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A second order accurate numerical scheme is proposed and implemented for the 
Landau-Lifshitz-Gilbert equation, which models magnetization dynamics in ferromagnetic 
materials, with large damping parameters. The main advantages of this method are 
associated with the following features: (1) It only solves linear systems of equations with 
coefficient matrices independent of the magnetization, and fast solvers are available, so 
that the numerical efficiency has been greatly improved, in comparison with the existing 
Gauss-Seidel project method. (2) The second-order accuracy in time is achieved, and 
it is unconditionally stable for large damping parameters. Moreover, both the second-
order accuracy and the great efficiency improvement will be verified by several numerical 
examples in the 1D and 3D simulations. In the presence of large damping parameters, 
it is observed that this method is unconditionally stable and finds physically reasonable 
structures while many existing methods have failed. For the domain wall dynamics, the 
linear dependence of wall velocity with respect to the damping parameter and the external 
magnetic field will be obtained through the reported simulations.

 2021 Elsevier Inc. All rights reserved.

1. Introduction

Ferromagnetic materials are widely used for data storage due to the bi-stable states of the intrinsic magnetic order 
or magnetization. The dynamics of magnetization has been modeled by the Landau-Lifshitz-Gilbert (LLG) equation [11,15]. 
In particular, two terms are involved in the dynamics of the LLG equation: the gyromagnetic term, which is energetically 
conservative, and the damping term, which is energetically dissipative.

The damping term is important since it strongly affects the energy required and the speed at which a magnetic device 
operates. A recent experiment on a magnetic-semiconductor heterostructure [29] has indicated that the Gilbert damping 
constant can be adjusted. At the microscopic level, the electron scattering, the itinerant electron relaxation [13], and the 
phonon-magnon coupling [18,21] are responsible to the damping, which can be obtained from electronic structure cal-
culations [23]. For the application purpose, tuning the damping parameter allows one to optimize the magneto-dynamic 

* Corresponding author.
E-mail addresses: yongyong.cai@bnu.edu.cn (Y. Cai), jingrunchen@suda.edu.cn (J. Chen), cwang1@umassd.edu (C. Wang), 20184007005@stu.suda.edu.cn

(C. Xie).

https://doi.org/10.1016/j.jcp.2021.110831
0021-9991/ 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2021.110831
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2021.110831&domain=pdf
mailto:yongyong.cai@bnu.edu.cn
mailto:jingrunchen@suda.edu.cn
mailto:cwang1@umassd.edu
mailto:20184007005@stu.suda.edu.cn
https://doi.org/10.1016/j.jcp.2021.110831


Y. Cai, J. Chen, C. Wang et al. Journal of Computational Physics 451 (2022) 110831

properties in the material, such as lowering the switching current and increasing the writing speed of magnetic memory 
devices [27].

While most experiments have been devoted to small damping parameters [5,16,26], large damping effects are observed in 
[12,22]. The magnetization switching time tends to be shorter in the presence of the large damping constant [22]. Extremely 
large damping parameters (∼ 9) are presented in [12].

The LLG equation is a vectorial and nonlinear system with the fixed length of magnetization in a point-wise sense. 
Significant efforts have been devoted to design efficient and stable numerical methods for micromagnetics simulations; 
see [7,14,20] for reviews and references therein. Among the existing numerical works, semi-implicit schemes have been 
very popular since they avoid a complicated nonlinear solver while preserving the numerical stability; see [2,3,8,9,19,28], 
etc. In particular, the second-order accurate backward differentiation formula (BDF) scheme is constructed in [28], with a 
one-sided extrapolation. In turn, a linear system with total 3N3 degree of freedoms needs to be solved at each time step, 
which is dependent of the updated magnetization. It is noticed that N denotes the uniform grid size in each direction 
of the three-dimensional space, so that N3 degree of freedoms is needed for each single physical variable. Meanwhile, the 
factor 3 in front of N3 comes from the fact that the magnetization vector contains three components. Moreover, a theoretical 
analysis of the second order convergence estimate has been established in [6] for such a BDF2 method. As another approach, 
a linearly implicit method in [2,3] introduces the tangent space to deal with the length constraint of magnetization, with 
the first-order temporal accuracy. As a further extension, high-order BDF schemes have been constructed and analyzed in a 
more recent work [1]. The numerical integration of the LLG equation has been considered by [8,19]. The resulting integrator 
by [19] is formally second-order accurate in time, with unconditional convergence by combining the midpoint rule with 
an explicit Adams–Bashforth scheme. A further numerical algorithm to the coupled system of the LLG equation with the 
eddy current approximation of Maxwell equations is developed by [8], with unconditionally convergent integrator of almost 
second-order accuracy in time, and only two linear system solvers are needed at each time step. An unconditionally unique 
solvability of the semi-implicit schemes has been proved in [1,6], while the convergence analysis has required a condition 
that the temporal step-size is proportional to the spatial grid-size. However, an obvious disadvantage has been observed for 
these semi-implicit schemes: the vectorial structure of the LLG equation leads to a non-symmetric linear system at each 
time step, which cannot be implemented by fast Fourier transform (FFT)-based fast solver. In fact, the generalized minimal 
residual method (GMRES) is often used, while its efficiency depends heavily on the temporal step-size and the spatial grid-
size, and extensive numerical experiments have indicated much more expensive computational costs than standard Poisson 
solvers [28].

