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In this article, we study a new second-order energy stable
Backward Differentiation Formula (BDF) finite difference
scheme for the epitaxial thin film equation with slope selec-
tion (SS). One major challenge for higher-order-in-time
temporal discretizations is how to ensure an unconditional
energy stability without compromising numerical efficiency
or accuracy. We propose a framework for designing a
second-order numerical scheme with unconditional energy
stability using the BDF method with constant coefficient sta-
bilizing terms. Based on the unconditional energy stability
property that we establish, we derive an �∞(0, T ; H2

h ) sta-
bility for the numerical solution and provide an optimal
convergence analysis. To deal with the highly nonlinear
four-Laplacian term at each time step, we apply efficient
preconditioned steepest descent and preconditioned nonlin-
ear conjugate gradient algorithms to solve the corresponding
nonlinear system. Various numerical simulations are pre-
sented to demonstrate the stability and efficiency of the
proposed schemes and solvers. Comparisons with other
second-order schemes are presented.
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1 INTRODUCTION

In this article, we will devise and analyze a numerical scheme for the epitaxial thin film model with
slope selection, or, for short, just the slope selection (SS) equation. This equation is the gradient flow
with respect to the energy

F[φ] :=
∫

Ω

(
1
4
(|∇φ|2 − 1

)2 + ε2

2
(Δφ)2

)
dx, (1.1)

where Ω = (0, Lx)× (0, Ly), φ : Ω → R is the height of the thin film and ε is a constant that represents
the width of the rounded corners on the otherwise faceted crystalline thin films. As is common, and
natural, we will assume that φ is Ω-periodic. The corresponding chemical potential is defined to be the
variational derivative of the energy (1.1), that is,

μ := δφF = −∇ · (|∇φ|2∇φ) + Δφ + ε2Δ2φ. (1.2)

The SS equation is the L2 gradient flow associated with the energy (1.1):

∂tφ = −μ = ∇ · (|∇φ|2∇φ) − Δφ − ε2Δ2φ. (1.3)

Models similar to this were studied by Aviles and Giga as a special case of smectic liquid crystals in
[1]. The limiting energy (as ε → 0) and the singularities of ∇φ were analyzed therein. As then it has
attracted considerable attention in several related fields. In [2], this SS energy functional was used to
describe those patterns and shapes formed in buckling-driven thin film blisters. In [3], Gioia and Ortiz
reviewed the experimental observations of blister morphologies and the models on delamination of
compressed thin films. In [4], this functional was viewed as a singular perturbation problem to study the
limiting energy. In [5], the similarity between this model and the magnetization energy was observed
and used to study the asymptotic limit of a family of functionals related to micro-magnetism theory.

In the thin film context, the energy of the SS equation can be considered as two distinct parts. The
first part is

FES[φ] :=
∫

Ω

1
4
(|∇φ|2 − 1

)2dx, (1.4)

which describes, in some coarse-grained sense, the Ehrlich-Schwoebel effect–the phenomenon where
atoms tend to move from a lower terrace to an upper terrace in the growth of atomic steps, promoting
surface instability. Mathematically, the term FES gives the energetic preference for epitaxial films with
slope satisfying |∇φ| = 1, as this represents the minima of FES. The second part,

FSD[φ] =
∫

Ω

ε2

2
(Δφ)2dx, (1.5)

represents surface diffusion, which promotes rounded corners in the film. A smaller value of ε corre-
sponds to a sharper, less rounded corner. There are some interesting physical predictions coming from
the SS model; for instance, the surface roughness is predicted to grow approximately at a rate propor-
tional to t1/3; and the energy decays at a rate approximately proportional to t−1/3 [6]. The saturation
time scale (for periodic domains) is expected to be on the order of ε−2 [7]. Energy stable schemes with
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higher order temporal accuracy have always been highly desirable because these processes are realized
only in the sense of very large times.

