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In this paper, we provide a detailed convergence analysis for fully discrete

second-order (in both time and space) numerical schemes for nonlocal Allen-Cahn

and nonlocal Cahn-Hilliard equations. The unconditional unique solvability and

energy stability ensures 𝓁4 stability. The convergence analysis for the nonlocal

Allen-Cahn equation follows the standard procedure of consistency and stability

estimate for the numerical error function. For the nonlocal Cahn-Hilliard equation,

because of the complicated form of the nonlinear term, a careful expansion of its

discrete gradient is undertaken, and an H−1 inner-product estimate of this nonlin-

ear numerical error is derived to establish convergence. In addition, an a priori

W1,∞ bound of the numerical solution at the discrete level is needed in the error

estimate. Such a bound can be obtained by performing a higher order consistency

analysis by using asymptotic expansions for the numerical solution. Following the

technique originally proposed by Strang (eg, 1964), instead of the standard com-

parison between the exact and numerical solutions, an error estimate between the

numerical solution and the constructed approximate solution yields an O(s3 + h4)
convergence in 𝓁∞(0,T;𝓁2) norm, in which s and h denote the time step and spatial

mesh sizes, respectively. This in turn leads to the necessary bound under a standard

constraint s ≤ Ch. Here, we also prove convergence of the scheme in the maximum

norm under the same constraint.
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1 INTRODUCTION

In this paper, our primary goal is to develop a detailed convergence analysis of fully discrete second-order (in both time

and space) numerical schemes for nonlocal Allen-Cahn (nAC) and nonlocal Cahn-Hilliard (nCH) equations, which are

integro-partial-differential equations (IPDEs) defined as follows:

𝜕t𝜙 = −M(𝜙)w (nAC), (1.1)

and

𝜕t𝜙 = ∇ · (M(𝜙)∇w) (nCH), (1.2)

where

w ∶= 𝛿𝜙E = 𝜙3 + 𝛾c𝜙 − 𝛾e𝜙 + (J ∗ 1)𝜙 − J ∗ 𝜙 (1.3)
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and M(𝜙) ⩾ 0 is the mobility. These equations are defined in (0,T] × Ω, with the initial condition

𝜙(0, x) = 𝜙0(x), (1.4)

where Ω is a rectangular domain in Rn. The solution 𝜙(x, t) is Ω-periodic in space. The convolution kernel J is also Ω-periodic

and even. By J ∗ 𝜙, we mean the circular, or periodic, convolution defined as

(J ∗ 𝜙) (x) ∶= ∫Ω
J(y) 𝜙(x − y) dy = ∫Ω

J(x − y) 𝜙(y) dy, (1.5)

in which 𝛾c ⩾ 0 and 𝛾e ⩾ 0 are system parameters. For the convenience of analysis, we use the form 𝛾c − 𝛾e instead of merging

them together. The term w defined in (1.3) is the chemical potential (variational derivative) relative to the energy

E(𝜙) = ∫Ω

{
1

4
𝜙4 + 𝛾c − 𝛾e

2
𝜙2 + 1

4∫Ω
J(x − y)(𝜙(x) − 𝜙(y))2dy

}
dx. (1.6)

Equations 1.1 and 1.2 are L2 (nAC) and H−1 (nCH) flows of E(𝜙) and their periodic solutions dissipate E at the rate dtE(𝜙) =
−
√

M||w||2L2
, dtE(𝜙) = −

√
M ‖∇w‖2

L2 , respectively.

Equations 1.1 and 1.2 are members of a more general family of IPDE models:

𝜕t𝜙 = −M(𝜙)wgeneral (nAC), (1.7)

and

𝜕t𝜙 = ∇ · (M(𝜙)∇wgeneral) (nCH), (1.8)

where

wgeneral ∶= 𝛿𝜙E = F′(𝜙) + (J ∗ 1)𝜙 − J ∗ 𝜙. (1.9)

The energy Egeneral(𝜙) associated with this model is defined as

Egeneral(𝜙) = ∫Ω

{
F(𝜙) + 1

4∫Ω
J(x − y)(𝜙(x) − 𝜙(y))2dy

}
dx, (1.10)

where F(𝜙) is the local energy density and it is usually nonlinear. The classical Allen-Cahn (AC) and Cahn-Hilliard (CH)

equations are the approximation to this type of IPDE models, whose free energy1-3 is

Elocal(𝜙) = ∫Ω

(
G(𝜙) + 𝜖2

2
|∇𝜙|2) dx, (1.11)

and the corresponding dynamical equations are

𝜕t𝜙 = −
(
M(𝜙)𝛿𝜙Elocal

)
= −

(
M(𝜙)

(
G′(𝜙) − 𝜖2Δ𝜙

))
(AC), (1.12)

and

𝜕t𝜙 = ∇ ·
(
M(𝜙)∇𝛿𝜙Elocal

)
= ∇ ·

(
M(𝜙)∇

(
G′(𝜙) − 𝜖2Δ𝜙

))
(CH). (1.13)

The approximation is established as follows.4-8 By Taylor's expansion, (J ∗ 𝜙) ≈ J0𝜙 + 1

2
J2Δ𝜙. Here, J0 = ∫ΩJ(x)dx and

J2 = ∫ΩJ(x)|x|2 dx (J2 is the second moment of J). Under the assumption of periodic boundary conditions, we have the

following approximation:

1

2
(𝜙, J ∗ 𝜙)L2 ≈ 1

2

(
𝜙, J0𝜙 + 1

2
J2Δ𝜙

)
L2

= J0

2

(
𝜙2, 1

)
L2 +

J2

4 ∫Ω
|∇𝜙|2dx. (1.14)

On the other hand, the energy Egeneral is equivalent to

Egeneral(𝜙) = (F(𝜙), 1)L2 − 1

2
(𝜙, J ∗ 𝜙)L2 . (1.15)

Denote G(𝜙) = F(𝜙) − J0

2
𝜙2 and 𝜖2 = J2

2
, we can obtain Elocal ≈ Egeneral.

General nCH and nAC equations such as Equations 1.7 and 1.8 have been widely used in many fields ranging from physics

and material science to biology, finance, and image processing. In material science, Equation 1.8 and other closely related

models arise as mesoscopic models of interacting particle systems.7,9,10 Equation 1.7 is also used to model phase transition.11

For instance, in dynamic density functional theory model,4,9 the interaction kernel J = c(2)(x, y|𝜙ref ) is the 2-particle direct

correlation function, 𝜙 represents the mesoscopic particle density, and 𝜙ref is the average density. Another example is the
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structural phase field crystal model. It is developed to model the evolution of materials in diffusive scale, while maintaining

atomic resolution.12 The structural phase field crystal model and its extensions have been used in many researches for material

science since.13-15 Readers are referred to previous studies6,8,16-20 for further details. In biology, Equation 1.8 has been used to

model the tissue growth that covers both bulk and cellular levels. In these models, J has been used to model interactions among

cells and extracellular matrix.21-24 Equation 1.7 has also been used in mathematical models of finance. In this case, J arises

from an expectation taken with respect to a particular measure that is used in the model for option pricing.25 In the modeling for

image segmentation with nCH equation, J is interpreted as the attracting force.26,27 Readers are referred to previous works27-35

for theoretical studies of general nCH equations and another studies5,11,36 for general nAC equations. The nCH equation has also

been extended to model hydrodynamics with the coupling of Navier-Stokes–type dynamics.37-39

There are a few works dedicated to numerical simulation of, or numerical methods for, equations like (1.1) and (1.2). Anitescu

et al40 considered an implicit-explicit time stepping framework for a nonlocal system modeling turbulence, where, as here, the

nonlocal term is treated explicitly. References Du et al and Zhou et al41,42 address finite element approximations (in space) of

nonlocal peridynamic equations with various boundary conditions. In Bates et al,43 a finite-difference method for Equation 1.1

with nonperiodic boundary conditions is applied and analyzed. Reference Hartley et al44 uses a spectral-Galerkin method to

solve a nAC-type problem, like Equation 1.1, but with a stochastic noise term and equation modeling heat flow. The spectral

method is also studied for nAC equation.45 For other references for equations like (1.2), see previous works.7,26,46,47 A first-order

convex splitting for Equation 1.2 scheme was introduced and analyzed in Guan et al.48 The scheme is also extended to nonlocal

hydrodynamics.49 A second-order convex splitting scheme for the general system Equation 1.8 was introduced in Guan et al50;

its unconditional energy stability and unique solvability were presented.

Here, we present a detailed convergence analysis of fully discrete second-order convex splitting schemes using the specific

forms of Equations 1.1 and 1.2. We prove convergence in both the 𝓁2 and 𝓁∞ spatial norms. We note that this convergence

analysis is much more challenging than that of the first-order scheme, primarily because of its complicated form for the nonlinear

term and lack of higher order diffusion term. The present work focuses on the 2D case but can be straightforwardly extended to

3D. Although the result cannot be easily extended to more general nonlinear local densities F, our results are still useful because

polynomial local density functions are widely used.

The outline of the paper is given as follows. In Section 2, we define the fully discrete second-order scheme and give some

of its basic properties, including energy stability and unique solvability. The second-order convergence analysis for the nAC

equation is presented in Section 3. In Section 4, we provide a higher order consistency analysis for the nCH equation, up to

order O(s3 + h4). In Section 5, we give the details of the convergence analyses for the nCH equation, in both 𝓁∞(0,T;𝓁2) and

𝓁∞(0,T;𝓁∞) norms. Finally, some numerical results are presented in Section 6, which confirm convergence of the schemes.

Some concluding remarks are given in Section 7.

2 THE SECOND-ORDER CONVEX SPLITTING SCHEMES

2.1 The discrete periodic convolution and useful inequalities
Denote Ω to be a rectangular domain in R2. Assume convolution kernel J satisfies

A1. J = Jc − Je, where Jc, Je are smooth, Ω-periodic, and nonnegative.

A2. Jc and Je are even, ie, J𝛼(x1, x2) = J𝛼(−x1,−x2), for all x1, x2 ∈ R, 𝛼 = c, e.

A1 is used in the convexity analysis for the energy, and A2 is the result of periodic convolution. The energy (1.6) is equivalent to

E(𝜙) = 1

4
‖𝜙‖4

L4 +
𝛾c − 𝛾e + J ∗ 1

2
‖𝜙‖2

L2 −
1

2
(𝜙, J ∗ 𝜙)L2 . (2.1)

Equations 1.1 and 1.2 can also be rewritten as

𝜕t𝜙 = −M(𝜙)(a(𝜙)𝜙 − J ∗ 𝜙), (nAC), (2.2)

𝜕t𝜙 = ∇ · (a(𝜙)M(𝜙)∇𝜙) − ∇ · (M(𝜙)∇J ∗ 𝜙) , (nCH), (2.3)

where

a(𝜙) = 3𝜙2 + 𝛾c − 𝛾e + J ∗ 1. (2.4)
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We refer to a(𝜙) as the diffusive mobility or just the diffusivity. To make Equation 1.2 positive diffusive (and nondegenerate),

we require30

𝛾c − 𝛾e + J ∗ 1 =∶ 𝛾0 > 0, (2.5)

in which a(𝜙) > 0. We will assume that (2.5) holds in the sequel. In this paper, we focus on Equations 1.1 and 1.2, which are a

special case of general nAC and nCH equations. They can be obtained by denoting local energy density F as

F(𝜙) = 1

4
𝜙4 + 𝛾̃c − 𝛾̃e

2
𝜙2, (2.6)

where 𝛾̃c, 𝛾̃e ⩾ 0 are constants. By rewriting the nonlocal part of Egeneral as

−1

2∫Ω∫Ω
J(x − y)𝜙(x)𝜙(y)dydx = 1

4∫Ω∫Ω
J(x − y)(𝜙(x) − 𝜙(y))2dydx − ∫Ω

J ∗ 1

2
𝜙2(x)dy, (2.7)

and

𝛾̃c − 𝛾̃e = 𝛾c − 𝛾e + J ∗ 1, (2.8)

we can obtain energy (1.6). This local density is the approximation to a regular solution model with free energy

F(𝜙) ∶= 𝜃[𝜙log(𝜙) + (1 − 𝜙)log(1 − 𝜙)] − 2𝜃c𝜙(1 − 𝜙), (2.9)

where 𝜃 and 𝜃c represent the absolute and critical temperatures, respectively.12,51-53 System parameters 𝛾c − 𝛾e are used to adjust

the approximation for different reference states of 𝜙.

We need 2 spaces: m×n is the space of cell-centered grid (or lattice) functions, and m×n is the space of vertex-centered grid

functions. The precise definitions can be found in Appendix A. The spaces and the following notations have straightforward

extensions to 3 dimensions. Suppose 𝜙 ∈ m×n is periodic and f ∈ m×n is periodic. The 2D grid inner-products ( · || · ),
[ · || · ]ew, [ · || · ]ns are defined in Appendix A. The discrete convolution operator

[
f ⋆ 𝜙

]
∶ m×n × m×n → m×n is defined

component-wise as [
f ⋆ 𝜙

]
i,j ∶= h2

m∑
k=1

n∑
l=1

fk+ 1

2
,l+ 1

2

𝜙i−k,j−l. (2.10)

Note very carefully that the order is important in the definition of the discrete convolution [ · ⋆ · ]. The next result follows

from the definition of the discrete convolution and simple estimates. The proof is omitted.

Lemma 2.1. If 𝜙, 𝜓 ∈ m×n are periodic and f ∈ m×n is periodic and even, ie, fi+ 1

2
,j+ 1

2

= f−i+ 1

2
,−j+ 1

2

, for all i, j ∈ Z, then(
𝜙|| [ f ⋆ 𝜓

])
=
(
𝜓|| [ f ⋆ 𝜙

])
. (2.11)

If, in addition, f is nonnegative, then

|||(𝜙|| [ f ⋆ 𝜓
])||| ≤ [

f ⋆ 1
] (𝛼

2
(𝜙||𝜙) + 1

2𝛼
(𝜓||𝜓)) , ∀𝛼 > 0. (2.12)

The following lemma is cited from Guan et al48; the detailed proof can be found there.

