| (¢)n+] +¢n+l)

1
+ AzAtAh(digj;l - ‘Dg,h)

% 1- chJrl d)n+1)3
2 2Vh(l _(DT—I (D"'H) Vh(¢n+1 (D'H'I)
36 (1- dr,nJrl ¢n+1)2
Eg _Vh((pn+1 + (Dn+]) ((Dn+1 + (Dn+1)vh(1 (i>n+1 (Dn+])
+ ﬁ L ( 1-— ¢n+1 _ dyl+1 + a- ¢n+1 ¢n+1)2 ))
1.1 2.1 L1
_ H(O) + 042 + 1), (5.24)

in which cbo = 451 = 0. Finally, a combination of (5.19)-(5.20) and (5.23)-(5.24) yields the higher order spatial truncation error
for <I'J , as glven by (5 9)—(5.10). Of course, the linear expansions have been extensively utilized. []

Remark 5.1. Trivial initial data @; ,(-,t = 0) = @, ,(-,t = 0) = 0 are given to @, ,,,®;, as (5.13)=(5.14) and (5.21)-(5.22).
Therefore, using similar arguments as in (5.3)-(5.4), we conclude that

w-qw ¢y =¢). k20,

=¢j?, Vk>0,
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gt =gt =0, Vn>0, j=1,2.

Remark 5.2. Since the correction function @, 4, ®; , is bounded, we recall the separation property (5.1) for the exact solution, and
obtain a similar property for the constructed profile & NG

B 28, Py 28, 1-D y—Dyy =5, 35 >0, (5.25)

in which the projection estimate (5.2) has been repeatedly used. Such a uniform bound will be used in the convergence analysis.
In addition, since the correction function &; 4, ®; , only depends on @; 5 and the exact solution, its W'* norm will stay bounded.
In turn, we are able to obtain a discrete W' bound for the constructed profile & NG

IV, nllo <C* j=12. (5.26)

5.2. A rough error estimate

Instead of a direct analysis for the error function defined in (5.5), we introduce an alternate numerical error function:
o = Phcis';fN -7, Py = Phgisng —¢y, VYme{0,1,2,3,...}. (5.27)
The advantage of such a numerical error function is associated with its higher order accuracy, which comes from the higher order
consistency estimate (5.9)—(5.10). Again, since q§’1" = 43’2” = 0. Obviously, we have
0 _ 70 1_ 71 . _
ej—d)j, e, =9, j=12. (5.28)

J

When n > 1, a careful consistent analysis indicates the following truncation error estimate:
Fn+l in pn—1
37T — 4T + B

i = M4 i+ + 2, (5.29)
3$n+1 _4¢;n +$n—l
2 2AtZ 2 _ MZAhIZ;-H + T;H'l, (5.30)

with (||, , < C(4F + h*), and
_ (P v 5
A = i —ng) = (in(l = B3] - B —n(l - ! - g+
— 2008 + (i — s — )P + A T — A MA@ - G, (5.31)

N 1 . .
A= W@y — gt = (In(l = B - b5 — Il = g - g1

= 20m3®5 + G — i3 — 2038 + ﬂ;;l + ﬁ;:l - Azﬁmh@g“ - &), (5.32)
2 FHn+1 n+ly Tn+l1
ol _ G ) 4 gntl _ Vi@ + &) Vadh
#1’5 - 36Ah Y Ah¢l A drtlye
(Ap@T\)

E% <Vh43'1'+1 d;;H—]Vh(ﬁ;l:;\l[ >
-ly,. -1 . ,
18 At 4B A,

2 Sl +1y g gt
sl _ 52 @ 4 intl Vi@ + 8570 Vady
= _-Ah(y Ay - )

*S 36 (Ahlpg-ij-\})z
x Intly gl

e <vh¢g+1 VDL )

he ,

—=V — = =
18 Appit 4B A,

(5.33)

Vh(qng.H + ¢~7;+1) )

62 62

~n+l _ _3 3) Fn+1 Tn+1 3
__A< A + >_ VvV <—
Mo = 5 NG ) SRV

6 18

e " ( Vi@ =gt = gitt = bt - L) - V@ + 5T )
_ 5y, L 2
36 (A1 = DY = B2
2 @+ @OV, = BT — DI

63 <
- —V, - — — s
187" Ah<1—¢';“—¢;“>Ah<1—a>';fN1—¢;jJ>)
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Ah(¢n+l 4 ¢n+1)|vh¢n+l |

@
y s (5.34)
(Ah¢n+l)2(Ahd)n+l)2
o Ah(¢g+l ¢n+1)|vh¢n+l |
}/ =
(Ah¢g+l)2(Ah¢n+l)2

Ah(z _ ¢r]l+] ¢n+1 é;ﬁl d)n+l)|vh(1 ¢n+] _ ¢n+])|2
(Ap(1 = ¢T+1 _ ¢;+l))2(Ah(1 — 45r11+1 ¢n+1))2

3 _

14

To proceed with the nonlinear analysis, we make the following a-priori assumption at the previous time step:
~ 7 7
||¢f||2§Aﬂ +h3d, k=n-1,n j=12. (5.35)
Then, based on the fact that || f]|_; , < Cl|f]l,, we have
7k

7k 7 7 “k ||¢J 2 3 3
lgill_in < CAt3 +h3), (IV,9ill, <C A < C(4t7 + h3), k=n—-1,n. (5.36)

Such an a-priori assumption will be recovered by the optimal rate convergence analysis at the next time step, as will be demonstrated
later. This means that