There have been several works focused on second-order-in-time schemes for the SS equation
in recent years. In [8], the authors proposed a hybrid scheme, one which combined a second-order
backward differentiation for the time derivative term and a second-order extrapolation for the explicit
treatment of the nonlinear term. A linear stabilization parameter A has to be sufficiently large to
guarantee the energy dissipation law for this scheme. A theoretical justification of the lower bound for
A has been derived for the first order scheme in [9] for related gradient flow models. Such an analysis
for a similar second-order-in-time scheme for the Cahn-Hilliard equation has been provided in [10].
The extension of such an analysis to the SS equation is expected to be available, with the lower bound
of A singularly dependent on ε−1. As an alternate approach, a second-order-in-time operator splitting
scheme was proposed for the SS equation in [11], in which the nonlinear part is solved using the fourth-
order central difference approximation combined with the third-order explicit Runge-Kutta method.
The corresponding convergence analysis was provided in [12]. Similar operator splitting ideas can also
be found in a recent work [13]. Some other second-order-in-time numerical approaches were reported
in recent years, such as a linearized finite difference scheme in [14], an adaptive time-stepping strategy
with Crank-Nicolson (CN) formulas in [15], the BDF and the CN formulas with invariant energy
quadratization (IEQ) strategy proposed in [16]. However, IEQ methods often suffer from spurious
oscillations in the numerical solutions, unless small time step sizes are used, due to the introduction
of an intermediate variable that has only weak stability control [17]. This may be expected for other
linearized auxiliary variable methods as well [17].

It is expected that significantly more spatiotemporal accuracy is achieved by keeping as much of
the PDE operator implicit as possible, even if the difficult terms are nonlinear or nonpositive [18].
Furthermore, it is observed that long-time energy stability could not be theoretically justified for many
of these numerical works, due to the explicit treatment for the nonlinear terms. In the existing literature,
the only second-order-in-time numerical algorithm for the SS equation (1.3) with a long time energy
stability could be found in [19], in which modified Crank-Nicolson approximations are used for the
nonlinear four-Laplacian term and the surface diffusion term, while an explicit extrapolation formula
is applied to the concave diffusion term, respectively. As a result, an unconditional energy stability is
derived via a careful energy estimate. Conversely, due to the complicated form of the nonlinear term
involved with the CN approximation, constructing efficient solvers for the scheme remains a challenge.

Any numerical scheme that treats the nonlinear terms implicitly—for the purposes of accuracy
or stability, or both—requires one to solve a regularized four-Laplacian-type equation, where the
highest-order term is a linear biharmonic operator. Consequently, an efficient solver for a regularized
p-Laplacian equation has always been highly desirable. In a recent work [20], a preconditioned steepest
descent (PSD) algorithm was proposed for such problems. At each iteration stage, only a purely linear
elliptic equation needs to be solved to obtain a search direction, and the numerical efficiency for such an
elliptic equation could be greatly improved with the use of FFT-based solvers. In turn, an optimization
in the given search direction becomes one-dimensional, with its well-posedness assured by convexity
arguments. Moreover, a geometric convergence of such an iteration could be theoretically derived, so
that a great improvement of the numerical efficiency is justified, in comparison with an application of
the Polak-Ribiére variant of NCG (nonlinear conjugate gradient) method [21], reported in [19, 22].

The PSD algorithm has been very efficiently applied to the first order energy stable scheme for
the SS equation, as reported in [20]. However, its application to the CN version of the second-order
energy stable scheme—what we will call the CN-ES scheme, proposed in [19]—faces some theoretical
questions. These difficulties come from a subtle fact that the approximation to the four-Laplacian term
in the CN-ES does not correspond to a convex energy functional. In this article, we propose a second
order BDF scheme for the SS Equation 1.3, so that the unique solvability, energy stability could
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be theoretically derived, and the PSD solver could be efficiently applied. In more details, an alternate
second order energy stable scheme is proposed, based on the second-order BDF temporal approximation
framework. The second-order BDF scheme treats and approximates every term at the time step tk+1

(instead of the time instant tk+1/2): a second-order BDF three-point stencil is applied in the temporal
derivative approximation, the nonlinear term and the surface diffusion terms are updated implicitly for
their strong convexities, and a second-order accurate, explicit extrapolation formula is applied in the
approximation of the concave diffusion term. Such a structure makes the numerical scheme uniquely
solvable. In addition, to ensure the energy stability of the numerical scheme, we need to add a second
order Douglas-Dupont regularization, in the form of −AτΔ(φk+1 − φk). We prove that under a mild
requirement A ≥ 1