Lemma 2.2. Suppose 𝜙 ∈ m×n is periodic. Assume that f ∈ C∞
per(Ω) is even and define its grid restriction via fi+ 1

2
,j+ 1

2

∶=

f
(

pi+ 1

2

, pj+ 1

2

)
, so that f ∈ m×n. Then for any 𝛼 > 0, we have

−2h2
([

f ⋆ 𝜓
] ||Δh𝜙

) ≤ C2

𝛼
‖𝜓‖2

2 + 𝛼 ‖∇h𝜙‖2
2 , (2.13)

where C2 is a positive constant that depends on f but is independent of h.

2.2 Semi-discrete convex splitting schemes
The second-order (in time) convex splitting scheme for the nAC equation 1.1 and nCH equation 1.2 has been proposed in a

recent article,50 which was proven to be unconditionally solvable and unconditionally energy stable. These schemes follow the

convex properties of the energy48:
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Lemma 2.3. There exists a nonnegative constant C such that E(𝜙) + C ⩾ 0 for all 𝜙 ∈ L4
per(Ω). More specifically,

1

8
‖𝜙‖4

L4 ≤ E(𝜙) + (𝛾c − 𝛾e − 2 (Je ∗ 1))2

2
|Ω|, (2.14)

1

2
‖𝜙‖2

L2 ≤ E(𝜙) + (𝛾 − 𝛾e − 2 (Je ∗ 1) − 1)2

4
|Ω|. (2.15)

If 𝛾e = 0, then E(𝜙) ⩾ 0 for all 𝜙 ∈ L4
per(Ω). Furthermore, the energy (2.1) can be written as the difference of convex

functionals, ie, E = Ec − Ee, where

Ec(𝜙) =
1

4
‖𝜙‖4

L4 +
𝛾c + 2 (Jc ∗ 1)

2
‖𝜙‖2

L2 , (2.16)

Ee(𝜙) =
𝛾e + Jc ∗ 1 + Je ∗ 1

2
‖𝜙‖2

L2 +
1

2
(𝜙, J ∗ 𝜙)L2 . (2.17)

Lemma 2.3 shows the estimate of 𝜙 in 𝓁2 and 𝓁4, as well as a splitting that separates the energy into convex and concave

parts. The decomposition above is not unique, but Equations 2.16 and 2.17 will allow us to separate the nonlocal and nonlinear

terms, treating the nonlinearity implicitly and the nonlocal term explicitly, without sacrificing numerical stability.

To motivate the fully discrete scheme that will follow later, we here present semi-discrete version and briefly describe its prop-

erties. For the sake of simplicity, we denote the mobility M(𝜙) to be constant for Equation 1.1 and M(𝜙) ≡ 1 for Equation 1.2.

For the nonconstant mobility case, the second-order algorithm is proposed in Guan et al50; the unique solvability and uncon-

ditional energy stability are standard, and the convergence proof can be achieved with similar idea, while with many more

technical details.

A second-order (in time) convex splitting scheme for the nAC equation 1.1 and nCH equation 1.2 can be constructed as

follows: Given 𝜙k ∈ C∞
per(Ω), find 𝜙k+1, wk+1 ∈ C∞

per(Ω) such that

𝜙k+1 − 𝜙k = −Mswk+1∕2, (nAC equation), (2.18)

𝜙k+1 − 𝜙k = sΔwk+1∕2, (nCH equation), (2.19)

wk+1∕2 = 𝜂
(
𝜙k, 𝜙k+1

)
+ (2(Jc ∗ 1) + 𝛾c)𝜙k+1∕2 − (Jc ∗ 1 + Je ∗ 1 + 𝛾e) 𝜙̂k+1∕2 − J ∗ 𝜙̂k+1∕2, (2.20)

𝜂
(
𝜙k, 𝜙k+1

)
= 1

4

(
(𝜙k)2 + (𝜙k+1)2

) (
𝜙k + 𝜙k+1

)
, (2.21)

𝜙k+1∕2 = 1

2

(
𝜙k + 𝜙k+1

)
, 𝜙̂k+1∕2 = 3

2
𝜙k − 1

2
𝜙k−1, (2.22)

where s > 0 is the time step size. This scheme respects the convex splitting nature of the energy E given in (2.16) and (2.17): The

contribution to the chemical potential corresponding to the convex energy, Ec, is treated implicitly, and the part corresponding

to the concave part, Ee, is treated explicitly. Eyre54 is often credited with proposing the convex splitting methodology for the

Cahn-Hilliard and Allen-Cahn equations. The idea is, however, quite general and can be applied to any gradient flow of an

energy that splits into convex and concave parts. See, for example, previous studies.55-58 Moreover, the treatment of the nonlinear

term, the convex and concave diffusion terms, given by (2.21) and (2.22), respectively, follows the methodology in an earlier

work59 to derive a second-order accurate convex splitting scheme for the phase field crystal model. Other related works can also

be found in Baskaran et al60 and Shen et al.61

We have the following a priori energy law for the solutions of the second-order scheme (2.19) to (2.22). The statement for

the fully discrete version appears later in Section 2.4. Their proof can be found in a recent article.50

Theorem 2.4. Suppose the energy E(𝜙) is defined in Equation 2.1. For any s > 0, the second-order convex splitting scheme,
(2.18) or (2.19), with (2.20) to (2.22), has a unique solution𝜙k+1, wk+1∕2 ∈ C∞

per(Ω). Moreover, by denoting a pseudo energy

 (
𝜙k, 𝜙k+1

)
= E

(
𝜙k+1

)
+ ((Jc ∗ 1) + Je ∗ 1 + 𝛾c + 𝛾e)

4

‖‖‖𝜙k+1 − 𝜙k‖‖‖2

L2

+ 1

4

(
J ∗

(
𝜙k+1 − 𝜙k) , 𝜙k+1 − 𝜙k)

L2 ,

(2.23)
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we have
(
𝜙k+1 − 𝜙k, 1

)
= 0 for any k ⩾ 1 and

 (
𝜙k, 𝜙k+1

)
+ Ms ‖‖‖wk+1∕2‖‖‖2

L2
≤  (

𝜙k−1, 𝜙k) , (nAC equation), (2.24)

 (
𝜙k, 𝜙k+1

)
+ s ‖‖‖∇wk+1∕2‖‖‖2

L2
≤  (

𝜙k−1, 𝜙k) , (nCH equation). (2.25)

Also note that the remainder term in the pseudo energy (2.23) is nonnegative. This implies that the energy is bounded by
the initial energy, for any s > 0: E

(
𝜙k+1

) ≤  (
𝜙k, 𝜙k+1

) ≤  (
𝜙−1, 𝜙0

) ≡ E
(
𝜙0

)
by taking 𝜙−1 = 𝜙0. Therefore, we say

that the scheme is unconditionally energy stable.

In the sequel, we will propose fully discrete versions of these schemes and provide the corresponding analysis.

2.3 Discrete energy and the fully discrete convex splitting schemes
We begin by defining a fully discrete energy that is consistent with the energy (2.1) in continuous space. In particular, the

discrete energy F ∶ m×n → R is given by

F(𝜙) ∶= 1

4
‖𝜙‖4

4 +
𝛾c − 𝛾e

2
‖𝜙‖2

2 +
[J ⋆ 1]

2
‖𝜙‖2

2 −
h2

2
(𝜙|| [J ⋆ 𝜙]) , (2.26)

where J ∶= Jc − Je, and J𝛼 ∈ m×n, 𝛼 = c, e, are defined via the vertex-centered grid restrictions (J𝛼)i+ 1

2
,j+ 1

2

∶= J𝛼(pi+ 1

2

, pj+ 1

2

).

Lemma 2.5. Suppose that 𝜙 ∈ m×n is periodic and define

Fc(𝜙) ∶=
1

4
‖𝜙‖4

4 +
2 [Jc ⋆ 1] + 𝛾c

2
‖𝜙‖2

2 , (2.27)

Fe(𝜙) ∶=
[Jc ⋆ 1] + [Je ⋆ 1] + 𝛾e

2
‖𝜙‖2

2 +
h2

2
(𝜙|| [J ⋆ 𝜙]) . (2.28)

Then Fc and Fe are convex, and the gradients of the respective energies are

𝛿𝜙Fc = 𝜙3 + (2 [Jc ⋆ 1] + 𝛾c)𝜙 , 𝛿𝜙Fe = ([Jc ⋆ 1] + [Je ⋆ 1] + 𝛾e)𝜙 + [J ⋆ 𝜙] . (2.29)

Hence F, as defined in (2.26), admits the convex splitting F = Fc − Fe.

Proof. Fc is clearly convex. To see that Fe is convex, we make use of the estimate (2.12), and observe that
d2

ds2
Fe(𝜙 + s𝜓)|||s=0

⩾ 0, for any periodic 𝜓 ∈ m×n. The details are suppressed for brevity.

We now describe the fully discrete schemes in detail. The scheme can be formulated as follows: Given 𝜙k ∈ m×n periodic,

find 𝜙k+1, wk+1∕2 ∈ m×n periodic so that

𝜙k+1 − 𝜙k = −Mswk+1∕2, (nAC equation), (2.30)

𝜙k+1 − 𝜙k = sΔhwk+1∕2, (nCH equation), (2.31)

wk+1∕2 ∶= 𝜂
(
𝜙k, 𝜙k+1

)
+ (2 [Jc ⋆ 1] + 𝛾c)𝜙k+1∕2

− ([Jc ⋆ 1] + [Je ⋆ 1] + 𝛾e) 𝜙̂k+1∕2 −
[
J ⋆ 𝜙̂k+1∕2

]
,

(2.32)

in which 𝛥h is the standard 5-point discrete Laplacian operator, 𝜂
(
𝜙k, 𝜙k+1

)
, 𝜙k+1/2, 𝜙̂k+1∕2 are given by (2.21) and (2.22),

respectively.

2.4 Unconditional solvability and energy stability
Now, we show that the convexity splitting is translated into solvability and stability for our scheme, both (2.30) and (2.31).

The basic method for the proof of the following result was established in Guan et al48 and Guan et al50—see also other

studies56-58—and we therefore omit it for brevity.
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First, we present the theorem regarding the unique solvability of scheme (2.31).

Theorem 2.6. The scheme (2.31) is discretely mass conservative, ie,
(
𝜙k+1 − 𝜙k||1) = 0, for all k ⩾ 0, and uniquely

solvable for any time step size s > 0.

Next, we present the discrete version of Lemma 2.3.

Lemma 2.7. Suppose that 𝜙 ∈ m×n is periodic and the discrete energy F is defined in Equation 2.26. There exists a
nonnegative constant C such that F(𝜙) + C ⩾ 0. More specifically,

1

8
‖𝜙‖4

4 ≤ F(𝜙) + (𝛾c − 𝛾e − 2 [Je ⋆ 1])2

2
|Ω|, (2.33)

1

2
‖𝜙‖2

2 ≤ F(𝜙) + (𝛾c − 𝛾e − 2 [Je ⋆ 1] − 1)2

4
|Ω|. (2.34)

The following result is a discrete version of Theorem 2.4; its proof can be found in Guan et al.50

Theorem 2.8. Suppose the energy F(𝜙) is defined in Equation 2.26; assume 𝜙k+1, 𝜙k ∈ m×n are periodic and they are
solutions to the scheme (2.30) (for the nAC equation) or (2.31) (for the nCH equation). Then for any s > 0,

 (
𝜙k, 𝜙k+1

)
+ Ms ‖‖‖wk+1∕2‖‖‖2

2
≤  (

𝜙k−1, 𝜙k) , (nAC equation), (2.35)

 (
𝜙k, 𝜙k+1

)
+ s ‖‖‖∇hwk+1∕2‖‖‖2

2
≤  (

𝜙k−1, 𝜙k) , (nCH equation), (2.36)

with the discrete pseudo energy  (
𝜙k, 𝜙k+1

)
given by

 (
𝜙k, 𝜙k+1

)
= F

(
𝜙k+1

)
+ ([Jc ⋆ 1] + [Je ⋆ 1] + 𝛾c + 𝛾e)

4

‖‖‖𝜙k+1 − 𝜙k‖‖‖2

2

+ h2

4

([
J ⋆

(
𝜙k+1 − 𝜙k)] ||𝜙k+1 − 𝜙k) . (2.37)

Most importantly, the remainder term in the pseudo energy (2.37) is nonnegative. This implies that the energy is bounded
by the initial energy, for any s > 0: F

(
𝜙k+1

) ≤  (
𝜙k, 𝜙k+1

) ≤  (
𝜙−1, 𝜙0

) ≡ F
(
𝜙0

)
by taking 𝜙−1 = 𝜙0.