18212 = 1267 — 1712 < 612 + 3161 I < 97 + 7). j=1.2.
Taking a discrete inner product with (5.29), (5.30) by ~"+], ﬁ;’“ respectively, leads to
3(¢T+l~ ﬁf”) + 3(¢Z+l, ﬁ;”) +241(M, ||Vhﬂn+1 5+ M2||Vh,;"+1 15
= (@ = L) + (4 — By ) + 24t B + (L ). (5.37)

For the two terms (4q§’l’ - 43’1"1, ”’l’+1> and (4¢~>g - q.’~>g’1, ﬁ;’“) of the right hand side of (5.37), an application of the Cauchy inequality
reveals that

(). @) < Uy p - VARSIl <

M»
—S AV =12,

2
112, + 5

MAt

M,
B A < G My - IVRE 1 < 1B 12, + S AV I,

2M At

that means

ity < (52

E 1012, , + 2M g1 1||21h> + M AV, A2,

For the local truncation error terms, the following estimate is available:

M,;
1 mntl 1 1 12 J sntl )2
(L) <N o VR, < =502+ = VR

2M
Going back (5.37), we get

- N - ~ 8

3Py + 3Pttty < 2

— (B2, + 16412, )

Y At(”‘ﬁ" R I !

+ F(Ilrf“ll2 + 2 (5.38)

L)
which M, = min(M,, M,). On the other hand, the detailed expansions in (5.31)—(5.32) reveal the following identity:
<q§n+1’ﬁf+1> 4 ((13;”,;7;’”
_ —((l Bt~ g, @) + L((ln Bt~ n gt gt
—((ln(l _ ¢;l’+l ¢n+1) In(1 — ¢n+1 ¢n+1)) ¢n+l 4 ¢g+1>

“2013(d}, &) - 2)(23(¢",¢"+]) +(a = 213 = 1) (B F + (B, G
+A At(Vh(q§”+1 ¢n) Vh¢n+]> + A2At<vh(¢n+l ég), vh&;‘“)
+ (MnJrl ¢n+l> + <ﬂn+l ¢n+1> + (ﬂngSl ¢n+l ¢g+l>. (539)
For the first nonlinear inner product on the right hand side, we begin with the following observation:
LN’

Indt —Ingit! = qﬁ"“, with 0 < & < 1 between ¢! and &%/
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which comes from an application of intermediate value theorem. Since the bound 0 < & < 1 is available at a point-wise level, we
conclude that

(n @ =g, @) > 11§13 (5.40)
Using similar arguments, we also obtain

((n @ty —Ingith), atty > | g5t13, (5.41)

=(n(1 = @Y1 = DI —In(1 = i = ¢ ). ! + @) > 1B+ + B (5.42)

Moreover, since the discrete surface energy functional presented in (2.2) is convex, we conclude that
(Mn+] ¢n+]> + <ﬁn+1 ¢n+1> + (ﬂn+] ¢n+] q§n+l> >0
3.5 2 =
For the artificial term, we have
- - - 2 [ - -
2@ = DVt = | Vady | = 1 + [Va ! - B
Going back (5.39), we arrive at
(@AY + (L

1 12 4 Ly zntly2 o g antl o gndl)2 2 F0i12 Lot 2
— @S+ —NdaS + 1T + @IS — 4x s, Mol 15 — ———11d7 ]
M, o1 T 1 y iz 13 27 g, 10 12

\%

7 1, = 1 z 1 =
43 Nl = g 197115 = g 1 0B = e 1 1

(12 — 113 — 123 (Mol 9213 + Nollg"1%)
A0t 2\ | Ay o
+—<\|V ¢"“|\ ~[watl}) « 5% ([ - el
Tn+1))2 Tn+1)2 2 2 ny2
> 2M0 eyl + 2N0 1657115 = QuisMo + iz = 213 = 123)" Noll 9l

)

v,

—(@AxAENo+ (G — 13— ;(23)2M0)||¢:>;||§
A At <th¢n+1” _ ”Vhlfi'f j) Ay At <th¢n+1” _ thtﬁg

In turn, its substitution into (5.38) yields

—||¢n+|||2+ Z‘Touég“n; P A g e A2

< (4)(13Mo + 2 — i3~ )(23)2N0)||¢3”||§ +@x3 Ny + Gria = 113 — 123> M)l 5 13

stz MBI+ IS, )+ 6M o I 2+ 12 )
A At
+ 3M U 02, + N2 0+ == [V, +
Furthermore, a substitution of the a-priori error bound (5.35) and (5.36) at the previous time step results in a rough error estimate
for q§n+1 q§n+l:
1 2P

. - A 5 5
N} o + 165+ I, < C(atd + A3, (5.43)

3M At
2 AzAt ‘

|Vh¢2

under the linear refinement requirement C,h < At < C,h, with € dependent on My, Ny, x12, x13> %23, A; and A,. Subsequently, an
application of 2-D inverse inequality implies that

_ _ CUIE ™ I, + 185 1)
+1 +1 1 b
&7 Nl + 11057 Mo < A

under the same linear refinement requirement. Because of the accuracy order, we could take At and h sufficient small so that

~ 1 1 A ~
< &(4t3 + h1), with & = CC, (5.44)

50
o=y
Its combination with the separation property (5.25) leads to a similar property for the numerical solution:
50

N 1 1 5
Ci(arf +hi) < 2. sothat 1§l + 185 Nl <

6o
¢Y+l ¢n+l >0 1 ¢rlt+l ¢n+l > =2 for s, > 0. (5.45)

Such a uniform I Nl bound will play a very 1mportant role in the refined error estimate.