16 , rigorous energy stability is guaranteed.
In fact, the second-order accurate, energy stable BDF scheme for the Cahn-Hilliard model was

analyzed in a recent article [23] with similar ideas. In particular, the nonlinear solver required for the
BDF scheme is reported to require 20 to 25% less computational effort than that for the Crank-Nicolson
version, due to the simpler form and stronger convexity properties of the nonlinear term. For the SS
equation (1.3), a much greater improvement (in terms of numerical efficiency) is expected for the
BDF approach, due to the more complicated form of the four-Laplacian term. This is observed in
our testing. Based on the unconditional energy stability, we derive an �∞(0, T ; H2

per) stability for the
numerical solution. In turn, with the help of Sobolev embedding from H2

per into W 1,6, we prove the
convergence of the proposed scheme.

The remainder of the article is organized as follows. In Section 2, we present the discrete spatial
difference operators, function space, inner products and norms, define the proposed second-order-in-
time fully discrete finite difference scheme and prove that the scheme is unconditionally stable and
uniquely solvable, provide that the stabilized parameter A ≥ 1/16. In Section 3, we provide a rigorous
convergence analysis and error estimate for the proposed scheme. The preconditioned steepest descent
solver and preconditioned nonlinear conjugate gradient solver is outlined in Sections 4.1 and 4.2,
respectively. Finally, numerical experiments are presented Section 5, and some concluding remarks
are given in Section 6.

2 THE FULLY DISCRETE SCHEME WITH FINITE
DIFFERENCE SPATIAL DISCRETIZATION IN 2D

2.1 Notation
In this section, we define the discrete spatial difference operators, function spaces, inner products and
norms, following the notation used in [7, 19, 20, 22, 24, 25]. Let Ω = (0, Lx) × (0, Ly), where, for
simplicity of presentation, we assume Lx = Ly =: L > 0. We write L = m · h, where m is a positive
integer. The parameter h = L

m is called the mesh or grid spacing. We define the following two uniforms,
infinite grids with grid spacing h > 0:

E :=
{

xi+ 1
2

| i ∈ Z
}

, C := {xi | i ∈ Z} ,

where xi = x(i) := (i − 1
2 ) · h. Consider the following 2D discrete periodic function spaces:

Vper :=
{
ν : E × E → R | νi+ 1

2 ,j+ 1
2

= νi+ 1
2 +α·m,j+ 1

2 +β·m, ∀i, j, α, β ∈ Z
}

,

Cper := {
ν : C × C → R | νi,j = νi+α·m,j+β·m, ∀i, j, α, β ∈ Z

}
,

E ew
per :=

{
ν : E × C → R | νi+ 1

2 ,j = νi+ 1
2 +α·m,j+β·m, ∀i, j, α, β ∈ Z

}
,
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Ens
per :=

{
ν : C × E → R | νi,j+ 1

2
= νi+α·m,j+ 1

2 +β·m, ∀i, j, α, β ∈ Z
}

.

The functions of Vper are called vertex centered functions; those of Cper are called cell centered functions.
The functions of E ew

per are called east-west edge-centered functions, and the functions of Ens
per are called

north-south edge-centered functions. We also define the mean zero space

C̊per :=
{

ν ∈ Cper

∣∣∣∣
h2

L2

m∑
i,j=1

νi,j =: ν = 0

}
.

We now introduce the important average and difference operators on the spaces:

Axνi+ 1
2 ,� := 1

2
(
νi+1,� + νi,�

)
, Dxνi+ 1

2 ,� := 1
h

(
νi+1,� − νi,�

)
,

Ayν�,i+ 1
2

:= 1
2

(
ν�,i+1 + ν�,i

)
, Dyν�,i+ 1

2
:= 1

h
(
ν�,i+1 − ν�,i

)
,

with Ax, Dx : Cper → E ew
per if � is an integer, and Ax, Dx : Ens

per → Vper if � is a half-integer, with
Ay, Dy : Cper → Ens

per if � is an integer, and Ay, Dy : E ew
per → Vper if � is a half-integer. Likewise,

axνi,� := 1
2

(
νi+ 1

2 ,� + νi− 1
2 ,�

)
, dxνi,� := 1

h

(
νi+ 1

2 ,� − νi− 1
2 ,�

)
,

ayν�,j := 1
2

(
ν�,j+ 1

2
+ ν�,j− 1

2

)
, dyν�,j := 1

h

(
ν�,j+ 1

2
− ν�,j− 1

2

)
,

with ax, dx : E ew
per → Cper if � is an integer, and ax, dx : Vper → Ens

per if � is a half-integer; and with
ay, dy : Ens

per → Cper if � is an integer, and ay, dy : Vper → E ew
per if � is a half-integer.