Putting Lemma 2.7 and Theorem 2.8 together, we immediately get the following 2 results. The proof can be found in Guan

et al.48

Corollary 2.9. Suppose that
{
𝜙k,wk}l

k=1
∈ [m×n]2 are a sequence of periodic solution pairs of the scheme (2.30) (for the

nAC equation) or (2.31) (for the nCH equation), with the starting values 𝜙0. Then, for any 1 ≤ k ≤ l,

1

8

‖‖‖𝜙k‖‖‖4

4
≤ F

(
𝜙0

)
+ (𝛾c − 𝛾e − 2 [Je ⋆ 1])2

2
|Ω|, (2.38)

1

2

‖‖‖𝜙k‖‖‖2

2
≤ F

(
𝜙0

)
+ (𝛾c − 𝛾e − 2 [Je ⋆ 1] − 1)2

4
|Ω|. (2.39)

Theorem 2.10. Suppose Φ ∈ Cr
per(Ω), where r ∈ Z+ is sufficiently large, and set 𝜙0

i,j ∶= Φ(pi, pj). Suppose that{
𝜙k,wk}l

k=1
∈ [m×n]2 are a sequence of periodic solution pairs of the scheme (2.30) (for the nAC equation) or (2.31) (for

the nCH equation), with the starting values 𝜙0. There exist constants C3,C4,C5 > 0, which are independent of h and s, such
that

max
1≤k≤l

‖‖‖𝜙k‖‖‖4
≤ C3. (2.40)

max
1≤k≤l

‖‖‖𝜙k‖‖‖2
≤ C4. (2.41)

2.5 Convergence result in 𝓁∞(𝓁2) and 𝓁∞(𝓁∞) norm
We conclude this subsection with the statement of local-in-time error estimates for our second-order convex splitting schemes,

including both (2.30) for the nAC equation and (2.31) for the nCH equation, in 2 dimensions. The detailed proof is given in the
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next 3 sections. The extension of the proofs to 3 dimensions is omitted for the sake of brevity; see Remark 5.4 for some of the

details.

For the nAC equation, the existence and uniqueness of solution to the IPDE (1.2) has been studied by Bates and Fife in

previous studies.11,62 Using similar techniques, one can establish the existence and uniqueness of a smooth, periodic solution to

the IPDE (1.2) with smooth periodic initial data. The second-order convergence of the scheme (2.30) for the nAC equation is

stated in the following theorem.

Theorem 2.11. Given smooth, periodic initial data Φ(x1, x2, t = 0), we assume that the unique, smooth, periodic solution
for the nAC equation 1.1 is given by Φ(x, y, t) on Ω for 0 < t ≤ T, for some T < ∞. Denote Φk

i,j ∶= Φk(pi, pj), and set
ek

i,j ∶= Φk
i,j−𝜙

k
i,j, where 𝜙k

i,j ∈ m×n is kth periodic solution of (2.30) with 𝜙0
i,j ∶= Φ0

i,j. Then, provided s and h are sufficiently
small, we have ‖‖‖el‖‖‖2

≤ C
(
h2 + s2

)
, (2.42)

for all positive integers l, such that ls ≤ T, where C > 0 is independent of h and s.

For the nCH equation, the existence and uniqueness of a smooth, periodic solution to the IPDE (1.2) with smooth periodic

initial data may be established using techniques developed by Bates and Han in previous studies.29,30 In the following pages, we

denote this IPDE solution by Φ. Motivated by the results of Bates and Han, and based on the assumptions in the introduction,

the global in time L∞ bound is available for Φ. Moreover, with certain analysis techniques, the higher order Hm (for any m ⩾ 1)

regularity could also be derived for Φ, with local-in-time existence, and with the assumption of smooth periodic initial data.

Therefore, it will be reasonable to assume that

‖Φ‖L∞(0,T;L4) + ‖Φ‖L∞(0,T;L∞) + ‖∇Φ‖L∞(0,T;L∞) < C, (2.43)

for any T > 0, and therefore also, using a consistency argument, that

max
1≤k≤𝓁

‖‖‖Φk‖‖‖4
+ max

1≤k≤𝓁
‖‖‖Φk‖‖‖∞ + max

1≤k≤𝓁
‖‖‖∇hΦk‖‖‖∞ < C, (2.44)

after setting Φk
i,j ∶= Φ(pi, pj, tk), where C is independent of h and s and tk = k ·s. The IPDE solution Φ is also mass conservative,

meaning that, for all 0 ≤ t ≤ T, ∫Ω (Φ(x, 0) − Φ(x, t)) dx = 0. For our numerical scheme, on choosing 𝜙0
i,j ∶= Φ0

i,j, we note that(
𝜙k − Φ0||1) = 0, for all k ⩾ 0. But, unfortunately,

(
𝜙k − Φk||1) ≠ 0 in general. On the other hand, by consistency,

𝛽(t) = ∫Ω
Φ(x, t)dx − 1

L1L2

h2 (Φ(t)||1) −(
∫Ω

Φ0(x)dx − 1

L1L2

h2
(
Φ0||1)) , (2.45)

for some C > 0 that is independent of k and h. A more detailed consistency analysis shows that |𝛽(t)| ≤ Ch2, ∀t ⩾ 0, and the

estimates for all its higher order derivatives are available. Then we have

1

L1L2

h2
(
𝜙k − Φk||1) =∶ 𝛽k = 𝛽

(
tk) , |||𝛽k||| ≤ Ch2, (2.46)

for all 1 ≤ k ≤ l. We set Φ̃(·, t) ∶= Φ(·, t) + 𝛽(t) and observe
(
𝜙k − Φ̃k||1) = 0 and also

max
1≤k≤𝓁

‖‖‖Φ̃k‖‖‖4
+ max

1≤k≤𝓁
‖‖‖Φ̃k‖‖‖∞ + max

1≤k≤𝓁
‖‖‖∇hΦ̃k‖‖‖∞ < C. (2.47)

Finally, the assumptions on the continuous kernel J, specifically (2.5), and the consistency of the discrete convolution imply

that [Jc ⋆ 1] + 𝛾c − [Je ⋆ 1] − 𝛾e > 0. Furthermore, we make the following assumption to simplify the convergence analysis:

Bc = 2 [Jc ⋆ 1] + 𝛾c, Be = [Jc ⋆ 1] + [Je ⋆ 1] + 𝛾e, and Bc − 3Be = 𝛼0 > 0, (2.48)

for some 𝛼0 that is independent of h, provided that h is sufficiently small. However, numerical evidence indicates that our

scheme converges at the same rate when 𝛼0 ≤ 0.

Theorem 2.12. Given smooth, periodic initial data Φ(x1, x2, t = 0), suppose the unique, smooth, periodic solution for the
IPDE (1.2) is given by Φ(x, y, t) on Ω for 0 < t ≤ T, for some T < ∞. Define Φk

i,j as above and set ek
i,j ∶= Φk

i,j − 𝜙
k
i,j, where

𝜙k
i,j ∈ m×n is kth periodic solution of (2.31) with 𝜙0

i,j ∶= Φ0
i,j. Then, provided s and h are sufficiently small with the linear

refinement path constraint s ≤ Ch, with C any fixed constant, we have
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‖‖‖el‖‖‖2
≤ C

(
h2 + s2

)
, (2.49)

for all positive integers l, such that ls ≤ T, where C > 0 is independent of h and s.

Theorem 2.13. Under the assumptions of Theorem 2.12, we also have optimal order convergence of the numerical solution
of the scheme (2.31) in the 𝓁∞ norm. Namely, if s and h are sufficiently small, for all positive integers l, such that ls ≤ T,
we have ‖‖‖el‖‖‖∞ ≤ C

(
h2 + s2

)
, (2.50)

where C > 0 is independent of h and s.

3 THE SECOND-ORDER CONVERGENCE ANALYSIS FOR THE NAC
EQUATION

In this section, we provide a proof of Theorem 2.11. For the exact solution Φ of the nAC equation 1.1, a detailed Taylor

expansion, combined with a careful Fourier analysis, indicates the following consistency estimate:

Φk+1 − Φk = −Ms
(
𝜂
(
Φk,Φk+1

)
+ BcΦk+1∕2 − BeΦ̂k+1∕2 −

[
J ⋆ Φ̂k+1∕2

])
+ s𝜏k+1, (3.1)

with Φk+1∕2 = 1

2

(
Φk + Φk+1

)
, Φ̂k+1∕2 = 3

2
Φk − 1

2
Φk−1, (3.2)

with the local truncation error |||𝜏k+1
i,j

||| ≤ C5

(
h2 + s2

)
, ∀i, j, k, (3.3)

and the constant C5 depends only on T, L1, and L2.

We consider the following error function, at a pointwise level:

ek
i,j ∶= Φk

i,j − 𝜙
k
i,j. (3.4)

In turn, subtracting (2.30) from (3.1) leads to

ek+1 − ek = −Ms
(
𝜂
(
Φk,Φk+1

)
− 𝜂

(
𝜙k, 𝜙k+1

)
+ Bcek+1∕2 − Beêk+1∕2

−
[
J ⋆ êk+1∕2

])
+ s𝜏k

i,j,

with ek+1∕2 = 1

2

(
ek + ek+1

)
, êk+1∕2 = 3

2
ek − 1

2
ek−1.

(3.5)

Taking a discrete inner-product with (3.5) by 2ek+1/2 = (ek+1 + ek), summing over i and j implies that

||ek+1||2
2
− ||ek||2

2
+ 2Bcs||ek+1∕2||2

2
+ 2h2s

(
𝜂(Φk,Φk+1) − 𝜂(𝜙k, 𝜙k+1)||||||ek+1∕2

)
≤ 2sh2

(
𝜏k+1||||||ek+1∕2

)
+ 2Besh2

(
êk+1∕2||||||ek+1∕2

)
+ 2h2s

([
J ⋆ êk+1∕2

] ||||||ek+1∕2
)
.

(3.6)

The term associated with the local truncation error could be bounded with an application of Cauchy inequality:

2h2
(
𝜏k+1||||||ek+1∕2

) ≤ ||𝜏k+1||2
2
+ ||ek+1∕2||2

2
≤ ||𝜏k+1||2

2
+ 1

2
(||ek+1||2

2
+ ||ek||2

2
). (3.7)

The concave term could be bounded in a straightforward way:

2Beh2
(

êk+1∕2||||||ek+1∕2
) ≤ Be(||êk+1∕2||2

2
+ ||ek+1∕2||2

2
)

≤ Be

2
(||ek+1||2

2
+ 10||ek||2

2
+ ||ek−1||2

2
).

(3.8)
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The term associated with the convolution could be analyzed with the help of (2.12):

2h2
([

J ⋆ êk+1∕2
] ||||||ek+1∕2

) ≤ BJ(||êk+1∕2||2
2
+ ||ek+1∕2||2

2
)

≤ BJ

2
(||ek+1||2

2
+ 10||ek||2

2
+ ||ek−1||2

2
),

(3.9)

with BJ = [Jc ⋆ 1] + [Je ⋆ 1].
The rest work is focused on the analysis for the term associated with the nonlinear error. We begin with the following

decomposition:

𝜂(Φk,Φk+1) − 𝜂(𝜙k, 𝜙k+1) = 1 +2 +3, with

1 = 1

2
((𝜙k+1)2 + (𝜙k)2)ek+1∕2, 2 = 1

4
(Φk+1 + 𝜙k+1)(Φk+1 + Φk)ek+1,

3 = 1

4
(Φk + 𝜙k)(Φk+1 + Φk)ek.

(3.10)

The following estimate is available for the term associated with 1:

−2h2
(1

||||||ek+1∕2
) ≤ −h2

(
(𝜙k+1)2||||||(ek+1∕2)2

)
− h2

(
(𝜙k)2||||||(ek+1∕2)2

)
. (3.11)

For the term associated with 2, we have

2h2
(

1

4
Φk+1(Φk+1 + Φk)ek+1||||||ek+1∕2

) ≤ 1

2
||Φk+1||∞(||Φk+1||∞ + ||Φk||∞)||ek+1||2 · ||ek+1∕2||2

≤ C||ek+1||2 · ||ek+1∕2||2 ≤ C(||ek+1||2
2
+ ||ek||2

2
),

(3.12)

2h2
(

1

4
𝜙k+1(Φk+1 + Φk)ek+1||||||ek+1∕2

)
= 1

2
h2

(
(Φk+1 + Φk)ek+1||𝜙k+1ek+1∕2

)
≤ 1

2
(||Φk+1||∞ + ||Φk||∞)||ek+1||2 · ||𝜙k+1ek+1∕2||2 ≤ C||ek+1||2 · ||𝜙k+1ek+1∕2||2

≤ C||ek+1||2
2
+ ||𝜙k+1ek+1∕2||2 = C||ek+1||2

2
+ h2

(
(𝜙k+1)2||||||(ek+1∕2)2

)
,

(3.13)

with the Cauchy inequality applied in the last step. Consequently, we arrive at

−2h2
(2

||||||ek+1∕2
) ≤ C(||ek+1||2

2
+ ||ek||2

2
) + h2

(
(𝜙k+1)2||||||(ek+1∕2)2

)
. (3.14)

The estimate for the term associated with 3 is similar; the details are left to the interested readers:

−2h2
(3

||||||ek+1∕2
) ≤ C(||ek+1||2

2
+ ||ek||2

2
) + h2

(
(𝜙k)2||||||(ek+1∕2)2

)
. (3.15)

In turn, a combination of (3.11), (3.14), and (3.15) into (3.10) yields the inner-product associated with the nonlinear error:

−2h2
(
𝜂(Φk,Φk+1) − 𝜂(𝜙k, 𝜙k+1)||||||ek+1∕2

) ≤ C(||ek+1||2
2
+ ||ek||2

2
). (3.16)

Finally, a substitution of (3.7) to (3.9) and (3.16) into (3.6) indicates that

||ek+1||2
2
− ||ek||2

2
+ 2Bcs||ek+1∕2||2

2
≤ Cs(||ek+1||2

2
+ ||ek||2

2
+ ||ek−1||2

2
) + s||𝜏k+1||2

2
. (3.17)

The application of discrete Gronwall inequality implies the 𝓁∞(0,T;𝓁2) convergence estimate (2.42), using the local truncation

error bound (3.3). The proof of Theorem 2.11 is complete.

Remark 3.1. In the convergence proof for Theorem 2.11, the decomposition (3.10) has played a key role in the nonlinear

error estimates. Because of the well-posed nonlinear inner-product in (3.11), the degree of nonlinearity of the 2 other

nonlinear inner-products could be perfectly controlled, with only the maximum norm bound of the exact solution Φ needed.