Remark 5.3. In the rough error estimate (5.43), we see that the accuracy order is lower than the one given by the a-priori-
assumption (5.35). Therefore, such a rough estimate could not be used for a global induction analysis. Instead, the purpose of such
an estimate is to establish a uniform || - ||, bound, via the technique of inverse inequality, so that a discrete separation property
becomes available for the numerical solution. With such a property established for the numerical solution, the refined error analysis
will yield much sharper estimates.
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5.3. The refined error estimate

Taking a discrete inner product with (5.29), (5.30) by 2A’( a7, 2“’( 4;)7' 5!, respectively, leads to
E<3¢7+1 —AP+ G, + E<3¢g+‘ ads+ ey
+ 2At(<$?+l, ~;l+l> + <$n+l ~;+l ))

_ ZFA:(T{H—]’&;H—])—]J!-}_ < n+l J’;H)—l,h’ (5.46)

with the summation by parts formula applied. The following identities are available for the temporal approximation terms using
(5.6):

1 Fn+1 e Tn—1 7n+l
Mj <3¢j _4¢y +¢j ’¢j >—l,h
160+ =27 + @12,

- n+1p2 ny2
= <||p 12, = 2, ) + ) : (5.47)
where pn+l [q's;'z’ ¢'5;l+l]T_
For the local truncation error terms, similar estimates could be derived:
241 1 gn+l At a2 Tl )2 .
22t Gy < SR+ IR ). = L2 (5.48)
M J M, ; J .

For the term (q§'1’+1, ﬁ;’“) + (47);“, ﬁ;’“), the expansion (5.39), as well as the inequalities (5.40)—(5.42), are still valid. For the inner
product associated with the concave terms, a standard Cauchy inequality is applied:

220348 BT = 22517 - IV BT I

44 42 52
> —— B, - s Va2
0
44 42 €2
> = (6161, ,+ 3165112, ) - 144||vh¢"+‘||2, (5.49)
60
23 ) 2 —2255 1011 IV B
123885, 8,7 ) 2 =203l [l -y w1V d; ™ 2
144 42 &
> -2 NI, — g 1515
50
144 52 £2
23 Tnn2 n—12 0 n+1)2
2 (GBI, + 3165712, ) = g 1985 12 (5.50)

iz = 113 = 0B 1) + (1, gt
2

360012 — a3 — x3)’ 3 %
2 == IR+ 1B ) = T VA I+ 19,85 1)
0
36(x12 = x13 = 23)° 02 2 112 Tn—1(2
Z _T (6(”(1’7”_1;, + “d)g”_l’h) + 3(“‘1”; ”_1_;, + ”(ﬁg ”—l,h))
82 ~
- m(llvh¢T+l 15 + ||Vh(17;Jrl 13- (5:51)

The rest works are focused on the estimates for the error terms associated with the nonlinear surface diffusion, as given by
(ﬂ"“ ¢"+1>, (ﬁ;?l &h, (ﬁ"+1 &+ ¢"+1), the last three terms in (5.39). First, we look at the expansion for (;4"“ q§;'+1), which
comes from the expression (5 33):

(ALY =1 + L+ I+ 1, with

5 2 V@I + gt - v, !
. ] 1) in+ly fn+l . _61 < h n+l>
I = 5o (AR AR 07D, I =5 Ah( (A2 ) VA

2 Tn+1 n+l FHn+1
£ vV, ~ 3 G VRdTy _
I = _1_;;<V" . (_h L ),¢'11+1>, I, = E(V" . (—m — ),¢'1’+‘>.
Ah¢1 h¢1 Athl,N
It is clear that I, stays non-negative:
2

£ - -
1= 36O A1) 2 0, (5.52)

26



L. Dong et al. Journal of Computational and Applied Mathematics 462 (2025) 116463

in which the summation by parts formula is applied in the first step, while the fact that (V' > 0 (given by (5.34)) is used in the
second step. Similarly, for the third part I3, an application of summation by parts formula reveals that
Vh d;n+1 52
Iy = [ b 2 IV, (5.53)
181 4,01 18
in which the point-wise estimate 0 < qb’l’“ < 1 has been used in the second step. For the fourth part I,, an application of summation
by parts formula gives

2 ¢n+1 V ¢n+1

£ [ Tn+l
o= L[N g g ]
MEET AT A, B n®
1 Tl Tl
<= = VD o - 1B M - IV AT
18“ Ah¢7+l Hoo ” Ah(p;’j\; H
C*e%
< —g 26070 Ml - IV
C*2(Sp)™> 1 s
< —5 B2, IVaB
2
- (3 ~
< CEC @) NB I, + IV (5.54)

In more details, the preliminary estimate (5.26) has been applied in the third step, combined the separation properties (5.45); the
1 1

Sobolev interpolation formula, ||q§;’+l I, < ||<5’1”rl ||E1 W IV ,,d;';“ ||2E , has been used in the fourth step; the Young’s inequality has been
applied in the last step. For the second term I,, we begin with the following summation by parts:
Vi@ + 91D - Vi

I = 36[ 2+l
(A7)

Ay (5.55)

Meanwhile, because of the fact q.’>’1’+1 = <15"'+l ¢"+' we are able to decompose —1I, into two parts:
v,,<b]+N' Vit

Ly=—I,, —L,,, with -1, := —[ _
. : : 12
18 (A @7)