The Gauss-Seidel projection method (GSPM) is another popular set of numerical algorithms since only magnetization-
independent linear systems need to be solved at each time step [10,17,25]. This method is based on a combination of a 
Gauss-Seidel update of an implicit solver for the gyromagnetic term, the heat flow of the harmonic map, and a projection 
step to overcome the stiffness and the nonlinearity associated to the LLG equation. In this numerical approach, the implicit 
discretization is only applied to the scalar heat equation implicitly several times; therefore, the FFT-based fast solvers be-
come available, due to the symmetric, positive definite (SPD) structures of the linear system. The original GSPM method [24]
turns out to be unstable for small damping parameters, while this issue has been resolved in [10] with more updates of the 
stray field. Its numerical efficiency has been further improved by reducing the number of linear systems per time step [17]. 
One little deficiency of GSPM is its first-order accuracy in time.

Meanwhile, in spite of these improvements, the computation of GSPM is comparable to the Poisson solver, while the 
cost of Gauss-Seidel iteration part can be ignored. Moreover, most of the above-mentioned methods have been mainly 
focused on small damping parameters with the only exception in a theoretical work [1]. In other words, there has been no 
numerical method designed specifically for real micromagnetics simulations with large damping parameters. In this paper, 
we propose a second-order accurate numerical method to solve the LLG equation with large damping parameters, whose 
complexity is also comparable to solving the scalar heat equation. To achieve this goal, the LLG system is reformulated, 
in which the damping term is rewritten as a harmonic mapping flow. In turn, the magnetization-independent Laplacian 
part is treated by a standard BDF2 temporal discretization, and the associated dissipation will form the foundation of the 
numerical stability. Meanwhile, all the nonlinear parts, including both the gyromagnetic term and the remaining nonlinear 
expansions in the damping term, are computed by a fully explicit approximation, which is accomplished by a second order 
extrapolation formula. Because of this fully explicit treatment for the nonlinear parts, the resulting numerical scheme only 
requires a standard Poisson solver at each time step. This fact will greatly facilitate the computational efforts, since the 
FFT-based fast solver could be efficiently applied, due to the SPD structure of the linear system involved at each time step. 
In addition, the numerical stability has been demonstrated by extensive computational experiments, and these experiments 
have verified the idea that the dissipation property of the heat equation part would be able to ensure the numerical stability 
of the nonlinear parts, with large damping parameters.

The rest of this paper is organized as follows. In section 2, the micromagnetics model is reviewed, and the numerical 
method is proposed, as well as its comparison with the GSPM and the semi-implicit projection method (SIPM). Subsequently, 
the numerical results are presented in section 3, including the temporal and spatial accuracy check in both the 1D and 3D 
computations, the numerical efficiency investigation (in comparison with the GSPM and SIPM algorithms), the stability study 
with respect to the damping parameter, and the dependence of domain wall velocity on the damping parameter and the 
external magnetic field. Finally, some concluding remarks are made in section 4.
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2. The physical model and the numerical method

2.1. Landau-Lifshitz-Gilbert equation

The LLG equation describes the dynamics of magnetization which consists of the gyromagnetic term and the damping 
term [4,15]. In the nondimensionalized form, this equation reads as

mt = −m × heff − αm × (m × heff) (2.1)

with the homogeneous Neumann boundary condition

∂m
∂ν

∣∣∣
∂#

= 0, (2.2)

where # is a bounded domain occupied by the ferromagnetic material and ν is unit outward normal vector along ∂#.
In more details, the magnetization m : # ⊂ Rd → R3, d = 1, 2, 3 is a three-dimensional vector field with a pointwise 

constraint |m| = 1. The first term on the right-hand side in (2.1) is the gyromagnetic term and the second term stands for 
the damping term, with α > 0 being the dimensionless damping coefficient.