As a result of this technique, an estimate for the maximum norm of the numerical solution is avoided, which usually has to

be obtained in the nonlinear convergence analysis. Because of this fact, an inverse inequality is not needed in the presented
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analysis, and the 𝓁∞(0,T;𝓁2) convergence for the nAC equation turns out to be unconditional, ie, no scaling law between

the time step size s and the grid size h is required for the desired convergence result.

Remark 3.2. We also observe that the technical assumption (2.48) (for the physical parameters) is not required in the

convergence analysis for the nAC equation.

4 HIGHER ORDER CONSISTENCY ANALYSIS OF (2.31) FOR THE NCH
EQUATION: ASYMPTOTIC EXPANSION OF THE NUMERICAL SOLUTION

For simplicity of presentation, we denote

Φ̃k+1∕2 = 1

2

(
Φ̃k + Φ̃k+1

)
, ̂̃Φ

k+1∕2

= 3

2
Φ̃k − 1

2
Φ̃k−1. (4.1)

By consistency, the IPDE solution Φ̃ solves the discrete equation

Φ̃k+1 − Φ̃k = sΔh

(
𝜂
(
Φ̃k, Φ̃k+1

)
+ BcΦ̃k+1∕2 − Be

̂̃Φ
k+1∕2

−
[

J ⋆ ̂̃Φ
k+1∕2

])
+ s𝜏k+1, (4.2)

where the local truncation error 𝜏k+1 satisfies |||𝜏k+1
i,j

||| ≤ C6

(
h2 + s2

)
, (4.3)

for all i, j, and k for some C6 ⩾ 0 that depends only on T, L1, and L2.

Meanwhile, it is observed that the leading local truncation error in (4.2) will not be enough to recover an a priori W1,∞

bound for the numerical solution, needed in the stability and convergence analysis. To remedy this, we use a higher order

consistency analysis, via a perturbation argument, to recover such a bound in later analysis. In more detail, we need to construct

supplementary fields, Φ1
h, Φ1

s , and Φ̌, satisfying

Φ̌ = Φ̃ + h2Φh,1 + s2Φs,1, (4.4)

so that a higher O(s3 + h4) consistency is satisfied with the given numerical scheme (2.31). The constructed fields Φh,1, Φs,1,

which will be found using a perturbation expansion, will depend solely on the exact solution Φ.

The following truncation error analysis for the spatial discretization can be obtained by using a straightforward Taylor

expansion for the exact solution:

𝜕tΦ̃ = Δh
(
Φ̃3 + ([J ⋆ 1] + 𝛾c − 𝛾e) Φ̃ −

[
J ⋆ Φ̃

])
+ h2g(0) + O(h4), ∀ (i, j). (4.5)

Here the spatially discrete function g(0) is smooth enough in the sense that its discrete derivatives are bounded. Also note that

there is no O(h3) truncation error term, because the centered difference used in the spatial discretization gives local truncation

errors with only even order terms, O(h2), O(h4), etc.

The spatial correction function Φh,1 is given by solving the following equation:

𝜕tΦh,1 = Δh
(
3Φ̃2Φh,1 + ([J ⋆ 1] + 𝛾c − 𝛾e) Φh,1 −

[
J ⋆Φh,1

])
− g(0), ∀ (i, j). (4.6)

Existence of a solution of the above linear system of ODEs is a standard exercise. Note that the solution depends only on the

exact solution, Φ. In addition, the divided differences of Φh,1 of various orders are bounded.

Now, we define

Φ∗
h ∶= Φ̃ + h2Φh,1. (4.7)

A combination of (4.5) and (4.6) leads to the fourth-order local truncation error for Φ∗
h:

𝜕tΦ∗
h = Δh

((
Φ∗

h
)3 + ([J ⋆ 1] + 𝛾c − 𝛾e) Φ∗

h −
[
J ⋆Φ∗

h
])

+ O(h4), ∀ (i, j), (4.8)

for which the following estimate was used:(
Φ∗

h
)3 =

(
Φ̃ + h2Φh,1

)3 = Φ̃3 + 3h2Φ̃2Φh,1 + O(h4). (4.9)
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We remark that the above derivation is valid since all O(h2) terms cancel in the expansion.

Regarding the temporal correction term, we observe that the application of the second-order convex splitting scheme (2.31)

for the profile Φ∗
h gives

(
Φ∗

h

)k+1 −
(
Φ∗

h

)k

s
= Δh

(
𝜂
(
(Φ∗

h)
k, (Φ∗

h)
k+1

)
+ Bc

(
Φ∗

h
)k+1∕2 − BeΦ̂∗

h
k+1∕2

−
[
J ⋆ Φ̂∗

h
k+1∕2

])
+ s2h(1) + O(s3) + O(h4), ∀ (i, j),

with
(
Φ∗

h
)k+1∕2 = 1

2

((
Φ∗

h
)k +

(
Φ∗

h
)k+1

)
, Φ̂∗

h
k+1∕2 = 3

2

(
Φ∗

h
)k − 1

2

(
Φ∗

h
)k−1

,

(4.10)

at any grid point (i, j). In turn, the first-order temporal correction function Φs,1 is given by the solution of the following system

of linearized ordinary differential equations

𝜕tΦs,1 = Δh(3
(
Φ∗

h
)2Φs,1 + ([Jc ⋆ 1] − [Je ⋆ 1] + 𝛾c − 𝛾e) Φs,1 −

[
J ⋆Φs,1

]
) − h(1)

. (4.11)

Again, the solution of (4.11), which exists and is unique, depends solely on the profile Φ∗
h and is smooth enough in the sense

that its divided differences of various orders are bounded. Similar to (4.10), an application of the second-order convex splitting

scheme to Φs,1 reads

(
Φs,1

)k+1 −
(
Φs,1

)k

s
= Δh

(
1

2

(
(Φ∗

h)
k + (Φ∗

h)
k+1

) (
(Φ∗

h)
kΦk

s,1 + (Φ∗
h)

k+1Φk+1
s,1

)
+ 1

4

(
Φk

s,1 + Φk+1
s,1

)((
(Φ∗

h)
k)2 +

(
(Φ∗

h)
k+1

)2
)

+BcΦk+1
s,1 − Be ̂Φs,1

k+1∕2 −
[
J ⋆ ̂Φs,1

k+1∕2
])

− (h(1))k + s(h(2))k + O(s2) + O(sh2), ∀ (i, j),

with Φk+1∕2

s,1 = 1

2

(
Φk

s,1 + Φk+1
s,1

)
, ̂Φs,1

k+1∕2 = 3

2
Φk

s,1 −
1

2
Φk−1

s,1 .

(4.12)

Therefore, a combination of (4.10) and (4.12) shows that

Φ̌k+1 − Φ̌k

s
= Δh

(
𝜂
(
Φ̌k, Φ̌k+1

)
+ BcΦ̌k+1∕2 − Be

̂̌Φ
k+1∕2

−
[

J ⋆ ̂̌Φ
k+1∕2

])
+ O(s3 + s3h2 + h4), ∀ (i, j),

with Φ̌k+1∕2 = 1

2

(
Φ̌k + Φ̌k+1

)
,
̂̌Φ

k+1∕2

= 3

2
Φ̌k − 1

2
Φ̌k−1,

(4.13)

in which the construction (4.4) for the approximate solution Φ̌ is recalled and we have used the following estimate

𝜂
(
Φ̌k, Φ̌k+1

)
= 𝜂

(
(Φ∗

h)
k + s2Φk

s,1, (Φ
∗
h)

k+1 + s2Φk+1
s,1

)
= 𝜂

(
(Φ∗

h)
k, (Φ∗

h)
k+1

)
+ 1

2
s2
(
(Φ∗

h)
k + (Φ∗

h)
k+1

) (
(Φ∗

h)
kΦk

s,1 + (Φ∗
h)

k+1Φk+1
s,1

)
+ 1

4
s2
(
Φk

s,1 + Φk+1
s,1

)((
(Φ∗

h)
k)2 +

(
(Φ∗

h)
k+1

)2
)
+ O(s4).

(4.14)

Remark 4.1. Trivial initial data Φh,1(·, t = 0) ≡ 0, Φs,1(·, t = 0) ≡ 0 are given to Φh,1 and Φs,1 as (4.6) and (4.11),

respectively. Thus, we conclude that

𝜙0 ≡ Φ̌0,
(
𝜙k − Φ̌k||1) = 0, ∀k ⩾ 0. (4.15)

These 2 properties will be used in later analysis.
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Remark 4.2. The reason for such a higher order asymptotic expansion and truncation error estimate is to justify an a priori

W1,∞ bound of the numerical solution, which is needed in the H−1 convergence analysis. In more detail, in the expansion for

the discrete gradient of the nonlinear error term and its H−1 inner-product estimate with the error function, an a priori W1,∞

bound of the numerical solution at a discrete level is needed to control the 𝓁2 error of the numerical solution. To obtain such a

bound, we have to perform a higher order consistency analysis, up to O(s3+h4), instead of the leading O(s2+h2) consistency

for the exact solution, through a construction of approximate solution that satisfies the numerical scheme with higher order

accuracy. In turn, an O(s3 + h4) convergence in 𝓁∞(0,T;𝓁2) norm can be derived, between the numerical solution and

the constructed approximate solution, and this convergence result is used to recover the a priori W1,∞ assumption for the

numerical solution, under a mild linear refinement constraint, s ≤ Ch, with the help of inverse inequality.

5 CONVERGENCE PROOF FOR THE NCH EQUATION

As stated earlier, the purpose of the higher order expansion (4.4) is to obtain a W1,∞ bound of the error function via its L2 norm

in higher order accuracy by using an inverse inequality in spatial discretization, which will be shown below. A detailed analysis

shows that ‖‖‖Φ̌ − Φ‖‖‖∞ + ‖‖‖∇h
(
Φ̌ − Φ

)‖‖‖∞ ≤ C(s2 + h2), (5.1)

since ‖‖Φh,1‖‖∞, ‖‖∇hΦh,1‖‖∞, ‖‖Φs,1‖‖∞, ‖‖∇hΦs,1‖‖∞ ≤ C. Subsequently, the following error function is considered:

ěk
i,j ∶= Φ̌k

i,j − 𝜙
k
i,j. (5.2)

In other words, instead of a direct comparison between the numerical solution 𝜙 and the exact solution Φ (or Φ̃), we estimate

the error between the numerical solution and the constructed solution to obtain a higher order convergence in the ‖ · ‖2 norm,

which follows the technique originally proposed in Strang.63 Subtracting (2.31) from (4.13) yields

ěk+1 − ěk = sΔh

(
𝜂
(
Φ̌k, Φ̌k+1

)
− 𝜂

(
𝜙k, 𝜙k+1

)
+ Bcěk+1∕2 − Be ̂̌e

k+1∕2

−
[
J ⋆ ̂̌e

k+1∕2
])

+ s𝜏k
i,j,

|||𝜏k
i,j
||| ≤ C(s3 + h4),

with ěk+1∕2 = 1

2

(
ěk + ěk+1

)
, ̂̌e

k+1∕2
= 3

2
ěk − 1

2
ěk−1.

(5.3)

5.1 Preliminary error estimates for linear terms
Proposition 5.1. We have

−2h2
([

J ⋆ ̂̌e
k+1∕2

] ||||||Δhěk+1∕2
) ≤ C7

𝛼

(‖‖‖ěk‖‖‖2

2
+ ‖‖‖ěk−1‖‖‖2

2

)
+ 𝛼 ‖‖‖∇hěk+1∕2‖‖‖2

2
, ∀𝛼 > 0, (5.4)

−2h2
(
̂̌e

k+1∕2||||||Δhěk+1∕2
) ≤ −

(‖‖‖∇hěk+1‖‖‖2

2
− ‖‖‖∇hěk‖‖‖2

2

)
+ 5

‖‖‖∇hěk+1∕2‖‖‖2

2
+ ‖‖‖∇hěk−1∕2‖‖‖2

2
. (5.5)

Proof. The first inequality (5.4) is a direct application of Lemma 2.2 and Cauchy inequality:

−2h2
([

J ⋆ ̂̌e
k+1∕2

] ||||||Δhěk+1∕2
) ≤ sC2

𝛼

‖‖‖ ̂̌ek+1∕2‖‖‖2

2
+ 𝛼 ‖‖‖∇hěk+1∕2‖‖‖2

2

≤ C2

𝛼

(
3
‖‖‖ěk‖‖‖2

2
+ ‖‖‖ěk−1‖‖‖2

2

)
+ 𝛼 ‖‖‖∇hěk+1∕2‖‖‖2

2
.

(5.6)

For the second inequality (5.5), we start from the summation by parts:

−2h2
(
̂̌e

k+1∕2||||||Δhěk+1∕2
)
= 2h2

(
∇h ̂̌e

k+1∕2||||||∇hěk+1∕2
)
= h2

(
∇h ̂̌e

k+1∕2||||||∇h
(
ěk + ěk+1

))
. (5.7)
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Meanwhile, the term ̂̌e
k+1∕2

can be rewritten as

̂̌e
k+1∕2

= 3

2
ěk − 1

2
ěk−1 = −

(
ěk+1 − ěk) + 2ěk+1∕2 − ěk−1∕2, (5.8)

which in turn gives the following estimate:

2h2
(
∇h ̂̌e

k+1∕2||||||∇hěk+1∕2
)

= −h2
(
∇h

(
ěk+1 − ěk) ||||||∇h

(
ěk+1 + ěk)) + 4

‖‖‖∇hěk+1∕2‖‖‖2

2
− 2h2

(
∇hěk+1∕2||||||∇hěk−1∕2

)
= −

(‖‖‖∇hěk+1‖‖‖2

2
− ‖‖‖∇hěk‖‖‖2

2

)
+ 4

‖‖‖∇hěk+1∕2‖‖‖2

2
− 2h2

(
∇hěk+1∕2||||||∇hěk−1∕2

)
≤ −

(‖‖‖∇hěk+1‖‖‖2

2
− ‖‖‖∇hěk‖‖‖2

2

)
+ 5

‖‖‖∇hěk+1∕2‖‖‖2

2
+ ‖‖‖∇hěk−1∕2‖‖‖2

2
.