Ah$7+l]’

)
. 8? |V ¢n+l|
-5, ~:——[

Fn+1
6 (Ah¢n+l)2 And) ]

The bound for —1, | could be obtained in a similar style as (5.54):

-I,
< — n+1 n+1 . in+1
< =l R 095 - 1A e - 1,
C*E% -2 Tn+1 Tn+1 C*E% =21 £n+l1 Tn+1
< T'((So) 1AL Ml - IVRd Il < 3 () NPT Mz - VRl
C*¢ 2( 0)—
< 13 ||<I5"Jrl ||21,, ||Vh¢"+1||2
gl
< CCHY @) G2, + 5 IV 5. (5.56)
For the other part —1I,,, we recall the || - ||, rough estimate (5.44) and the separation inequality (5.26), and arrive at
by < 3 H wl I 1 e - 109,87 13
2
&l 2. A Ay s Tn+l)2
< 3¢ 607 G + ADIV, B, (5.57)
In turn, if A7 and & are sufficiently small so that
C —2
1(30) @i+ n) < 14114 (5.58)
we obtain a useful bound
52 in+1)2
-, < m”vn(ﬁl I (5.59)

A substitution of (5.56)-(5.59) into (5.55) leads to
2

—L < CCH G el 12, += ||vh¢"+1||2. (5.60)
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Finally, a combination of (5.52)-(5.54) and (5.60) results in

2
(5.61)

L FEY > LV, E 2 - 20 6 PN IR,

=36
The two other nonlinear surface diffusion error terms could be analyzed in the same style. The results are stated below; the
technical details are skipped for the sake of brevity.

<ﬂn+1 ¢n+l>

2
E
||Vh¢g+1 5 —2cC* G 15 112, s (5.62)

<Mn+1 ¢}il+l+¢;+l>

2
> ;% IVA(@ + @55 — 20 G 315 + 5112, ,
> iIIVh(rﬁ"“ + 013
—4C(C G UG Z , + 18512, - (5.63)
A substitution of (5.40)-(5.42), (5.49)—(5.51), (5.61)—(5.63) into (5.39) results in
(@Y + (g )
2
> ;—z(uv s+ ||V 5 —4CC) E)(e] + &5 + UG, + D512, )
~IB 0+ 2+ 10— s — ) [, + IBIR, )
0
H3AUBIR,, + 18572, )]
r IG5 + Ni 1G22 + 10+ + gt |2
LA At (”thﬁ"“” S\ 2) Aot <HV,,¢"+1 I~ V4 2) (5.64)
A combination of (5.46)-(5. 48) and (5.64) gives
( 2, o ||p;’ 2, ) - (ﬁnp?ni,ﬁ + ﬁzupgni,a
& T2 Tl 2 2 wnr ||2 2 el ||
+3g MBI+ IV, 1) + <A,Ar Hth.’)l “2 + Ay At “thﬁz H2>
- <AlAt2 ”V,,d?l’ 2+A24t2 ”vhd";; z>
< k08 [6UFIP, ,+ 15120+ 306512, + 1331 )]
+x a2 + G2, ) + A <ML1||<£';“ 2., + Mizuég“ ||El,,,)
+4t <WIIT"+1 12, + MLzur;“ ||31,h) : (5.65)

with

288 1
= 5—2(1123 + )(223 + Z()ﬁz - 13— 223
0
k@ =8C(C*)*(89)B(e] + &5 + £3).

In other words, we have

n+1)2 n+112 1 n2 1 n2
< Py 112, 6 Ilp2 1z, ) <M1 Pz, 6 M ||p2||_],G>

+%Az<uvhq§';“ 2+ 1V, 85 1) + (A.Ar2 V481 + Apa |9, 8" Hi)

)

< k08 [6UFIP, ,+ 15120+ 30512, + 1851 )|

2+A24t2 ”v,,d”;;

- <AlAt2 ”vh({;’;
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M+ M - N
2 1 2 +112 +112
+<x S VY )Ar(ndf; 12+ 102, )

M+ M, el )2 )2
+Wm<||rl 1200+ 17541 ) - (5.66)

2 _2 o2
Now we observe that “p,1 H_I o= % Hqﬁ}”_] . ”4)? B
Summing both sides of (5.66) with reépect to n gives

2 n
E
2 ; ;
( o112, 6+ — Ilpz“ll2 > + %AIZ(IIVM’I‘“II% + VBt 1D
k=1
~ - 2
+(AMﬁHm¢¢1L+A¢ﬂ”m¢wa

M+ M - N
< <K<2> + W) HOF I, + 1B 2,0

S5O 1 72 L7102
+ E <Wl”¢l ”—l,h + Elltpzll_l’h

M+ M o .
(1 @ 4, T z k12 k2
+ <9K’ + K+ MM, ) At k=l(”¢1 ”—Lh + ”¢2”—1,h)

M+ M, 2 2
vt I (Lot PR Cagl G
MiM, ; 1 Lh 2 1,h

(a0, + s v,

2

We observe ‘p”“ ”_ G % ‘ ¢"+1“ . This means that
L _ K(z) M At ”d”)n+l ”2
2M1 MIMZ 1 ~Lh

1 o, MitM, Tntl (2
Y + L2
<2M2 (K MM, I W
2

6
+ —Ar 2<||Vh¢"“ 15+ 1VaE 15

My

+ M . .
< 9K<1>+K<2>+—2>At AEN,, + 1502, )
< M]Mz ; 1"-1,h 20-1,h

n
S5O 1 =1 L 212 M+ M, k12 k4112
+5<—M1 11120+ 5 W88 ) + R Ark§=l(ur1 P+ 1512, )