The effective field heff is obtained by taking the variation of the Gibbs free energy of the magnetic body with respect to 
m. For a uniaxial material with easy axis equal to (1, 0, 0), the free energy including the exchange energy, the anisotropy 
energy, the magnetostatic energy, and the Zeeman energy is given by

F [m] = µ0M2
s

2






∫

#

(
ε|∇m|2 + q

(
m2

2 + m2
3

)
− 2he · m − hs · m

)
dx




 . (2.3)

Therefore, the effective field includes the exchange field, the anisotropy field, the stray field hs , and the external field he . It 
is clear that

heff = ε%m − q(m2e2 + m3e3) + hs + he, (2.4)

where the dimensionless parameters become ε = Cex/(µ0M2
s L2) and q = Ku/(µ0M2

s ) with L the diameter of the ferromag-
netic body and µ0 the permeability of vacuum. The unit vectors are given by e2 = (0, 1, 0), e3 = (0, 0, 1), and % denotes 
the standard Laplace operator. For the Permalloy, an alloy of Nickel (80%) and Iron (20%), typical values of the physical 
parameters are given by: the exchange constant Cex = 1.3 × 10−11 J/m, the anisotropy constant Ku = 100 J/m3, the saturation 
magnetization constant Ms = 8.0 × 105 A/m. The stray field takes the form

hs = 1
4π

∇
∫

#

∇
(

1
|x − y|

)
· m(y)d y. (2.5)

If # is a rectangular domain, the evaluation of (2.5) can be efficiently implemented by the FFT [24].
For brevity, the following source term is defined

f = −q(m2e2 + m3e3) + hs + he, (2.6)

and the original PDE system (2.1) could be rewritten as

mt = −m × (ε%m + f ) − αm × m × (ε%m + f ). (2.7)

Thanks to point-wise identity |m| = 1, we obtain an equivalent form:

mt = α(ε%m + f ) + α
(
ε|∇m|2 − m · f

)
m − m × (ε%m + f ). (2.8)

In particular, it is noticed that the damping term is rewritten as a harmonic mapping flow, which contains a Laplacian 
diffusion term with the coefficient matrix independent of the magnetization. This fact will greatly improve the numerical 
stability of the proposed scheme.

For the numerical description, we first introduce some notations for discretization and numerical approximation and take 
unit cube # = [0, 1]3 for simplicity. Denote the temporal step-size by k, and tn = nk, n ≤

⌊ T
k

⌋
with T the final time. The 

spatial mesh-size is given by hx = hy = hz = h = 1/N , and mn
i, j,' stands for the magnetization at time step tn , evaluated at 

the spatial location (xi− 1
2
, y j− 1

2
, z'− 1

2
) with xi− 1

2
=

(
i − 1

2

)
hx , y j− 1

2
=

(
j − 1

2

)
hy and z'− 1

2
=

(
' − 1

2

)
hz (0 ≤ i, j, ' ≤ N + 1). 

In addition, a third order extrapolation formula is used to approximate the homogeneous Neumann boundary condition. For 
example, such a formula near the boundary along the z direction is given by
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mi, j,1 = mi, j,0, mi, j,N+1 = mi, j,N . (2.9)

The boundary extrapolation along other boundary sections can be similarly made.
The standard second-order centered difference applied to %m results in

%hmi, j,' = mi+1, j,' − 2mi, j,' + mi−1, j,'

h2
x

+ mi, j+1,' − 2mi, j,' + mi, j−1,'

h2
y

+ mi, j,'+1 − 2mi, j,' + mi, j,'−1

h2
z

,

and the discrete gradient operator ∇hm with m = (u, v, w)T reads as

∇hmi, j,' =





ui+1, j,'−ui−1, j,'
hx

vi+1, j,'−vi−1, j,'
hx

wi+1, j,'−wi−1, j,'
hx

ui, j+1,'−ui, j−1,'

hy

vi, j+1,'−vi, j−1,'

hy

wi, j+1,'−wi, j−1,'

hy
ui, j,'+1−ui, j,'−1

hz

vi, j,'+1−vi, j,'−1
hz

wi, j,'+1−wi, j,'−1
hz



 .