(5.9)

Finally, its combination with (5.7) results in (5.5). The proof of Proposition 5.1 is complete.

5.2 Preliminary nonlinear error estimates
The W1,∞ bound for the constructed approximate solution Φ̌ is guaranteed by the regularity of the exact solution Φ (and hence-

forth Φ̃ and the correction terms Φh,1, Φs,1), at any time step. Similarly, its divided difference in time is also bounded pointwise,

which comes from the regularity in time for the constructed solution. For the numerical solution 𝜙, its global in time 𝓁4 has

been derived in Theorem 2.10. Moreover, to carry out the error estimate for the nonlinear term, we need to make an a priori

W1,∞ assumption for the numerical solution at time step tk and use the O(s3 + h4) order convergence in 𝓁2 to recover such an

assumption at the next time step tk+1.

Proposition 5.2. Suppose 𝜙 j, Φ̌ j ∈ m×n, are periodic with equal means, ie,
(
𝜙 j − Φ̌ j||1) = 0, j = k, k+1, and satisfying

‖‖‖Φ̌k‖‖‖4
+ ‖‖‖Φ̌k‖‖‖∞ + ‖‖‖∇hΦ̌k‖‖‖∞ + ‖‖‖Φ̌k+1‖‖‖4

+ ‖‖‖Φ̌k+1‖‖‖∞ + ‖‖‖∇hΦ̌k+1‖‖‖∞ ≤ C0, (5.10)

‖‖‖‖‖ Φ̌
k+1 − Φ̌k

s

‖‖‖‖‖∞ ≤ C0, (5.11)

‖‖‖𝜙k‖‖‖4
≤ C0,

‖‖‖𝜙k+1‖‖‖4
≤ C0, (5.12)

‖‖‖𝜙k‖‖‖∞ + ‖‖‖∇h𝜙
k‖‖‖∞ ≤ C0, (5.13)

where C0 is an s, h-independent positive constant. Then, there exists a positive constant C1, which depends on C0 but is
independent of s and h, such that

2h2
(
𝜂
(
Φ̌k, Φ̌k+1

)
− 𝜂

(
𝜙k, 𝜙k+1

) ||Δhěk+1∕2
)

≤ C1

𝛼3

(‖‖‖ěk‖‖‖2

2
+ ‖‖‖ěk+1‖‖‖2

2

)
+ 𝛼 ‖‖‖∇hěk+1∕2‖‖‖2

2

+ C1

𝛼
s2 ‖‖‖∇hěk‖‖‖2

2
+ C1

𝛼

(
1 + ‖‖‖𝜙k+1‖‖‖2

∞

)‖‖‖ěk‖‖‖2

2
, ∀𝛼 > 0.

(5.14)

Proof. For simplicity of presentation, we denote k = 𝜂
(
Φ̌k, Φ̌k+1

)
− 𝜂

(
𝜙k, 𝜙k+1

)
. A direct application of summation

by parts reveals that

2h2
(k||||||Δhěk+1∕2

)
= −2h2

(
∇h

(k) ||||||∇hěk+1∕2
)
= k

1
+k

2
, with

k
1
= −2h2

(
Dx

(k) ||||||Dxěk+1∕2
)
, k

2
= −2h2

(
Dy

(k) ||||||Dyěk+1∕2
)
.

(5.15)
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We focus on the first term k
1
; the second term k

2
can be analyzed in the same way. In x direction, we drop the

subscript j in the grid index, just for simplicity of presentation. A detailed expansion shows that

Dx
(
𝜂
(
𝜙k, 𝜙k+1

))
i+1∕2

= 1

4h
((
(𝜙k+1

i+1
)2 + (𝜙k

i+1
)2
) (
𝜙k+1

i+1
+ 𝜙k

i+1

)
−
(
(𝜙k+1

i )2 + (𝜙k
i )

2
) (
𝜙k+1

i + 𝜙k
i
))

= 1

4h
(
(𝜙k+1

i+1
)2 + (𝜙k

i+1
)2 + (𝜙k+1

i+1
+ 𝜙k+1

i )(𝜙k+1
i + 𝜙k

i )
) (
𝜙k+1

i+1
− 𝜙k+1

i + 𝜙k
i+1

− 𝜙k
i
)

+ 1

4h
(
𝜙k

i+1
− 𝜙k+1

i+1
+ 𝜙k

i − 𝜙
k+1
i

) (
𝜙k+1

i + 𝜙k
i
) (
𝜙k

i+1
− 𝜙k

i
)

= 1

2

(
(𝜙k+1

i+1
)2 + (𝜙k

i+1
)2 + (𝜙k+1

i+1
+ 𝜙k+1

i )(𝜙k+1
i + 𝜙k

i )
)

Dx𝜙
k+1∕2

i+1∕2

+ 1

4

(
𝜙k

i+1
− 𝜙k+1

i+1
+ 𝜙k

i − 𝜙
k+1
i

) (
𝜙k+1

i + 𝜙k
i
)

Dx𝜙
k
i+1∕2

.

(5.16)

A similar expansion can be made for Dx
(
𝜂
(
Φ̌k, Φ̌k+1

))
i+1∕2

. In turn, we arrive at

Dx
(
𝜂
(
Φ̌k, Φ̌k+1

)
− 𝜂

(
𝜙k, 𝜙k+1

))
i+1∕2

= k
1,1

+k
1,2

+k
1,3

+k
1,4
,

k
1,1

= 1

2

(
(𝜙k+1

i+1
)2 + (𝜙k

i+1
)2 + (𝜙k+1

i+1
+ 𝜙k+1

i )(𝜙k+1
i + 𝜙k

i )
)

Dxěk+1∕2

i+1∕2
,

(5.17)

k
1,2

= 1

2

((
Φ̌k+1

i+1
+ 𝜙k+1

i+1

)
ěk+1

i+1
+
(
Φ̌k+1

i + 𝜙k+1
i

)
ěk+1

i

+(ěk+1
i+1

+ ěk+1
i )(𝜙k+1

i + 𝜙k
i ) + (Φ̌k+1

i+1
+ Φ̌k+1

i )(ěk+1
i + ěk

i )
)

DxΦ̌k+1∕2

i+1∕2
,

(5.18)

k
1,3

= 1

4

(
Φ̌k

i+1
− Φ̌k+1

i+1
+ Φ̌k

i − Φ̌k+1
i

) (
Φ̌k+1

i + Φ̌k
i
)

Dxěk
i+1∕2

, (5.19)

k
1,4

= 1

4

((
ěk

i+1
− ěk+1

i+1
+ ěk

i − ěk+1
i

) (
Φ̌k+1

i + Φ̌k
i
)

+
(
𝜙k

i+1
− 𝜙k+1

i+1
+ 𝜙k

i − 𝜙
k+1
i

) (
ěk+1

i + ěk
i
))

Dx𝜙
k
i+1∕2

.

(5.20)

For the term k
1,1

, we observe the following estimate for the nonlinear coefficient:

1 = (𝜙k+1
i+1

)2 + (𝜙k
i+1

)2 + (𝜙k+1
i+1

+ 𝜙k+1
i )(𝜙k+1

i + 𝜙k
i )

= (𝜙k+1
i+1

)2 + (𝜙k
i+1

)2 + 𝜙k+1
i+1
𝜙k+1

i + (𝜙k+1
i )2 + 𝜙k+1

i+1
𝜙k

i + 𝜙
k+1
i 𝜙k

i

⩾ 1

2

(
(𝜙k+1

i+1
)2 + (𝜙k+1

i )2
)
+ (𝜙k

i+1
)2 + 𝜙k+1

i+1
𝜙k

i + 𝜙
k+1
i 𝜙k

i

⩾ (𝜙k
i+1

)2 − (𝜙k
i )

2,

(5.21)

with a repeated application of Cauchy inequality in the last 2 steps. Meanwhile, the a priori assumption (5.13) for the

numerical solution 𝜙 at time step tk indicates that

−1 ≤ |||𝜙k
i+1

+ 𝜙k
i
||| · |||𝜙k

i+1
− 𝜙k

i
||| = h |||𝜙k

i+1
+ 𝜙k

i
||| · |||Dx𝜙

k
i+1∕2

||| ≤ 2h‖‖‖𝜙k‖‖‖∞ · ‖‖‖∇h𝜙
k‖‖‖∞ ≤ 2C2

0
h, (5.22)

at a pointwise level. As a result, its combination with (5.17) implies that

−2h2
(k

1,1

||||||Dxěk+1∕2
) ≤ 2C2

0
h ‖‖‖Dxěk+1∕2‖‖‖2

2
. (5.23)

Similar estimates can be derived for k
1,3

. The regularity assumption (5.10), (5.11) for the constructed approximate

solution Φ̌ shows that

|||Φ̌k
i+1

− Φ̌k+1
i+1

||| + |||Φ̌k
i − Φ̌k+1

i
||| ≤ 2s

‖‖‖‖‖ Φ̌
k+1 − Φ̌k

s

‖‖‖‖‖∞ ≤ 2C0s, (5.24)
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|||Φ̌k+1
i + Φ̌k

i
||| ≤ ‖‖‖Φ̌k+1‖‖‖∞ + ‖‖‖Φ̌k‖‖‖∞ ≤ 2C0, so that (5.25)

|3| = |||(Φ̌k
i+1

− Φ̌k+1
i+1

+ Φ̌k
i − Φ̌k+1

i

) (
Φ̌k+1

i + Φ̌k
i
)||| ≤ 4C2

0
s, (5.26)

at a pointwise level. In turn, we arrive at

−2h2
(k

1,3

||||||Dxěk+1∕2
) ≤ 2C2

0
s‖‖‖Dxěk+1∕2‖‖‖2

· ‖‖‖Dxěk‖‖‖2

≤ 1

8
𝛼
‖‖‖Dxěk+1∕2‖‖‖2

2
+

8C4
0

𝛼
s2 ‖‖‖Dxěk‖‖‖2

2
.

(5.27)

For the second nonlinear term k
1,2

, we start from a rewritten form:

k
1,2

= 1

2

((
Φ̌k+1

i+1
+ 𝜙k+1

i+1
+ 𝜙k+1

i + 𝜙k
i
)

ěk+1
i+1

+
(
Φ̌k+1

i + 2𝜙k+1
i + 𝜙k

i
)

ěk+1
i

+2(Φ̌k+1
i+1

+ Φ̌k+1
i )ěk+1∕2

i

)
DxΦ̌k+1∕2

i+1∕2
,

=
(2,1ěk+1∕2

i+1
+ 2,2ěk+1∕2

i + 1

2
2,3ěk

i+1
+ 1

2
2,4ěk

i

)
DxΦ̌k+1∕2

i+1∕2
,

with 2,1 = −2,3 = Φ̌k+1
i+1

+ 𝜙k+1
i+1

+ 𝜙k+1
i + 𝜙k

i , 2,4 = −
(
Φ̌k+1

i + 2𝜙k+1
i + 𝜙k

i
)
,

2,2 = 2Φ̌k+1
i + Φ̌k+1

i+1
+ 2𝜙k+1

i + 𝜙k
i .

(5.28)

For these nonlinear coefficients, it is clear that

‖‖2,1
‖‖4

+ ‖‖2,2
‖‖4

≤ C
(‖‖‖Φ̌k‖‖‖4

+ ‖‖‖Φ̌k+1‖‖‖4
+ ‖‖‖𝜙k‖‖‖4

+ ‖‖‖𝜙k+1‖‖‖4

) ≤ CC0, (5.29)

‖‖2,3
‖‖∞ + ‖‖2,4

‖‖∞ ≤ C
(‖‖‖Φ̌k‖‖‖∞ + ‖‖‖Φ̌k+1‖‖‖∞ + ‖‖‖𝜙k‖‖‖∞ + ‖‖‖𝜙k+1‖‖‖∞) ≤ C

(
C0 +

‖‖‖𝜙k+1‖‖‖∞) , (5.30)

in which the regularity condition (5.10) and a priori assumption (5.12) and (5.13) were repeated used in the derivation. In

particular, we note that the ‖·‖4 bound is available for both the approximate solution Φ̌ and the numerical solution 𝜙, at

both time steps tk and tk+1, and the same for the ‖·‖∞ bound for Φ̌. Meanwhile, in ‖·‖∞ norm for the numerical solution 𝜙,

we only have its bound at time step tk, as an a priori assumption, and its bound at the next time step tk+1 has to be obtained

by a higher order convergence in 𝓁2 norm via an inverse inequality, as will be shown later. As a result, an application of

discrete Hölder inequality shows that

− 2h2
(k

1,2

||||||Dxěk+1∕2
)

≤ (2
(‖‖2,1

‖‖4
+ ‖‖2,2

‖‖4

) ‖‖‖ěk+1∕2‖‖‖4
+
(‖‖2,3

‖‖∞ + ‖‖2,4
‖‖∞) ‖‖‖ěk‖‖‖2

)‖‖‖Dxěk+1∕2‖‖‖2

≤ (CC0
‖‖‖ěk+1∕2‖‖‖4

+ C
(

C0 +
‖‖‖𝜙k+1‖‖‖∞)‖‖‖ěk‖‖‖2

)‖‖‖Dxěk+1∕2‖‖‖2
.