+ (402 vl + a:a 0,37 (5.67)

We need to analyze the error at the first time step separately, since the local truncation error is only second-order in time. Notice
that e? =0, by carefully calculation, we have the following error equation for the initial level:

e} = MM Ay i} + it (5.68)
7 = 3 (59, Gne@] 5 @) ) =55, G (01, 8))) (5.69)
e = AthAhﬁz + At'rz, (5.70)
7 = 3 (50, Gnc(@] 5o @1 3) = 60, G 9. 0D) ). 5.71)
where le < C(4% + h?). Since ¢ = 0, we can omit the terms about the initial step ¢ = 1, in expressions above based on the

intermediate value theorem. Taking the inner product with the error equation (5.68), (5.70) by (—Ah)‘le:, (—Ah)"eé, respectively,
and using summation-by-parts, we have

pod o VRS vl IR AR E Y
= Ai_t,“ll’e:)‘l’“ + ;‘4—2@;,4)_1}1. (5.72)
For the right side of (5.72), using the Cauchy-Schwartz inequality, we have
ﬁ(’fll’e})q,h + ﬁ(‘rz]’eé)—l,h
(5.73)

2
el L] WPl L v ] WP o

29



L. Dong et al. Journal of Computational and Applied Mathematics 462 (2025) 116463

For the third term of the left hand side of (5.72), similar to (¢*', @*") + (#3+', @3*'), we have

1 - 1 -
(ey. fi}) + (e, fiy)
2

> 144(||vhe I3+ 1V 113) = 2C(C*)* (Bg) (g7 + &5 + e)(ller 12, + lley |12, ). (5.74)
.. e 1 (60)3 . .
Combining (5.72)—(5.74) and (5.28), when the initial time step 4t < VYR veRye T we have the following estimate
2 At ca’
1 1 332
191, + 56 il < =l + =] o < Gatar w0 (575)

in which we have used the linear refinement C;h < At < G,h in the second step.

Combining (5.75), taking (KQ) + M‘Jrj\“:{l 2 ) At < W and (K<2) + M‘Jx{lz ) At < ﬁ in (5.67), we get the following estimate by
l 2 2 2
using the discrete Gronwall inequality
5 241 ~ 2 2 R
il (55 Sl ) s 570
’ k=1

based on the truncation error accuracy ||r{'+1 [ ||r;+1 loip < C(48 + h*). This completes the refined error estimate.
Recovery of the a-priori assumption (5.35)
With the error estimate (5.76) at hand, we notice that the a-priori assumption in (5.35) is satisfied at the next time step ¢"*!:
we observe that the Lit(O, T:H ;]1) error estimate in (5.67) implies that
_ CCy(Ar + W3 N5 s
VAl < ¥ < CCy(4r7 +h2),
At2

in which we have used the linear refinement C,; 4 < A4t < C,h in the second step. Moreover, since q§'1'+1 = (ﬁg“ =0, an application of
discrete Poincaré inequality implies that

~ ~ ~ 5 5 7 7
167 M1, < CIV, i Iy < CCy(ar> + h7) < Ard + b3, j=1.2, (5.77)

provided that Ar and 4 are sufficiently small. This completes the proof of Theorem 5.1.

Remark 5.4. The positivity-preserving and energy stability analyses, as stated in Theorems 3.1 and 4.1, are unconditional, and there
is no requirement for the time step size in terms of the spatial mesh size. Meanwhile, in the statement of the convergence analysis
and error estimate in Theorem 5.1, a linear refinement condition is required for the time step size, namely C,h < At < C,h, for certain
technical reasons. In fact, this requirement is not the standard CFL condition, although it takes a similar form. In more details, such
a linear refinement condition does not come from the stability requirement of the numerical scheme; instead, this condition comes
from repeated applications of inverse inequality, as revealed in the rough error estimates (5.36), (5.43), etc. A careful calculation
implies that, a combination of Ar < C,h and 4t > C, h enables us to derive the desired || - ||, rough error estimate (5.44), so that the
phase separation property (5.45) becomes available for the numerical solution at the next time step, which will play an essential
role in the refined error estimate.

Meanwhile, such a linear refinement condition (for the time step size) could be improved with the help of an even higher order
consistency analysis via asymptotic expansion. In Section 5.1, we have performed an O(4r*> + h*) consistency estimate, and this
consistency order is able to ensure the desired || - ||, rough error estimate (5.44), under the linear refinement condition. Instead, if
we perform an O(4r* + h*) consistency estimate, with the help of higher order asymptotic expansion, the desired || - ||, rough error
estimate (5.44) could be derived with an improved time step constraint: C,h2 < At < Czhg, and the a-priori assumption (5.35)
could be rewritten as ||q§j?||2 < AP + R, k=n—1,n, j =1,2. Of course, this constraint is much milder than the linear refinement

requirement, and the time step size could be taken in the scale from O(h%) to O(h%).

In fact, under the assumption that the exact solution is sufficiently smooth, with higher and higher order consistency estimate
via asymptotic expansion, such a time step constraint could be even improved to C; 7% < At < C,h%, for any f, > 1 and 0 < a; < 1.
With a smaller value of scaling power index «, and a larger value of f,, there is more freedom in the choice of the time step size
At. The technical details are skipped for the sake of brevity. In fact, the corresponding constraint for the time step size is only a
technical issue in the theoretical justification of the convergence analysis.