Also define the 2D center-to-vertex derivatives Dx, Dy : Cper → Vper component-wise as

Dxνi+ 1
2 ,j+ 1

2
:= Ay(Dxν)i+ 1

2 ,j+ 1
2

= Dx(Ayν)i+ 1
2 ,j+ 1

2

= 1
2h

(
νi+1,j+1 − νi,j+1 + νi+1,j − νi,j

)
,

Dyνi+ 1
2 ,j+ 1

2
:= Ax(Dyν)i+ 1

2 ,j+ 1
2

= Dy(Axν)i+ 1
2 ,j+ 1

2

= 1
2h

(
νi+1,j+1 − νi+1,j + νi,j+1 − νi,j

)
.

The utility of these definitions is that the differences Dx and Dy are collocated on the grid, unlike
Dx, Dy. We denote the 2D vertex-to-center derivatives dx, dy : Vper → Cper component-wise as

dxνi,j := ay(dxν)i,j = dx(ayν)i,j

= 1
2h

(
νi+ 1

2 ,j+ 1
2

− νi− 1
2 ,j+ 1

2
+ νi+ 1

2 ,j− 1
2

− νi− 1
2 ,j− 1

2

)
,

dyνi,j := ax(dyν)i,j = dy(axν)i,j

= 1
2h

(
νi+ 1

2 ,j+ 1
2

− νi+ 1
2 ,j− 1

2
+ νi− 1

2 ,j+ 1
2

− νi− 1
2 ,j− 1

2

)
.

In turn, the discrete gradient operator, ∇v
h : Cper → Vper × Vper, is defined as

∇v
h νi+ 1

2 ,j+ 1
2

:=
(
Dxνi+ 1

2 ,j+ 1
2
, Dyνi+ 1

2 ,j+ 1
2

)
.
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The standard 2D discrete Laplacian, Δh : Cper → Cper, is given by

Δhνi,j := dx(Dxν)i,j + dy(Dyν)i,j = 1
h2

(
νi+1,j + νi−1,j + νi,j+1 + νi,j−1 − 4νi,j

)
.

The 2D vertex-to-center average, A : Vper → Cper, is defined to be

Aνi,j := 1
4

(
νi+1,j + νi−1,j + νi,j+1 + νi,j−1

)
.

The 2D skew Laplacian, Δv
h : Cper → Cper, is defined as

Δv
hνi,j = dx(Dxν)i,j + dy(Dyν)i,j

= 1
2h2

(
νi+1,j+1 + νi−1,j+1 + νi+1,j−1 + νi−1,j−1 − 4νi,j

)
.

For p ≥ 2, the 2D discrete p-Laplacian operator is defined as

∇v
h ·

(
|∇v

h ν|p−2∇v
h ν

)
ij

:= dx(rDxν)i,j + dy(rDyν)i,j,

with

ri+ 1
2 ,j+ 1

2
:=

[
(Dxu)2

i+ 1
2 ,j+ 1

2
+ (Dyu)2

i+ 1
2 ,j+ 1

2

] p−2
2 .

Clearly, for p = 2, Δv
hν = ∇v

h · (|∇v
h ν|p−2∇v

h ν
)
.

Now, we are ready to introduce the following grid inner products:

(ν, ξ)2 := h2
m∑

i,j=1

νi,jψi,j, ν, ξ ∈ Cper,

�ν, ξ� := (A(νξ), 1)2, ν, ξ ∈ Vper,

[ν, ξ]ew := (Ax(νξ), 1)2, ν, ξ ∈ E ew
per,

[ν, ξ]ns := (
Ay(νξ), 1

)
2, ν, ξ ∈ Ens

per.