(5.31)

Furthermore, a discrete Sobolev embedding in 2D gives

‖‖‖ěk+1∕2‖‖‖4
≤ C ‖‖‖ěk+1∕2‖‖‖ 1

2

2
· ‖‖‖∇hěk+1∕2‖‖‖ 1

2

2
, since

(
ěk+1∕2||1) = 0, (5.32)

with C independent on h; its proof can be found in Guan et al.48 We note that the zero-mean property of ěk+1∕2 comes from

(4.15). Therefore, the first part in (5.31) can be bounded by

CC0
‖‖‖ěk+1∕2‖‖‖4

· ‖‖‖Dxěk+1∕2‖‖‖2
≤ M ‖‖‖ěk+1∕2‖‖‖ 1

2

2
· ‖‖‖∇hěk+1∕2‖‖‖ 3

2

2
, with M = CC0. (5.33)

In addition, we use the Young inequality

a · b ≤ ap

p
+ bq

q
, ∀ a, b > 0,

1

p
+ 1

q
= 1, (5.34)
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with the choices p = 4, q = 4

3
, a =

(
6𝛼−1

) 3

4 M ‖‖ěk+1∕2‖‖ 1

2

2
, b =

(
1

6
𝛼

) 3

4 ‖‖∇hěk+1∕2‖‖ 3

2

2
, and get

CC0
‖‖‖ěk+1∕2‖‖‖4

· ‖‖‖Dxěk+1∕2‖‖‖2
≤ M ‖‖‖ěk+1∕2‖‖‖ 1

2

2
· ‖‖‖∇hěk+1∕2‖‖‖ 3

2

2

= a · b ≤ 1

4
a4 + 3

4
b

4

3 = 1

4
M4 · (6)

3

𝛼3

‖‖‖ěk+1∕2‖‖‖2

2
+ 𝛼

8

‖‖‖∇hěk+1∕2‖‖‖2

2
.

(5.35)

The bound for the second part in (5.31) can be obtained by Cauchy inequality:

C
(

C0 +
‖‖‖𝜙k+1‖‖‖∞)‖‖‖ěk‖‖‖2

‖‖‖Dxěk+1∕2‖‖‖2
≤ C

(
C2

0
+ ‖‖𝜙k+1‖‖2

∞

)
𝛼

‖‖‖ěk‖‖‖2

2
+ 1

8
𝛼
‖‖‖Dxěk+1∕2‖‖‖2

2
. (5.36)

Consequently, a combination of (5.31), (5.35), and (5.36) yields

−2h2
(k

1,2

||||||Dxěk+1∕2
) ≤ C8

𝛼3

(‖‖‖ěk‖‖‖2

2
+ ‖‖‖ěk+1‖‖‖2

2

)
+

C ‖‖𝜙k+1‖‖2

∞

𝛼

‖‖‖ěk‖‖‖2

2

+ 𝛼

8

(‖‖‖∇hěk+1∕2‖‖‖2

2
+ ‖‖‖Dxěk+1∕2‖‖‖2

2

)
,

(5.37)

with C8 = 27M4 + CC2
0
.

The analysis for the fourth nonlinear term k
1,4

is similar to that of k
1,2

. Its rewritten form reads as follows:

k
1,4

= 1

4

((
ěk

i+1
− ěk+1

i+1
+ ěk

i − ěk+1
i

) (
Φ̌k+1

i + Φ̌k
i
)

+2
(
𝜙k

i+1
− 𝜙k+1

i+1
+ 𝜙k

i − 𝜙
k+1
i

)
ěk+1∕2

i

)
Dx𝜙

k
i+1∕2

,

=
(4,1ěk+1∕2

i+1
+ 4,2ěk+1∕2

i + 4,3ěk
i+1

+ 4,4ěk
i

)
DxΦ̌k+1∕2

i+1∕2
,

with 4,1 = −1

2

(
Φ̌k+1

i + Φ̌k
i
)
, 4,2 = 1

2

(
𝜙k

i+1
− 𝜙k+1

i+1
+ 𝜙k

i − 𝜙
k+1
i − Φ̌k+1

i − Φ̌k
i
)
,

4,3 = 4,4 = 1

2

(
Φ̌k+1

i + Φ̌k
i
)
.

(5.38)

Similarly, these nonlinear coefficients can be bounded by

‖‖4,1
‖‖4

+ ‖‖4,2
‖‖4

≤ C
(‖‖‖Φ̌k‖‖‖4

+ ‖‖‖Φ̌k+1‖‖‖4
+ ‖‖‖𝜙k‖‖‖4

+ ‖‖‖𝜙k+1‖‖‖4

) ≤ CC0, (5.39)

‖‖4,3
‖‖∞ + ‖‖4,4

‖‖∞ ≤ C
(‖‖‖Φ̌k‖‖‖∞ + ‖‖‖Φ̌k+1‖‖‖∞) ≤ CC0. (5.40)

Note that for 4,3 and 4,4, since the numerical solution 𝜙 is not involved, the regularity assumption (5.10), (5.11) for the

approximate solution Φ̌ directly gives a bounded for these 2 coefficients. This also greatly simplifies the analysis below.

Then we have

− 2h2
(k

1,4
||Dxěk+1∕2

)
≤ (2

(‖‖4,1
‖‖4

+ ‖‖4,2
‖‖4

) ‖‖‖ěk+1∕2‖‖‖4
+
(‖‖4,3

‖‖∞ + ‖‖4,4
‖‖∞) ‖‖‖ěk‖‖‖2

)‖‖‖Dxěk+1∕2‖‖‖2

≤ CC0

(‖‖‖ěk+1∕2‖‖‖4
+ ‖‖‖ěk‖‖‖2

)
· ‖‖‖Dxěk+1∕2‖‖‖2

.

(5.41)

In turn, the estimates (5.32) to (5.36) are also valid; consequently, the following estimate can be derived:

−2h2
(k

1,4

||||||Dxěk+1∕2
) ≤ C9

𝛼3

(‖‖‖ěk‖‖‖2

2
+ ‖‖‖ěk+1‖‖‖2

2

)
+ 𝛼

8

(‖‖‖∇hěk+1∕2‖‖‖2

2
+ ‖‖‖Dxěk+1∕2‖‖‖2

2

)
.

(5.42)



GUAN ET AL. 6853

Finally, a combination of (5.23), (5.27), (5.37), and (5.42) reveals that

k
1
= −2h2

(
Dx

(k) ||||||Dxěk+1∕2
)

≤ C10

𝛼3

(‖‖‖ěk‖‖‖2

2
+ ‖‖‖ěk+1‖‖‖2

2

)
+

C ‖‖𝜙k+1‖‖2

∞

𝛼

‖‖‖ěk‖‖‖2

2

+ 𝛼

4

‖‖‖∇hěk+1∕2‖‖‖2

2
+ 𝛼

2

‖‖‖Dxěk+1∕2‖‖‖2

2
+

8C4
0

𝛼
s2 ‖‖‖Dxěk‖‖‖2

2
,

(5.43)

by choosing h with 2C2
0
h ≤ 𝛼

8
. The analysis for k

2
is essentially the same:

k
2
= −2h2

(
Dy

(k) ||||||Dyěk+1∕2
)

≤ C10

𝛼3

(‖‖‖ěk‖‖‖2

2
+ ‖‖‖ěk+1‖‖‖2

2

)
+

C ‖‖𝜙k+1‖‖2

∞

𝛼

‖‖‖ěk‖‖‖2

2

+ 𝛼

4

‖‖‖∇hěk+1∕2‖‖‖2

2
+ 𝛼

2

‖‖‖Dyěk+1∕2‖‖‖2

2
+

8C4
0

𝛼
s2 ‖‖‖Dyěk‖‖‖2

2
;

(5.44)

and the details are skipped for brevity of presentation. Therefore, a combination of (5.43) and (5.44) results in (5.14). The

proof of Proposition 5.2 is complete.

Remark 5.3. In fact, for the nonlinear error term, the form of expansion and decomposition in its discrete gradient is not

unique. However, the way in our decomposition (5.17) to (5.20) greatly facilitates the convergence analysis.

It is well known that the exact solution Φ and the nonlinear potential Φ3 have a nonpositive H−1 inner-product, since

3Φ2 ⩾ 0. However, for the second-order numerical approximation 𝜂
(
𝜙k, 𝜙k+1

)
, introduced by (2.21), its error estimate

becomes much more tricky. In the decomposition (5.17), the nonlinear coefficient 1 is proven to be “almost” nonnegative,

as in (5.21), and the remainder term has an O(h) bound given by (5.22), using the W1,∞ bound assumption for the numerical

solution at tk, as given by (5.13). This treatment assures a controlled property of the nonlinear inner-product associated with

(5.17).

Moreover, since the numerical solution 𝜙 is involved with the nonlinear coefficient 1 in (5.17), we could take the discrete

gradient of the approximate solution Φ in the nonlinear expansion (5.18), and its ‖·‖∞ norm is directly bounded by (5.10).

If it is replaced by the discrete gradient of the numerical solution, a numerical analysis is not feasible, since a bound for‖‖𝜙k+1‖‖∞ is not available at time step tk+1.

Meanwhile, in the nonlinear expansion (5.20), an appearance of the discrete gradient of the numerical solution at time

step tk does not cause any theoretical trouble, since we have had an a priori bound (5.13), which is to be recovered by an

O(s3 + h4) convergence analysis in 𝓁2 norm.

For the nonlinear errors appearing in (5.18) and (5.20), we have to rewrite them in terms of a nonlinear combination

of ěk+1∕2 and ěk. The reason is that we only have a well-posed diffusion term of ‖‖∇hěk+1∕2‖‖2

2
; a positive diffusion term in

either the form of ‖‖∇hěk‖‖2

2
or ‖‖∇hěk+1‖‖2

2
is not available in the numerical analysis, because of the second-order numerical

approximation. With such a rewriting, the terms involving ěk+1∕2 only require an 𝓁4 bound for the numerical and approximate

solutions, given by (5.29), and the 𝓁4 estimate for ěk+1∕2 is obtained by (5.32), a discrete Sobolev embedding. In turn, these

terms can be controlled with the help of Young inequality, as in (5.35).

The terms involving ěk can be handled by a standard Cauchy inequality, and a coefficient ‖‖𝜙k+1‖‖2

∞ has to be included

in the estimate (5.36). Such a bound is not available at present; it has to be obtained from a preliminary estimate before a

discrete Gronwall inequality is applied; see the analysis in later subsections.

For the nonlinear expansion in (5.19), we make the nonlinear coefficient of order O(s), as analyzed by (5.24) to (5.26).

In addition, such a nonlinear coefficient has to be Φ̌ dependent, instead of 𝜙 dependent, since we have not had the divided

difference bound (in time) for the numerical solution. With such an O(s) analysis, the nonlinear inner-product associated

with (5.19) is bounded by (5.27), in which the first part can be controlled by the diffusion term and the second part is an

O(s2) increment. The stability of such an O(s2) incremental term is ensured by the term ‖‖∇hěk+1‖‖2

2
−‖‖∇hěk‖‖2

2
, which appears

in (5.5) in Proposition 5.1, the estimate of the concave diffusion term.

Remark 5.4. For the 3D case, a discrete Sobolev embedding gives

‖‖‖ěk+1∕2‖‖‖4
≤ C ‖‖‖ěk+1∕2‖‖‖ 1

4

2
· ‖‖‖∇hěk+1∕2‖‖‖ 3

4

2
, if

(
ěk+1∕2||||||1) = 0, (5.45)
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which is analogous to (5.32) in 2D; also see the related discussions in Guan et al.48 In turn, we are able to derive the following

result

2h3
(
𝜂
(
Φ̌k, Φ̌k+1

)
− 𝜂

(
𝜙k, 𝜙k+1

) |||||||||Δhěk+1∕2
)

≤ C1

𝛼7

(‖‖‖ěk‖‖‖2

2
+ ‖‖‖ěk+1‖‖‖2

2

)
+ 𝛼 ‖‖‖∇hěk+1∕2‖‖‖2

2

+ C1

𝛼
s2 ‖‖‖∇hěk‖‖‖2

2
+ C1

𝛼

(
1 + ‖‖‖𝜙k+1‖‖‖2

∞

)‖‖‖ěk‖‖‖2

2
, ∀𝛼 > 0,

(5.46)

the only changes being the 𝛼7 replaces 𝛼3 and we use the triple summation ( · ||| · ). As a result, a full order convergence

in 3D can be derived in the same manner. The details are omitted in this paper for the sake of brevity.

5.3 Proof of Theorem 2.12: 𝓁∞(0,T;𝓁2) convergence
We begin with an O(s3 + h4) convergence assumption of the numerical solution, in 𝓁2 norm, up to time step tk:‖‖‖ě j‖‖‖2

≤ C11eC12tj (s3 + h4
)
, ∀0 ≤ j ≤ k, (5.47)

with C11, C12 independent on s and h. Consequently, an application of inverse inequality shows that

‖‖‖ě j‖‖‖∞ + ‖‖‖∇hě j‖‖‖∞ ≤ C‖‖ě j‖‖2

h
d
2
+1

≤ CC11eC12tj (s3 + h4
)

h
d
2
+1

≤ Ch1∕2 ≤ 1, ∀0 ≤ j ≤ k, (5.48)

with the dimension d = 2 or 3. It is also noted that the linear refinement constraint, s ≤ Ch, is used in the above derivation. In

turn, the a priori assumption (5.13) for the numerical solution at tk is valid by setting

C0 = max
0≤j≤k

(‖‖‖Φ̌ j‖‖‖∞ + ‖‖‖∇hΦ̌ j‖‖‖∞) + 1. (5.49)

Moreover, it is clear that an estimate for ‖‖𝜙k+1‖‖∞ is needed in the application of Proposition 5.2 in the nonlinear analysis. For

this quantity, we observe that (5.12), which comes from a global in time 𝓁4 bound for the numerical solution (as derived in

Theorem 2.10), implies that ‖‖‖𝜙k+1‖‖‖∞ ≤ C‖‖𝜙k+1‖‖4

h
d
4

≤ CC0h− d
4 , with d the dimension, (5.50)

in which the first step comes from a similar inverse inequality.