Remark 5.5. The convergence estimate (5.7) (stated in Theorem 5.1) gives a second order convergence rate for the phase variables,

in the £*(0,T; H;l) norm. Meanwhile, based on the higher order consistency estimate via the asymptotic expansion approach, we

are able to derive the second order #*(0,T;¢?) convergence estimate. In particular, the higher order refined error estimate (5.76)

leads to an £ error estimate (5.77), with convergence order O(At% + h% ). On the other hand, by the asymptotic expansion (5.8) for

the constructed profile @ s combined with the definition (5.27) for the higher order error functions, we immediately conclude that
eIy =l = Py (AP®; 4 + K@} )l

S||(l§:-'+1 Il + A’2||PN‘D1,A;||2 + h2||PN‘Dj,h||2 (5.78)

~ 5 5
<C?C,(A17 + h2) + C(4Ar% + h?) < C(4Ar% + h?).
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Table 6.1
Errors and convergence rates. The #? error, £ error and convergence rate for ¢, and ¢, when T = 0.4. The initial data are
defined in (6.1). The refinement path is 47 = 0.002 h.

Grid sizes 16% — 322 322 — 647 647 — 1282
£2-error-¢, 2.7223 x 1072 7.0546 x 1073 1.8240 x 103
Rate - 1.95 1.95
£2-error-¢, 2.6907 x 1072 6.8618 x 1073 1.7182 x 1073
Rate - 1.97 2.00
£-error-¢, 8.2277 x 107 2.1980 x 10~* 5.7373 x 107
Rate - 1.90 1.94
£-error-¢, 8.1155 x 10~ 2.1248 x 1074 5.4786 x 10~
Rate - 1.93 1.96

As a result, a discrete L? error estimate has been theoretically established, with the second order accuracy in both time and space.

Of course, such a second order L? convergence estimate is under the linear refinement constraint condition, C;h < At < Cyh.
Under a milder constraint, C;h%0 < At < C,h%, with f;, > 1, 0 < &, < 1, a similar second order L? error estimate could be derived
in a similar manner; the technical details are skipped for simplicity of presentation.

6. Numerical results

In this section, we present several numerical experiments using the proposed scheme. The nonlinear Full Approximation Scheme
(FAS) multigrid method is used for solving the semi-implicit numerical scheme (2.4)-(2.7). The details are similar to earlier
works [23,28,29,32-35], etc. We take the domain 2 = [0,64]%, fixed space resolution N = 256 and choose the parameters in
the model as M\ = 0.16, Ny = 5.12, y» =4, y13 = 10, y,3 = 1.6 and M, = M, = 1.0. In addition, we set the artificial parameters as
Ay = 12570 +025(x15 — 113 — x23)* and Ay =215, + 20010 — 113 — 2230

Example 6.1. The initial data is set as
#0(x,») = 0.1 + 0.01 cos(37x/32) cos(3zy/32),
q’)g(x, »)=0.5+0.01 cos(3zrx/32) cos(37zy/32). (6.1)

This example is designed to study the numerical accuracy in time. We use a linear refinement path, ie., At = Ch. At the final
time T = 0.4, we expect the global error to be O(4r%) + O(h?*) = O(h?) under either the #2 or £ norm, as h, At — 0. Since we do
not have an exact solution, instead of calculating the error at the final time, we compute the Cauchy difference, which is defined as
bp 1=n, - I{ (¢y,), where Zcf is a bilinear interpolation operator (We applied Nearest Neighbor Interpolation in Matlab, which is
similar to the 2D case in [36]). This requires having a relatively coarse solution, parametrized by 4., and a relatively fine solution,
parametrized by h,, where h, = 2h;, at the same final time. The ¢? and ¢ errors for ¢; and ¢, are displayed in Table 6.1,
respectively. The results confirm our expectation for the convergence order.

Example 6.2. A random initial perturbation is included in the initial data:

#(x, ) =01+r,,

B (x,3) =04+r,, (6.2)
where the r; ; are uniformly distributed random numbers in [-0.01, 0.01].

This example is designed to test the performance of the proposed scheme in preserving physical properties at discrete level. The
energy evolution of the numerical solution with A7 = 1.0 x 10~ is illustrated in Fig. 6.1, which indicates a clear energy decay. In
Fig. 6.2, we also present the error evolutions of the total mass of ¢; and ¢,. In Fig. 6.3, the snapshot plots of ¢, ¢, and ¢; at
a sequence of time instants are displayed, to make a comparison with the existing ternary MMC results. Moreover, the maximum
values and minimum values of ¢,, ¢, and ¢, + ¢, are presented in Figs. 6.4 and 6.5. In summary, our numerical tests further confirm
that the proposed numerical scheme respects mass conservation, energy dissipation, and positivity at discrete level.

7. Conclusions

A second order finite difference numerical scheme is proposed and analyzed for the ternary MMC system. The BDF temporal
discrete and second-order Adams-Bashforth extrapolation formula has been used to construct the full discrete scheme. In the
proposed numerical algorithmic, a unique solvability and positivity-preserving property turn to be available. Combined Douglas-
Dupont regularization term, the energy stability property is estimated. Moreover, the second order convergence analysis are available
in the theoretical level. To overcome a well-known difficulty associated with the highly nonlinear and singular nature of the surface

31



Journal of Computational and Applied Mathematics 462 (2025) 116463

L. Dong et al.

9350

9300

9250

ABisus

9200

9150

9100

40

35

30

25

20

15

10

Fig. 6.1. Example 6.2: Evolution of the energy over time. The time step size is taken as 4t = 1.0 x 107,
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Fig. 6.2. Example 6.2: The error developments of the total mass for ¢, and ¢,, respectively.