Subsequently, the GSPM and the SIPM numerical methods need to be reviewed, which could be used for the later 
comparison.

2.2. The Gauss-Seidel projection method

The GSPM is based on a combination of a Gauss-Seidel update of an implicit solver for the gyromagnetic term, the heat 
flow of the harmonic map, and a projection step. It only requires a series of heat equation solvers, with coefficient matrices 
of linear systems independent of the magnetization; as a result, the FFT-based fast solvers could be easily applied. This 
method is first-order in time and second-order in space. Below is the detailed outline of the GSPM method in [10].

Step 1. Implicit Gauss-Seidel:

gn
i = (I − ε%t%h)

−1(mn
i + %t f n

i ), i = 2,3,

g∗
i = (I − ε%t%h)

−1(m∗
i + %t f ∗

i ), i = 1,2, (2.10)



m∗

1
m∗

2
m∗

3



 =




mn

1 + (gn
2mn

3 − gn
3mn

2)
mn

2 + (gn
3m∗

1 − g∗
1mn

3)
mn

3 + (g∗
1m∗

2 − g∗
2m∗

1)



 . (2.11)

Step 2. Heat flow without constraints:

f ∗ = −q(m∗
2e2 + m∗

3e3) + h∗
s + he, (2.12)




m∗∗

1
m∗∗

2
m∗∗

3



 =




m∗

1 + α%t(ε%hm∗∗
1 + f ∗

1 )
m∗

2 + α%t(ε%hm∗∗
2 + f ∗

2 )
m∗

3 + α%t(ε%hm∗∗
3 + f ∗

3 )



 . (2.13)

Step 3. Projection onto S2:




mn+1

1
mn+1

2
mn+1

3



 = 1
|m∗∗|




m∗∗

1
m∗∗

2
m∗∗

3



 . (2.14)

Here m∗ denotes the intermediate values of m, and stray fields hn
s and h∗

s are evaluated at mn and m∗ , respectively.

Remark 2.1. Two improved versions of the GSPM have been studied in [17], which turn out to be more efficient than the 
original GSPM. Meanwhile, it is found that both improved versions become unstable when α > 1, while the original GSPM 
(outlined above) is stable even when α ≤ 10. Therefore, we shall use the original GSPM in [10] for the numerical comparison 
in this work.
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2.3. Semi-implicit projection method

The SIPM has been outlined in [6,28]. This method is based on the second-order BDF temporal discretization, combined 
with an explicit extrapolation. It is found that SIPM is unconditionally stable and is second-order accurate in both space and 
time. The algorithmic details are given as follows.






m̂n+2
h = 2mn+1

h − mn
h, f̂

n+2
h = 2 f n+1

h − f n
h,

3
2 m̃n+2

h − 2mn+1
h + 1

2 mn
h

k
= −m̂n+2

h ×
(
ε%hm̃n+2

h + f̂
n+2
h

)

− αm̂n+2
h ×

(
m̂n+2

h × (ε%hm̃n+2
h + f̂

n+2
h )

)
,

mn+2
h =

˜mn+2
h

|m̃n+2
h |

,

(2.15)

where m̃n+2
h is an intermediate magnetization, and f n

h = −q(mn
2e2 + mn

3e3) + hn
s + hn

e . The presence of cross product in the 
SIPM yields a linear system of equations with non-symmetric structure and variable coefficients. In turn, the GMRES solver 
has to be applied to implement this numerical system. The numerical evidence has revealed that, the convergence of GMRES 
solver becomes slower for larger temporal step-size k or smaller spatial grid-size h, which makes the computation more 
challenging.