Now, we derive the 𝓁2 convergence at time step tk+1. Multiplying by 2h2ěk+1∕2 = h2(ěk+1 + ěk), summing over i and j, and

‖‖‖ěk+1‖‖‖2

2
− ‖‖‖ěk‖‖‖2

2
+ 2Bcs ‖‖‖∇hěk+1∕2‖‖‖2

2

= 2h2s
(
𝜂
(
Φ̌k, Φ̌k+1

)
− 𝜂

(
𝜙k, 𝜙k+1

) ||Δhěk+1∕2
)
+ 2sh2

(
𝜏k||ěk+1∕2

)
− 2Besh2

(
̂̌e

k+1∕2||Δhěk+1∕2
)
− 2h2s

([
J ⋆ ̂̌e

k+1∕2
] ||Δhěk+1∕2

)
.

(5.51)

Applying Propositions 5.1 and 5.2 for linear and nonlinear errors, and using the Cauchy inequality to bound the truncation error

term

2h2s
(
𝜏k||||||ěk+1∕2

) ≤ sC13

(
s3 + h4

)2 + s ‖‖‖ěk+1∕2‖‖‖2

2
≤ sC13

(
s3 + h4

)2 + s
2

(‖‖‖ěk+1‖‖‖2

2
+ ‖‖‖ěk‖‖‖2

2

)
, (5.52)

we arrive at ‖‖‖ěk+1‖‖‖2

2
− ‖‖‖ěk‖‖‖2

2
+ s (2Bc − 5Be − 2𝛼) ‖‖‖∇hěk+1∕2‖‖‖2

2
+ Bes

(‖‖‖∇hěk+1‖‖‖2

2
− ‖‖‖∇hěk‖‖‖2

2

)
≤ C1

𝛼3
s
(‖‖‖ěk‖‖‖2

2
+ ‖‖‖ěk+1‖‖‖2

2

)
+ C14

𝛼
s
(‖‖‖ěk‖‖‖2

2
+ ‖‖‖ěk−1‖‖‖2

2

)
+ Bes ‖‖‖∇hěk−1∕2‖‖‖2

2

+ C1

𝛼
s3 ‖‖‖∇hěk‖‖‖2

2
+ C1

𝛼
s ‖‖‖𝜙k+1‖‖‖2

∞
‖‖‖ěk‖‖‖2

2
+ sC13

(
s3 + h4

)2
, ∀𝛼 > 0.

(5.53)

applying Green's second identity (Proposition A.3), we have
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5.3.1 A preliminary estimate for ‖‖𝜙k+1‖‖∞
Note that an O(1) bound for ‖‖𝜙k+1‖‖∞ is not available at this point, because of the lack of information of the numerical solution

at time step tk+1. We only have (5.50), which comes from an unconditional 𝓁4 stability of the numerical solution, and this bound

may become singular as h → 0. Meanwhile, such a bound is needed to apply the Gronwall inequality.

To overcome this difficulty, we derive an estimate, based on (5.53), the assumption (5.47) (up to time step tk), and the

preliminary bound (5.50). The assumption (5.47) implies that‖‖‖ěk‖‖‖2

2
≤ Ch6,

‖‖‖∇hěk‖‖‖2

2
,
‖‖‖∇hěk−1∕2‖‖‖2

2
≤ Ch4,

‖‖‖𝜙k+1‖‖‖2

∞
≤ Ch− d

2 , (5.54)

with the standard constraint s ≤ Ch. Furthermore, using the fact that 𝛼0 = Bc − 3Be > 0 and taking 𝛼 = 𝛼0

2
, we conclude from

(5.53) that ‖‖‖ěk+1‖‖‖2

2
≤ C

(
h5 + h7− d

2

) ≤ Ch5, since 7 − d
2
> 5 for d = 2, 3. (5.55)

In turn, an application of inverse inequality shows that

‖‖‖ěk+1‖‖‖∞ ≤ C‖‖ěk+1‖‖2

h
d
2

≤ Ch
5

2
− d

2 ≤ Ch ≤ 1, with d = 2 or 3. (5.56)

Consequently, the triangular inequality yields‖‖‖𝜙k+1‖‖‖∞ ≤ ‖‖‖Φ̌k+1‖‖‖∞ + ‖‖‖ěk+1‖‖‖∞ ≤ C15 ∶= C0 + 1. (5.57)

Remark 5.5. Of course, the rough estimate (5.55) is not the convergence result that we want. Not only its accuracy is not

satisfactory, O(h
5

2 ) instead of O(s3 + h4), but also its stability is not maintained: O(s3 + h4) convergence at the previous

time step to an order O(h
5

2 ) at the next time step. The reason for such an accuracy deterioration is due to the singular bound

(5.50) for ‖‖𝜙k+1‖‖∞, which comes from the global in time 𝓁4 bound for the numerical solution. The purpose of the rough

estimate (5.55) is to derive a preliminary “convergence” result in the 𝓁2 norm, based on the full convergence result at the

previous time step, combined with the singular bound (5.50), so that a regular O(1) bound can be obtained for the ‖·‖∞
norm of the numerical solution at the next time step with an application of inverse inequality. Subsequently, the full order

𝓁2 convergence at the next time step can be derived by using the discrete Gronwall inequality, since an O(1) bound for‖‖𝜙k+1‖‖∞ has been available.

5.3.2 𝓁∞(0,T;𝓁2) convergence and a recovery of the assumption (5.47)
A substitution of (5.57) into (5.53) gives

‖‖‖ěk+1‖‖‖2

2
− ‖‖‖ěk‖‖‖2

2
+ s (2Bc − 5Be − 2𝛼) ‖‖‖∇hěk+1∕2‖‖‖2

2
+ Bes

(‖‖‖∇hěk+1‖‖‖2

2
− ‖‖‖∇hěk‖‖‖2

2

)
≤ C16

𝛼3
s
(‖‖‖ěk‖‖‖2

2
+ ‖‖‖ěk+1‖‖‖2

2

)
+ C14

𝛼
s ‖‖‖ěk−1‖‖‖2

2
+ Bes ‖‖‖∇hěk−1∕2‖‖‖2

2

+ C1

𝛼
s3 ‖‖‖∇hěk‖‖‖2

2
+ sC13

(
s3 + h4

)2
, ∀𝛼 > 0.

(5.58)

Replacing the index k by l, summing on l, from l = 0 to l = k, and using ě0 ≡ 0 (by (4.15)), we have

‖‖‖ěk+1‖‖‖2

2
+ Bes ‖‖‖∇hěk+1‖‖‖2

2
+ s (2𝛼0 − 2𝛼)

k∑
l=1

‖‖‖∇hěl‖‖‖2

2

≤ s
(

C16

𝛼3
+ C14

𝛼

) k∑
l=1

‖‖‖ěl‖‖‖2

2
+ sC16

𝛼3

k∑
l=0

‖‖‖ěl+1‖‖‖2

2
+ C1

𝛼
s3

k∑
l=0

‖‖‖∇hěl‖‖‖2

2
+ sC13

k∑
l=0

(h4 + s3)2,

(5.59)

with Bc − 3Be = 𝛼0 > 0 as in (2.48). As a direct consequence, by taking 𝛼 = 𝛼0

2
, the following inequality holds:

1

1 − C17s
‖‖‖ěk+1‖‖‖2

2
+ Bes ‖‖‖∇hěk+1‖‖‖2

2
≤ sC18

𝛼3
0

k∑
l=1

‖‖‖el‖‖‖2

2
+ C1

𝛼
s3

k∑
l=0

‖‖‖∇hěl‖‖‖2

2
+ sC13

k∑
l=0

(h4 + s3)2, (5.60)
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with C17 ∶= C16

𝛼3
and C18 ∶= C16 + C14𝛼

2. We can always choose s with 1 − C17s ⩾ 1

2
. In turn, by denoting

Gl = 2
‖‖‖ěl‖‖‖2

2
+ Bes ‖‖‖∇hěl‖‖‖2

2
, (5.61)

we get

Gk+1 ≤ 2sC18

𝛼3
0

k∑
l=1

Gl + sC13

k∑
l=0

(h4 + s3)2, (5.62)

with the choice of s so that
C1s
𝛼

≤ 2Be. An application of the discrete Gronwall inequality yields the desired result:

‖‖‖ěk+1‖‖‖2

2
≤ Gk+1 ≤ C19

(
s3 + h4

)2
, so that

‖‖‖ěk+1‖‖‖2
≤ √

C19

(
s3 + h4

)
, (5.63)

with C19 independent on s and h. A more detailed exploration implies the structure of this constant: C19 = C11eC12tk+1

. As a

result, the a priori assumption (5.47) is recovered at the time step tk+1 so that an O(s4 + h4) convergence in 𝓁2 norm, between

the numerical solution and the constructed approximate solution Φ̌, has been established, using an induction argument.

Finally, the proof of Theorem 2.12 can be completed with the following application of triangle inequality:‖‖‖el‖‖‖2
= ‖‖‖𝜙l − Φl‖‖‖2

≤ ‖‖‖𝜙l − Φ̌l‖‖‖2
+ ‖‖‖Φl − Φ̌l‖‖‖2

≤ C
(
s2 + h2

)
, ∀l · s ≤ T , (5.64)

in which the error estimate (5.63) and the analysis (5.1) for the constructed solution are used.

Remark 5.6. The assumption (2.48) (for the physical parameters) is required in the convergence analysis for the nCH

equation. Such an assumption is necessary for the convex diffusion part to control the concave diffusion part, because of a

subtle estimate (5.5). As a consequence of this inequality, the assumption Bc > 3Be has to be made to make the convergence

analysis pass through. In comparison, for the nAC equation, this assumption is not required, as explained in Remark 3.2.

On the other hand, our extensive numerical experiments have implied that such an assumption only corresponds to a

technical difficulty in the convergence analysis. For most practical computational models, the second-order convergence is

well preserved as long as the positive-diffusivity condition (2.5) is valid.

Remark 5.7. We note that the second-order 𝓁∞(0,T;𝓁2) convergence for the nCH equation is conditional, ie, under a mild

linear refinement constraint, s ≤ Ch. In comparison, the 𝓁∞(0,T;𝓁2) convergence for the nAC equation is unconditional,

as explained in Remark 3.1.

Such a subtle difference comes from the analysis techniques for the nonlinear inner-products. For the nAC equation, the

decomposition (3.10) has greatly facilitated the error estimates, and the maximum norm bound of the numerical solution is

not needed in the derivation. However, for the nCH equation, since the discrete H1 inner-product of ěk+1∕2 and the nonlinear

error function have to be analyzed, we need to make an a priori assumption (5.47) at the previous time step, obtain a discrete

W1,∞ bound of the numerical solution, and the 𝓁∞(0,T;𝓁2) convergence estimate justifies the a priori assumption at the

next time step. This process is further facilitated by the higher order consistency analysis presented in Section 4.

5.4 Proof of Theorem 2.13: 𝓁∞(0,T;𝓁∞) convergence
With the O(s3 + h4) convergence result (5.63), in 𝓁2 norm, we apply the inverse inequality and get

‖‖‖ěk+1‖‖‖∞ ≤ C‖‖ěk+1‖‖2

h
d
2

≤ C
√

C19

(
s3 + h4

)
h

d
2

≤ C20

(
s2 + h2

)
, with d = 2, (5.65)

with the linear refinement constraint s ≤ Ch and C20 = C
√

C19. For the 3D case, a higher order asymptotic expansion of the

numerical solution has to be performed so that an O(s4 + h4) consistency and convergence in 𝓁2 norm are obtained. The details

are left to interested readers.

Subsequently, by combining the 𝓁∞ error estimate (5.65) and the analysis (5.1) for the constructed solution, we finish the

proof of Theorem 2.12 with an application of triangle inequality:‖‖‖el‖‖‖∞ = ‖‖‖𝜙l − Φl‖‖‖∞ ≤ ‖‖‖𝜙l − Φ̌l‖‖‖∞ + ‖‖‖Φl − Φ̌l‖‖‖∞ ≤ C
(
s2 + h2

)
, ∀l · s ≤ T . (5.66)
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Remark 5.8. In fact, in the a priori assumption (5.47), the detailed form of constants C11 and C12 has not been fixed; instead,

these 2 constants are fixed by inequality (5.63), with C19 = C11eC12tk+1

. In more details, C11 and C12 depend on the constants

C13, C14, … , C18.

However, this argument does not cause the trouble of a cycling analysis, because of the subtle fact that the subsequent

constants C13, … , C18 do not depend on C11 and C12. In fact, for the a priori assumption (5.47), we only require that C11

and C12 are bounded by a fixed constant, so that inequality (5.48) becomes valid. With the availability of (5.48), all the

subsequent constants C13, … , C18 do not depend on C11 and C12 at all.

5.5 The 𝓁∞(0,T;𝓁∞) convergence for the nAC equation
For the second-order convex splitting scheme (2.30) for the nAC equation, the higher order consistency analysis could be

performed in the same manner as in Section 4. In turn, an 𝓁∞(0,T;𝓁2) convergence estimate with an improved order O(s3 +h4)
is expected, and an application of inverse inequality leads to a similar 𝓁∞(0,T;𝓁∞) convergence result as Theorem 2.13, under

the linear refinement path constraint s ≤ Ch. The proof of the following theorem is skipped for brevity, and the details are left

to interested readers.

Theorem 5.9. Under the assumptions of Theorem 2.11, we also have optimal order convergence of the numerical solution
of the scheme (2.30) in the 𝓁∞ norm. Namely, if s and h are sufficiently small with the linear refinement path constraint
s ≤ Ch, with C any fixed constant, we have ‖‖‖el‖‖‖∞ ≤ C

(
h2 + s2

)
, (5.67)

where C > 0 is independent of h and s.

6 NUMERICAL RESULTS

In this section, we present a few numerical experiments, verifying the convergence results of the second-order schemes for the

nCH and nAC equations.