X2

1IN
S
O\

AN
L)

=

Fig. 6.3. Example 6.2: Evolution of three phase variables at + = 10,20,30 and 40. The first line is for ¢,, the second line is for ¢, and the last line is for ¢;.

The time step size is taken as 4t = 1.0x 107,
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Fig. 6.5. Example 6.2: The time evolutions of the maximum and minimum values for ¢, + ¢,, with 4t = 1.0x 107,

diffusion coefficients, a rough error estimate has to be performed, so that the #* bound for ¢; could be derived. This #* estimate
yields the upper and lower bounds of the three variables, and these bounds play a crucial role in the subsequent analysis. Finally, the
refined error estimate is carried out to accomplish the desired convergence result. In addition, mass conservation, energy stability,
bound of the numerical solution and the second order accurate are demonstrated in the numerical experiments.

Acknowledgments

L.X. Dong is partially supported by the National Natural Science Foundation of China (No. 12201051, 12371396). C. Wang is
partially supported by the National Science Foundation (No. DMS-2012269, DMS-2309548). Z.R. Zhang is partially supported by
the National Natural Science Foundation of China (No. 11871105, 12231003).

Data availability

Data will be made available on request.

References
[1] D. Zhai, H. Zhang, Investigation on the application of the TDGL equation in macromolecular microsphere composite hydrogel, Soft Matter 9 (2012)

820-825.
[2] L. Dong, C. Wang, H. Zhang, Z. Zhang, A positivity-preserving, energy stable and convergent numerical scheme for the Cahn-Hilliard equation with a

Flory-Huggins-deGennes energy, Commun. Math. Sci. 17 (2019) 921-939.
[3] X. Li, G. Ji, H. Zhang, Phase transitions of macromolecular microsphere composite hydrogels based on the stochastic Cahn-Hilliard equation, J. Comput.

Phys. 283 (2015) 81-97.
[4] X. Li, Z. Qiao, H. Zhang, An unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equation, Sci. China Math. 59 (2016)

1815-1834.
[5] M. Yuan, W. Chen, C. Wang, S. Wise, Z. Zhang, A second order accurate in time, energy stable finite element scheme for the Flory-Huggins—Cahn-Hilliard

equation, Adv. Appl. Math. Mech. 14 (6) (2022) 1477-1508.
[6] J. Drury, D. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications, Biomaterials 24 (24) (2003) 4337-4351.

[7] U. Edlund, Ryberg, Y. Zhu, A. Albertsson, Barrier films from renewable forestry waste, Biomacromolecules 11 (9) (2010) 2532-2538.

33


http://refhub.elsevier.com/S0377-0427(24)00711-8/sb1
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb1
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb1
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb2
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb2
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb2
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb3
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb3
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb3
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb4
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb4
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb4
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb5
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb5
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb5
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb6
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb7

L. Dong et al. Journal of Computational and Applied Mathematics 462 (2025) 116463

[8]

[9]

[10]
[11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]

[36]

T. Huang, H. Xu, K. Jiao, L. Zhu, H. Brown, H. Wang, A novel hydrogel with high mechanical strength: A macromolecular microsphere composite hydrogel,
Adv. Mater. 19 (12) (2007) 1622-1626.

G. Ji, Y. Yang, H. Zhang, Modeling and simulation of a ternary system for macromolecular microsphere composite hydrogels, East Asian J. Appl. Math.
11 (1) (2021) 93-118.

J. Johnson, N. Turro, J. Koberstein, J. Mark, Some hydrogels having novel molecular structures, Prog. Polym. Sci. 35 (3) (2010) 332-337.

W. Chen, Y. Liu, C. Wang, S. Wise, An optimal-rate convergence analysis of a fully discrete finite difference scheme for Cahn-Hilliard-Hele-Shaw equation,
Math. Comp. 85 (2016) 2231-2257.

Y. Chen, J. Lowengrub, J. Shen, C. Wang, S. Wise, Efficient energy stable schemes for isotropic and strongly anisotropic Cahn—Hilliard systems with the
Willmore regularization, J. Comput. Phys. 365 (2018) 57-73.

W. Feng, C. Wang, S. Wise, Z. Zhang, A second-order energy stable backward differentiation formula method for the epitaxial thin film equation with
slope selection, Numer. Methods Partial Differential Equations 34 (2018) 1975-2007.

A. Diegel, X. Feng, S. Wise, Convergence analysis of an unconditionally stable method for a Cahn-Hilliard-Stokes system of equations, SIAM J. Numer.
Anal. 53 (2015) 127-152.

A. Diegel, C. Wang, X. Wang, S. Wise, Convergence analysis and error estimates for a second order accurate finite element method for the
Cahn-Hilliard-Navier-Stokes system, Numer. Math. 137 (2017) 495-534.

D. Han, X. Wang, A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation, J. Comput.
Phys. 290 (2015) 139-156.

Y. Liu, W. Chen, C. Wang, S. Wise, Error analysis of a mixed finite element method for a Cahn-Hilliard-Hele-Shaw system, Numer. Math. 135 (2017)
679-709.

Y. Yan, W. Chen, C. Wang, S. Wise, A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation, Commun. Comput. Phys. 23
(2018) 572-602.