2.4. The proposed numerical method

The SIPM in (2.15) treats both the gyromagnetic and the damping terms in a semi-implicit way, i.e., %m is computed im-
plicitly, while the coefficient functions are updated by a second order accurate, explicit extrapolation formula. The strength 
of the gyromagnetic term is controlled by %m + f since the length of m is always 1. Meanwhile, the strength of the damp-
ing term is controlled by the product of %m + f and the damping parameter α. For small α, say α ≤ 1, it is reasonable 
to treat both the gyromagnetic and the damping terms semi-implicitly. However, for large α, an alternate approach would 
be more reasonable, in which the whole gyromagnetic term is computed by an explicit extrapolation, while the nonlinear 
part in the damping term is also updated by an explicit formula, and only the linear part in the damping term is implicitly 
updated. This idea leads to the proposed numerical method. To further simplify the presentation, we start with (2.8), and 
the numerical algorithm is proposed as follows.






m̂n+2
h = 2mn+1

h − mn
h, f̂

n+2
h = 2 f n+1

h − f n
h,

3
2 m̃n+2

h − 2mn+1
h + 1

2 mn
h

k
= −m̂n+2

h ×
(
ε%hm̂n+2

h + f̂
n+2
h

)

+ α
(
ε%hm̃n+2

h + f̂
n+2
h

)

+ α
(
ε|∇hm̂n+2

h |2 − m̂n+2
h · f̂

n+2
h

)
m̂n+2

h ,

mn+2
h =

˜mn+2
h

|m̃n+2
h |

.

(2.16)

Table 1 compares the proposed method, the GSPM and the SIPM in terms of number of unknowns, dimensional size, 
symmetry pattern, and availability of FFT-based fast solver of linear systems of equations, and the number of stray field 
updates. At the formal level, the proposed method is clearly superior to both the GSPM and the SIPM algorithms. In more 
details, this scheme will greatly improve the computational efficiency, since only three Poisson solvers are needed at each 
time step. Moreover, this numerical method preserves a second-order accuracy in both space and time. The numerical 
results in section 3 will demonstrate that the proposed scheme provides a reliable and robust approach for micromagnetics 
simulations with high accuracy and efficiency in the regime of large damping parameters.

Remark 2.2. To kick start the proposed method, one can apply a first-order algorithm, such as the first-order BDF method, 
at the first time step. An overall second-order accuracy is preserved in this approach.

3. Numerical experiments

In this section, we present a few numerical experiments with a sequence of damping parameters for the proposed 
method, the GSPM [10] and the SIPM [28], with the accuracy, efficiency, and stability examined in details. Domain wall 
dynamics is studied and its velocity is recorded in terms of the damping parameter and the external magnetic field.
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Table 1
Comparison of the proposed method, the Gauss-Seidel projection method, 
and the semi-implicit projection method.

Property or number Proposed method GSPM SIPM

Linear systems 3 7 1
Size N3 N3 3N3

Symmetry Yes Yes No
Fast Solver Yes Yes No
Accuracy O(k2+h2) O(k + h2) O(k2 + h2)

Stray field updates 1 4 1

Table 2
The numerical errors for the proposed method, the GSPM and the SIPM with α = 10 and T = 1. 
Left: 1D with h = 5e-4; Right: 3D with k = h2

x = h2
y = h2

z = h2 = 1/N0 for GSPM and k = hx = hy =
hz = h = 1/N0 for the proposed method and SIPM, with N0 specified in the table.

(A) Proposed method

1D 3D

k ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1 k = h ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1

4.0e-2 4.459e-4 5.226e-4 5.588e-4 1/20 6.171e-4 4.240e-4 4.246e-4
2.0e-2 1.147e-4 1.345e-4 1.436e-4 1/24 4.381e-4 3.010e-4 3.014e-4
1.0e-2 2.899e-5 3.402e-5 3.631e-5 1/28 3.268e-4 2.245e-4 2.248e-4
5.0e-3 7.192e-6 8.529e-6 9.119e-6 1/32 2.531e-4 1.739e-4 1.741e-4
2.5e-3 1.699e-6 2.321e-6 2.518e-6 1/36 2.017e-4 1.386e-4 1.387e-4
order 2.007 1.961 1.957 – 1.902 1.903 1.903

(B) GSPM

1D 3D

k ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1 k = h2 ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1