6.1 Numerical convergence for the nCH equation
Here we discuss the numerical results for the nCH equation. We present 2 cases, based on the restriction proposed in

Equation 2.48. These experiments verify the convergence rate in the 𝓁∞(0,T;𝓁2) norm. We use a square domain Ω =
(−0.5, 0.5)2 with smooth, periodic initial data 0.5 sin(2𝜋x1) sin(2𝜋x2). The convolution kernel J is taken to be

J = 𝛼 exp

(
−

x2
1
+ x2

2

𝜎2

)
, (6.1)

where 𝜎 = 0.05 and 𝛼 = 1

𝜎2
. We extend J periodically outside of Ω. The other parameters are 𝛾c = 4 and 𝛾e = 0 in the first

case, which yield 𝛼0 = 4 − 𝜋 > 0; and 𝛾c = 0 and 𝛾e = 1 in the second case, which yield 𝛼0 = −3 − 𝜋 < 0. The final time

for the tests is given by T = 0.01. To verify the spatial convergence order, we fix s = 10−4 and compare the difference function

eA with respect to h = 1∕64, 1∕128, 1∕256, 1∕512, and 1∕1024. Since we do not have the exact solution—these are not easily

obtained for nontrivial convolution kernels—we are using the difference between results on successive coarse and fine grids for

the numerical comparison. The difference function, eA, is evaluated at time T = 0.01 using the method described in previous

studies.48,58,59 To verify the temporal convergence order, we fix h = 1∕1024 and compare the difference function eA with respect

to s = 0.001, 0.0005, 0.00025, 0.000125, 0.0000625, and 0.00003125. The result is displayed in Tables 1 and 2 (𝛼0 = 4−𝜋 > 0)

and Tables 3 and 4 (𝛼0 = −3−𝜋 < 0) . In both cases, the spatial and temporal second-order accuracy of the method is confirmed.

6.2 Numerical convergence for the nAC equation
Here we discuss the numerical results for the nAC equation. First we present the experiment verifying the numerical convergence

rate. The setting of the experiment is the same as the nCH case, with 𝛾c = 0 and 𝛾e = 1 which yields 𝛼0 = −3 − 𝜋 < 0. The

result is displayed in Tables 5 and 6. The spatial and temporal second-order accuracy of the method is confirmed.
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TABLE 1 The difference between coarse and fine spatial discretization of

the computed numerical solutions, with 𝛼0 = 4 − 𝜋 and s = 0.0001

Coarse h Fine h ||eA||2 Rate

1/64 1/128 2.391350720781724e-05 —

1/128 1/256 5.973631155837239e-06 2.001145668661347

1/256 1/512 1.493114545413543e-06 2.000283313475169

1/512 1/1024 3.732652648708757e-07 2.000051680742358

The second-order spatial convergence of the method is confirmed in the test.

TABLE 2 The difference between coarse and fine temporal discretization

of the computed numerical solutions, with 𝛼0 = 4 − 𝜋 and h = 1∕1024

Coarse s Fine s ||eA||2 Rate

0.001 0.0005 0.001794295721092 —

0.0005 0.00025 0.000398264862447 2.171617576649190

0.00025 0.000125 0.000095965882587 2.053134700418730

0.000125 0.0000625 0.000023646151477 2.020916198465040

The second-order temporal convergence of the method is confirmed in the test.

TABLE 3 The difference between coarse and fine spatial discretization of

the computed numerical solutions, with 𝛼0 = −3 − 𝜋 and s = 0.0001

Coarse h Fine h ||eA||2 Rate

1/64 1/128 1.889677031506123e-04 —

1/128 1/256 4.731605521752042e-05 1.997737976601742

1/256 1/512 1.183367120319446e-05 1.999432084207052

1/512 1/1024 2.958708490313346e-06 1.999858250001422

The second-order spatial convergence of the method is confirmed in the test.

TABLE 4 The difference between coarse and fine temporal discretization

of the computed numerical solutions, with 𝛼0 = −3 − 𝜋 and h = 1∕1024

Coarse s Fine s ||eA||2 Rate

0.001 0.0005 0.014086218352630 —

0.0005 0.00025 0.003381770927788 2.058433507623583

0.00025 0.000125 0.000818756993775 2.046271708593699

0.000125 0.0000625 0.000202980831200 2.012091834242648

The second-order temporal convergence of the method is confirmed in the test.

TABLE 5 The difference between coarse and fine spatial discretization of

the computed numerical solutions, with 𝛾0 = −3 − 𝜋 and s = 0.0001

Coarse h Fine h ||eA||2 Rate

1/128 1/256 1.516375102958663e-04 −
1/256 1/512 3.791508908862791e-05 1.999782656594734

1/512 1/1024 9.479128597637906e-06 1.999945767307481

1/1024 1/2048 2.369804223848923e-06 1.999986561407764

The second-order spatial convergence of the method is confirmed in the test.

We also present experiments of phase separation described by the nAC equation under the following conditions: 1)Ω =
(−10, 10)2; 2) the size of time step is s = 0.01, the number of nodes on grid is 5122 and the total number of time iterations is
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TABLE 6 The difference between coarse and fine temporal discretization

of the computed numerical solutions, with 𝛼0 = −3 − 𝜋 and h = 1∕1024

Coarse s Fine s ||eA||2 Rate

0.001 0.0005 4.793803762722221e-07 —

0.0005 0.00025 1.198778499378929e-07 1.999605738770943

0.00025 0.000125 2.997276971768256e-08 1.999840802426613

0.000125 0.0000625 7.494493907180996e-09 1.999749442912903

The second-order temporal convergence of the method is confirmed in the test.

FIGURE 1 Phase separation described by nonlocal Allen-Cahn equation [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Energy evolution of phase separation [Colour figure can be viewed at wileyonlinelibrary.com]

104; 3) The convolution kernel J is a function defined as the difference between 2 Gaussians:

J = 𝛼 exp

(
−

x2
1
+ x2

2

𝜎2
1

)
− 𝛽 exp

(
−

x2
1
+ x2

2

𝜎2
2

)
, (6.2)

where 𝜎1 = 0.16, 𝜎2 = 0.4, 𝛼 = 0.1

𝜎2
1

and 𝛽 = 0.08

𝜎2
2

; 4)𝛾e = 0, 𝛾c = 0. The initial condition of the simulation is a random

perturbation of the constant state 𝜙ave = 0. Figure 1 shows snapshots of the evolution up to time T = 100, and Figure 2 shows

the corresponding numerical energy for the simulation. The energy is observed to decay as time increases.

7 CONCLUDING REMARKS

In this paper, we have presented the detailed convergence analyses for fully discrete second-order numerical schemes for nAC

and nCH equations. For the nAC equation, the standard procedure of consistency and stability estimates indicates the desired

convergence result, without any constraint between time step s and spatial grid size h, in which a careful nonlinear expansion

wileyonlinelibrary.com
wileyonlinelibrary.com
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has been used. For the nCH equation, such an approach does not work directly, and we have to an H−1 inner-product estimate of

this nonlinear numerical error is derived to establish convergence. In addition, because of the complicated form of the nonlinear

term, a careful expansion of its discrete gradient is necessary. In the convergence analysis for the nCH equation, an a priori

W1,∞ bound of the numerical solution at the discrete level has to be set, to pass through the error estimate. Such a bound can be

obtained by performing a higher order consistency analysis, up to accuracy order O(s3 + h4), by using asymptotic expansions

for the numerical solution. In turn, instead of a direct comparison between the exact and numerical solutions, an error estimate

between the numerical solution and the constructed approximate solution yields a higher order convergence in 𝓁∞(0,T;𝓁2)
norm, and such a result yields the necessary bound under a standard constraint s ≤ Ch. Moreover, the convergence in the 𝓁∞

norm is also proved in this paper, under the same constraint.
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APPENDIX A: FINITE DIFFERENCE DISCRETIZATION OF SPACE

Our primary goal in this appendix is to define some finite-difference operators and provide some summation-by-parts formulas

in 1 and 2 space dimensions that are used to derive and analyze the numerical schemes. Everything extends straightforwardly

to 3D. We make extensive use of the notation and results for cell-centered functions from two studies.57,58 The reader is directed

to those references for more complete details.

In 1D we will work on the interval Ω = (0,L), with L = m ·h, and in 2D, we work with the rectangle Ω = (0,L1)×(0,L2), with

L1 = m·h and L2 = n·h, where m and n are positive integers and h > 0 is the spatial step size. Define pr ∶= (r− 1

2
)·h, where r takes

on integer or half-integer values. For any positive integer 𝓁, define E𝓁 =
{

pr | r = 1

2
, … ,𝓁 + 1

2

}
, C𝓁 = {pr | r = 1, … ,𝓁},

C𝓁 = {pr · h | r = 0, … ,𝓁 + 1}. We need the 1D grid function spaces

m = {𝜙 ∶ Cm → R} , m = {u ∶ Em → R} ,

and the 2D grid function spaces

m×n = {𝜙 ∶ Cm × Cn → R} , m×n = { f ∶ Em × En → R} ,
ew

m×n = {u ∶ Em × Cn → R} , ns
m×n = {v ∶ Cm × En → R} .

We use the notation 𝜙i,j ∶= 𝜙
(
pi, pj

)
for cell-centered functions, ie, those in the space m×n. In component form east-west

edge-centered functions, ie, those in the space ew
m×n, are identified via ui+ 1

2
,j ∶= u(pi+ 1

2

, pj). In component form north-south
edge-centered functions, ie, those in the space ns

m×n, are identified via ui+ 1

2
,j ∶= u(pi+ 1

2

, pj). The functions of m×n are called

vertex-centered functions. In component form vertex-centered functions are identified via fi+ 1

2
,j+ 1

2

∶= f (pi+ 1

2

, pj+ 1

2

). The 1D

cell-centered and edge-centered functions are easier to express.

We will need the weighted 2D discrete inner-products ( · || · ), [ · || · ]ew, [ · || · ]ns that are defined in two studies57,58:

(𝜙||𝜓) = m∑
i=1

n∑
j=1

𝜙i,j𝜓i,j, 𝜙, 𝜓 ∈ m×n, (A1)

[
f ||g]

ew
= 1

2

m∑
i=1

n∑
j=1

(
fi+ 1

2
,jgi+ 1

2
,j + fi− 1

2
,jgi− 1

2
,j

)
, f , g ∈ ew

m×n, (A2)

[
f ||g]

ns
= 1

2

m∑
i=1

n∑
j=1

(
fi,j+ 1

2

gi,j+ 1

2

+ fi,j− 1

2

gi,j− 1

2

)
, f , g ∈ ns

m×n. (A3)

In addition to these, we will use the 2D discrete inner-product

⟨ f ||g⟩ = 1

4

m∑
i=1

n∑
j=1

(
fi+ 1

2
,j+ 1

2

gi+ 1

2
,j+ 1

2

+ fi+ 1

2
,j− 1

2

gi+ 1

2
,j− 1

2

+ fi− 1

2
,j+ 1

2

gi− 1

2
,j+ 1

2

+ fi− 1

2
,j− 1

2

gi− 1

2
,j− 1

2

)
, f , g ∈ ns

m×n.

(A4)
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We shall say the cell-centered function 𝜙 ∈ m×n is periodic if and only if, for all p, q ∈ Z,

𝜙i+p·m,j+q·n = 𝜙i,j i = 1, … ,m, j = 1, … , n. (A5)

Here we have abused notation a bit, since 𝜙 is not explicitly defined on an infinite grid. Of course, 𝜙 can be extended as a

periodic function in a perfectly natural way, which is the context in which we view the last definition. Similar definitions are

implied for periodic edge-centered and vertex-centered grid functions. The 1D and 3D cases are analogous and are suppressed.

The reader is referred to previous studies57,58 for the precise definitions of the edge-to-center difference operators dx ∶ ew
m×n →

m×n and dy ∶ ns
m×n → m×n; the x-dimension center-to-edge average and difference operators, respectively, Ax, Dx ∶ m×n →

ew
m×n; the y-dimension center-to-edge average and difference operators, respectively, Ay, Dy ∶ m×n → ns

m×n; and the standard

2D discrete Laplacian, Δh ∶ m×n → m×n. These operators have analogs in 1D and 3D that should be clear to the reader.

We will use the grid function norms defined in previous studies.57,58 The reader is referred to those references for the precise

definitions of ‖ · ‖2, ‖ · ‖∞, ‖ · ‖p (1 ≤ p < ∞), ‖ · ‖0,2, ‖ · ‖1,2, and ‖𝜙‖2,2. We will specifically use the following inverse

inequality in 2D: for any 𝜙 ∈ m×n and all 1 ≤ p < ∞

‖𝜙‖∞ ≤ h− 2

p ‖𝜙‖p. (A6)

Again, the analogous norms in 1D and 3D should be clear.

Using the definitions given in this appendix and in previous studies,57,58 we obtain the following summation-by-parts formulas

whose proofs are simple:

Proposition A.1. If 𝜙 ∈ m×n and f ∈ ew
m×n are periodic then

h2
[
Dx𝜙|| f

]
ew = −h2 (𝜙||dx f ) , (A7)

and if 𝜙 ∈ m×n and f ∈ ns
m×n are periodic then

h2
[
Dy𝜙|| f

]
ns = −h2

(
𝜙||dyf

)
. (A8)

Proposition A.2. Let 𝜙, 𝜓 ∈ m̄×n̄ be periodic grid functions. Then

h2 [Dx𝜙||Dx𝜓]ew + h2
[
Dy𝜙||Dy𝜓

]
ns = −h2 (𝜙||Δh𝜓) . (A9)

Proposition A.3. Let 𝜙, 𝜓 ∈ m×n be periodic grid functions. Then

h2 (𝜙||Δh𝜓) = h2 (Δh𝜙||𝜓) . (A10)

Analogs in 1D and 3D of the summation-by-parts formulas above are straightforward.
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