F. Boyer, C. Lapuerta, Study of a three component Cahn-Hilliard flow model, M2AN Math. Model. Numer. Anal. 40 (2006) 653-687.

F. Boyer, S. Minjeaud, Numerical schemes for a three component Cahn-Hilliard model, M2AN Math. Model. Numer. Anal. 45 (2011) 697-738.

X. Yang, J. Zhao, Q. Wang, J. Shen, Numerical approximations for a three-components Cahn-Hilliard phase-field model based on the invariant energy
quadratization method, Math. Models Methods Appl. Sci. 22 (2017) 1-38.

M. Yuan, W. Chen, C. Wang, S. Wise, Z. Zhang, An energy stable finite element scheme for the three-component Cahn-Hilliard-type model for
macromolecular microsphere composite hydrogels, J. Sci. Comput. 87 (3) (2021).

L. Dong, C. Wang, S. Wise, Z. Zhang, A positivity-preserving, energy stable scheme for a ternary Cahn-Hilliard system with the singular interfacial
parameters, J. Comput. Phys. 442 (2021) 110451.

L. Dong, C. Wang, S. Wise, Z. Zhang, Optimal rate convergence analysis of a numerical scheme for the ternary Cahn-Hilliard system with a
Flory-Huggins—deGennes energy potential, J. Comput. Appl. Math. 415 (2022) 114474.

A. Christlieb, J. Jones, J. Promislow, K. Wetton, B. Willoughby, Mark, High accuracy solutions to energy gradient flows from material science models, J.
Comput. Phys. 257 (2014) 193-215.

K. Cheng, W. Feng, C. Wang, S. Wise, An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation, J. Comput. Appl. Math. 362
(2019) 574-595.

L. Dong, C. Wang, H. Zhang, Z. Zhang, A positivity-preserving second-order BDF scheme for the Cahn-Hilliard equation with variable interfacial parameters,
Commun. Comput. Phys. 28 (3) (2020) 967-998.

W. Chen, C. Wang, X. Wang, S. Wise, Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential, J.
Comput. Phys. X 3 (2019) 100031.

S. Wise, Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations, J. Sci. Comput. 44
(2010) 38-68.

S. Wise, C. Wang, J. Lowengrub, An energy stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal. 47
(2009) 2269-2288.

C. Wang, S. Wise, An energy stable and convergent finite-difference scheme for the modified phase field crystal equation, SIAM J. Numer. Anal. 49 (2011)
945-969.

L. Dong, W. Feng, C. Wang, S. Wise, Z. Zhang, Convergence analysis and numerical implementation of a second order numerical scheme for the
three-dimensional phase field crystal equation, Comput. Math. Appl. 75 (2018) 1912-1928.

A. Baskaran, Z. Hu, J. Lowengrub, C. Wang, S. Wise, P. Zhou, Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified
phase field crystal equation, J. Comput. Phys. 250 (2013) 270-292.

W. Feng, Z. Guo, J. Lowengrub, S. Wise, A mass-conservative adaptive FAS multigrid solver for cell-centered finite difference methods on
block-structured,locally-cartesian grids, J. Comput. Phys. 352 (2018) 463-497.

Z. Hu, S. Wise, C. Wang, J. Lowengrub, Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation, J. Comput.
Phys. 228 (2009) 5323-5339.

W. Feng, A. Salgado, C. Wang, S. Wise, Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms, J.
Comput. Phys. 334 (2016) 45-67.

34


http://refhub.elsevier.com/S0377-0427(24)00711-8/sb8
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb8
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb8
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb9
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb9
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb9
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb10
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb11
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb11
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb11
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb12
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb12
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb12
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb13
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb13
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb13
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb14
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb14
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb14
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb15
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb15
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb15
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb16
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb16
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb16
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb17
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb17
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb17
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb18
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb18
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb18
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb19
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb20
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb21
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb21
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb21
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb22
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb22
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb22
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb23
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb23
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb23
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb24
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb24
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb24
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb25
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb25
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb25
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb26
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb26
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb26
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb27
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb27
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb27
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb28
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb28
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb28
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb29
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb29
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb29
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb30
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb30
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb30
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb31
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb31
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb31
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb32
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb32
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb32
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb33
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb33
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb33
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb34
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb34
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb34
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb35
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb35
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb35
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb36
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb36
http://refhub.elsevier.com/S0377-0427(24)00711-8/sb36

	A positivity-preserving, second-order energy stable and convergent numerical scheme for a ternary system of macromolecular microsphere composite hydrogels
	Introduction
	The fully discrete numerical scheme
	The finite difference spatial discretization
	A convex-concave decomposition of the discrete energy

	Unique solvability and positivity-preserving property
	The equivalent form of solving Full-discrete-1–Full-discrete-mu2
	Proof by contradiction
	The minimizer (φ1⋆,φ2⋆)∈Ah,δ could not occur at φ1⋆=g(δ).
	The minimizer (φ1⋆,φ2⋆)∈Ah,δ could not occur at φ2⋆=g(δ)
	The minimizer (φ1⋆,φ2⋆)∈Ah,δ could not occur at φ1⋆+φ2⋆=1-δ
	The minimizer (φ1⋆,φ2⋆)∈Ah,δ could not occur at φ1⋆+φ2⋆=δ


	Energy stability
	Optimal rate convergence analysis in ℓ∞(0,T; Hh-1) ∩ℓ2 (0,T; Hh1)
	Higher order consistency analysis
	A rough error estimate
	The refined error estimate

	Numerical results
	Conclusions
	Acknowledgments
	Data availability
	References