2.5e-3 2.796e-4 2.264e-4 1.445e-3 1/36 4.194e-4 2.683e-4 2.815e-4
1.25e-3 1.425e-4 1.174e-4 7.720e-4 1/64 2.388e-4 1.399e-4 1.500e-4
6.25e-4 7.170e-5 5.940e-5 4.026e-4 1/144 1.069e-4 6.106e-5 6.736e-5
3.125e-4 3.591e-5 2.971e-5 2.069e-4 1/256 6.021e-5 3.442e-5 3.860e-5
1.5625e-4 1.799e-5 1.488e-5 1.054e-4 1/400 3.855e-5 2.208e-5 2.501e-5
order 0.991 0.984 0.945 – 0.992 1.032 1.000

(C) SIPM

1D 3D

k ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1 k = h ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1

4.0e-2 4.315e-4 5.111e-4 8.774e-4 1/20 6.170e-4 4.240e-4 4.249e-4
2.0e-2 1.128e-4 1.334e-4 2.255e-4 1/24 4.380e-4 3.010e-4 3.016e-4
1.0e-2 2.872e-5 3.399e-5 5.706e-5 1/28 3.268e-4 2.245e-4 2.251e-4
5.0e-3 7.174e-6 8.552e-6 1.433e-5 1/32 2.531e-4 1.739e-4 1.743e-4
2.5e-3 1.721e-6 2.333e-6 3.784e-6 1/36 2.017e-4 1.386e-4 1.389e-4
order 1.991 1.951 1.969 – 1.902 1.903 1.902

3.1. Accuracy and efficiency tests

We set ε = 1 and f = 0 in (2.8) for convenience. The 1D exact solution is given by

me = (cos(X) sin t, sin(X) sin t, cos t)T ,

and the corresponding exact solution in 3D becomes

me = (cos(XY Z) sin t, sin(XY Z) sin t, cos t)T ,

where X = x2(1 − x)2, Y = y2(1 − y)2, Z = z2(1 − z)2. In fact, the above exact solutions satisfy (2.8) with the forcing term 
g = ∂tme − α%me − α|∇me|2 + me × %me , as well as the homogeneous Neumann boundary condition.

For the temporal accuracy test in the 1D case, we fix the spatial resolution as h = 5e −4, so that the spatial approximation 
error becomes negligible. The damping parameter is taken as α = 10, and the final time is set as T = 1. In the 3D test for 
the temporal accuracy, due to the limitation of spatial resolution, we take a sequence of spatial and temporal mesh sizes: 
k = h2

x = h2
y = h2

z = h2 = 1/N0 for the first-order method and k = hx = hy = hz = h = 1/N0 for the second-order method, 
with the variation of N0 indicated below. Similarly, the damping parameter is given by α = 10, while the final time T is 
indicated below. In turn, the numerical errors are recorded in terms of the temporal step-size k in Table 2. It is clear that the 
temporal accuracy orders of the proposed numerical method, the GSPM, and the SIPM are given by 2, 1, and 2, respectively, 
in both the 1D and 3D computations.
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Table 3
The numerical errors of the proposed method, the GSPM and the SIPM with α = 10 and T = 1. 
Left: 1D with k = 1e-5; Right: 3D with k = 1e-3.

(A) Proposed method

1D 3D

h ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1 h ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1

4.0e-2 7.388e-3 7.392e-3 8.243e-3 1/2 4.261e-3 2.472e-3 2.472e-3
2.0e-2 1.848e-3 1.848e-3 2.061e-3 1/4 9.822e-4 5.595e-4 5.753e-4
1.0e-2 4.621e-4 4.621e-4 5.153e-4 1/8 2.453e-4 1.390e-4 1.424e-4
5.0e-3 1.155e-4 1.155e-4 1.288e-4 1/16 6.137e-5 3.471e-5 3.554e-5
order 2.000 2.000 2.000 – 2.035 2.047 2.037

(B) GSPM

1D 3D

h ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1 h ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1

4.0e-2 7.388e-3 7.392e-3 8.244e-3 1/2 4.256e-3 2.470e-3 2.470e-3
2.0e-2 1.848e-3 1.848e-3 2.061e-3 1/4 9.810e-4 5.589e-4 5.744e-4
1.0e-2 4.619e-4 4.622e-4 5.158e-4 1/8 2.447e-4 1.388e-4 1.423e-4
5.0e-3 1.153e-4 1.156e-4 1.302e-4 1/16 6.103e-5 3.468e-5 3.613e-5
order 2.000 2.000 1.995 – 2.037 2.047 2.030

(C) SIPM

1D 3D

h ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1 h ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1

4.0e-2 7.388e-3 7.392e-3 8.243e-3 1/2 4.261e-3 2.472e-3 2.472e-3
2.0e-2 1.848e-3 1.848e-3 2.061e-3 1/4 9.822e-4 5.595e-4 5.753e-4
1.0e-2 4.621e-4 4.621e-4 5.153e-4 1/8 2.453e-4 1.390e-4 1.424e-4
5.0e-3 1.155e-4 1.155e-4 1.288e-4 1/16 6.137e-5 3.471e-5 3.554e-5
order 2.000 2.000 2.000 – 2.035 2.047 2.037

The spatial accuracy order is tested by fixing k = 1e-5, α = 10, T = 1 in 1D and k = 1e-3, α = 10, T = 1 in 3D. The 
numerical error is recorded in term of the spatial grid-size h in Table 3. Similarly, the presented results have indicated the 
second order spatial accuracy of all the numerical algorithms, including the proposed method, the GSPM, and the SIPM, 
respectively, in both the 1D and 3D computations.

To make a comparison in terms of the numerical efficiency, we plot the CPU time (in seconds) vs. the error norm 
‖mh − me‖∞ . In details, the CPU time is recorded as a function of the approximation error in Fig. 1a in 1D with a variation 
of k and a fixed value of h = 5e-4 and in Fig. 1b in 3D with a variation of k = h. Similar plots are also displayed in Fig. 1c 
in 1D and Fig. 1d in 3D, with a variation of h and a fixed value of k = 1e-5 (1D) and k = 1e-3 (3D). In the case of a fixed 
spatial resolution h, the proposed method is significantly more efficient than the GSPM and the SIPM in both the 1D and 
3D computations. The SIPM is slightly more efficient than the GSPM, while such an advantage depends on the performance 
of GMRES, which may vary for different values of k and h. In the case of a fixed time step size k, the proposed method is 
slightly more efficient than the GSPM, in both the 1D and 3D computations, and the GSPM is more efficient than the SIPM.

3.2. Stability test with large damping parameters

To check the numerical stability of these three methods in the practical simulations of micromagnetics with large damp-
ing parameters, we consider a thin film of size 480 × 480 × 20 nm3 with grid points 100 × 100 × 4. The temporal step-size is 
taken as k = 1 ps. A uniform state along the x direction is set to be the initial magnetization and the external magnetic field 
is set to be 0. Three different damping parameters, α = 0.01, 10, 40, are tested with stable magnetization profiles shown in 
Fig. 2. In particular, the following observations are made.

• The proposed method is the only one that is stable for very large damping parameters;
• All three methods are stable for moderately large α;
• The proposed method is the only one that is unstable for small α.

In fact, a preliminary theoretical analysis reveals that, an optimal rate convergence estimate of the proposed method could 
be theoretically justified for α > 3. Meanwhile, extensive numerical experiments have implied that α > 1 is sufficient to 
ensure the numerical stability in the practical computations.

Under the same setup outlined above, we investigate the energy dissipation of the proposed method, the GSPM, and the 
SIPM. The stable state is attainable at t = 2 ns, while the total energy is computed by (2.3). The energy evolution curves 
of different numerical methods with different damping parameters, α = 2, 5, 8, 10, are displayed in Fig. 3. One common 
feature is that the energy dissipation rate turns out to be faster for larger α, in all three schemes. Meanwhile, a theoretical 
derivation also reveals that the energy dissipation rate in the LLG equation (2.1) depends on α, and a larger α leads to a 
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Fig. 1. CPU time needed to achieve the desired numerical accuracy, for the proposed method, the GSPM and the SIPM, in both the 1D and 3D computations. 
The CPU time is recorded as a function of the approximation error by varying k or h independently. CPU time with varying k: proposed method < SIPM <
GSPM; CPU time with varying h: proposed method ! GSPM < SIPM.

faster energy dissipation rate. Therefore, the numerical results generated by all these three numerical methods have made 
a nice agreement with the theoretical derivation.

Meanwhile, we choose the same sequence of values for α, and display the energy evolution curves in terms of time up 
to T = 2 ns in Fig. 4. It is found that the proposed method has almost the same energy dissipation pattern with the other 
two methods for moderately large damping parameters α = 2, 5, 8. In the case of α = 10, the SIPM has a slightly different 
energy dissipation pattern from the other two numerical methods.

3.3. Domain wall motion

A Neél wall is initialized in a nanostrip of size 800 × 100 × 4 nm3 with grid points 128 × 64 × 4. An external magnetic 
field of he = 5 mT is then applied along the positive x direction and the domain wall dynamics is simulated up to 2 ns with 
α = 2, 5, 8. The corresponding magnetization profiles are visualized in Fig. 5. Qualitatively, the domain wall moves faster as 
the value of α increases. Quantitatively, the corresponding dependence is found to be linear; see Fig. 6. The slopes fitted by 
the least-squares method in terms of α and he are recorded in Table 4.

4. Conclusions

In this paper, we have proposed a second-order accurate numerical method to solve the Landau-Lifshitz-Gilbert equa-
tion with large damping parameters. For the numerical convenience, the LLG system is reformulated so that in which the 
damping term is rewritten as a harmonic mapping flow. This numerical scheme is based on the second-order backward-
differentiation formula approximation for the temporal derivative, combined with an implicit treatment of the linear 
diffusion term, and the fully explicit extrapolation approximation of the nonlinear terms, including the gyromagnetic term 
and the nonlinear part of the harmonic mapping flow. Thanks to the large damping parameter, the proposed method is 
verified to be unconditionally stable. The proposed method is much more efficient than other semi-implicit schemes since 
only symmetric, positive definite linear systems of equations with coefficient matrices independent of the magnetization, 
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Fig. 2. Stable structures in the absence of magnetic field at 2 ns when α = 0.01, 10, 40. The color denotes the angle between the first two components of 
the magnetization vector. Top: Proposed method; Middle: GSPM; Bottom: SIPM. Left: α = 40; Middle: α = 10; Right: α = 0.01. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Energy evolution curves of three numerical methods, with different damping constants, α = 2, 5, 8, 10, up to t = 2 ns in the absence of external 
magnetic field. Left: Proposed numerical method; Middle: GSPM; Right: SIPM. One common feature is that the energy dissipation rate is faster for larger 
α, which is physically reasonable.

need to be solved. Meanwhile, the proposed method is more accurate than the standard Gauss-Seidel projection method, 
due to its second-order accuracy in time. Numerical results in 1D and 3D are provided to demonstrate the accuracy and 
the efficiency of the proposed numerical method. In addition, micromagnetics simulations using the proposed method have 
provided physically reasonable structures and captured the linear dependence of the domain wall velocity with respect to 
the damping parameter. Therefore, the proposed method could be efficiently used for challenging practical simulations of 
micromagnetics with large damping parameters.
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Fig. 4. Energy evolution curves in terms of time, for the numerical results created by three numerical methods up to t = 2 ns in the absence of external 
magnetic field for (a) α = 2, (b) α = 5, (c) α = 8, and (d) α = 10. The energy dissipation pattern of the proposed method is consistent with the other two 
methods for (a), (b), and (c), and the SIPM has a slightly different energy dissipation pattern from the other two methods for (d).

Fig. 5. Magnetization profiles of Neél wall motion in the presence of a magnetic field he = 5 mT, with α = 2, 5, 8 at 2 ns for the proposed numerical method. 
The in-plane arrow denotes the first two components of the magnetization vector. The wall moves faster for larger values of α and its velocity depends 
linearly on α.
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Fig. 6. Linear dependence of the wall velocity with respect to the damping parameter α (left) and the external magnetic field he (right).

Table 4
Linear dependence of the domain wall velocity V in terms of the external magnetic field he
and the damping parameter α.

α

V (m/s) he (mT)
5 6 7 8 9 10 Slope

3 76 91 109 123 139 154 1.024
4 105 118 139 157 179 196 0.928
5 129 145 169 192 217 244 0.932
6 153 169 200 227 256 286 0.927
7 177 196 232 263 294 333 0.927
8 200 222 263 303 333 385 0.954
9 230 250 294 345 385 435 0.954
10 253 270 323 370 417 476 0.943

Slope 0.984 0.910 0.910 0.933 0.917 0.950 –
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