We now define the following norms for cell-centered functions. If ν ∈ Cper, then �ν�2
2 := (ν, ν)2;

�ν�p
p := (|ν|p, 1)2 (1 ≤ p < ∞), and �ν�∞ := max1≤i,j≤m|νi,j|. Similarly, we define the gradient norms:

for ν ∈ Cper,

�∇v
h ν�p

p := �|∇v
h ν|p, 1�, |∇v

h ν|p := [(Dxν)
2 + (Dyν)

2]
p
2 = [∇v

h ν · ∇v
h ν] p

2 ∈ Vper, 2 ≤ p < ∞,

and

�∇hν�2
2 := [Dxν, Dxν]ew + [Dyν, Dyν]ns.

The discrete � · �H1
h

and � · �H2
h

norms on periodic boundary domain defined as

�φ�2
H1

h
:= �φ�2

2 + �∇hφ�2
2, (2.1)

�φ�2
H2

h
:= �φ�2

H1
h

+ �Δhφ�2
2. (2.2)

1980 FENG et al.



FENG ET AL. 7

Lemma 2.1 For any φ ∈ Cper, we have

�∇hφ�2
2 ≥ �∇v

h φ�2
2. (2.3)

Proof By the definition of Dxφ, we get

Dxφi+ 1
2 ,j+ 1

2
= 1

2

(
(Dxφ)i+ 1

2 ,j + (Dxφ)i+ 1
2 ,j+1

)
, (2.4)

which in turn implies that

�Dxφ�2
2 := h2

m−1∑
i,j=0

(
Dxφi+ 1

2 ,j+ 1
2

)2 ≤ h2
m−1∑
i,j=0

(
Dxφi+ 1

2 ,j

)2
, (2.5)

that is

�Dxφ�2 ≤ �Dxφ�2. (2.6)

Likewise, we can also obtain �Dyφ�2 ≤ �Dyφ�2. These two inequalities lead to the
desired estimate; the proof of Lemma. 2.1 is complete.

The following preliminary estimates are needed in the convergence analysis presented in later
sections; the detailed proof is left to Appendix A.

Proposition 2.2 For any φ ∈ Cper with φ = 0, we have

�Δhφ�2
2 ≥ C1�φ�2

H2
h
, (2.7)

�φ�∞ ≤ C�φ�H2
h
, (2.8)

�φ�W1,6
h

:= �φ�6 + �∇v
h φ�6 ≤ C�φ�H2

h
, (2.9)

with C and C1 only dependent on Ω.

2.2 The fully discrete scheme
Let M ∈ Z+, and set s := T/M, where T is the final time. We define the mass-conservative grid
projection operator Ph: C0

per(Ω) → Cper via

[Phv]i,j = v(ξi, ξj) + αv,

where αv is chosen so that

∫

Ω

v(x)dx = (1, Phv)2.

FENG et al. 1981



8 FENG ET AL.

We denote by φe the exact solution to the SS equation (1.3) and take Φ� = Phφe(·, t�). With the
machinery in last subsection, our second-order-in-time BDF (BDF2-ES) type scheme can be formulated
as follows: for k ≥ 1, given φk−1, φk ∈ Cper, find φk+1 ∈ Cper such that

3φk+1 − 4φk + φk−1

2s
= ∇v

h · (|∇v
h φk+1|2∇v

h φk+1) − Δv
h(2φk − φk−1)

− AsΔ2
h(φ

k+1 − φk) − ε2Δ2
hφ

k+1, (2.10)

where φ0 := Φ0, φ1 := Φ1 and A is the constant stability coefficient. The SS equation (1.3) is mass
conservative, and it is easy see that the numerical Scheme 2.10 is mass conservative at a discrete level.
For simplicity of presentation, we assume that φ0 = φ1 = 0, so that φk = 0, for any k ≥ 2, where, for
spatially discrete functions, φ := 1

m2
∑m

i,j=1 φi,j.
We now introduce a discrete energy that is consistent with the continuous space energy (1.1) as

h → 0. In particular, the discrete energy Fh : Cper → R is defined as:

Fh[φ] = 1
4
�∇v

h φ�4
4 − 1

2
�∇v

h φ�2
2 + 1

2
ε2�Δhφ�2

2. (2.11)

Remark 2.3 We note that �∇v
h φ�p = 0 does not imply that φ is a constant. (A checker-

board function has norm zero). This defect of the skew stencil is not a concern in the
present context as the highest order norm in the energy uses a standard stencil.

We also define a modified numerical energy F̃h : Cper → R via

F̃h[φ, ψ] := Fh(φ) + 1
4s

�φ − ψ�2
2 + 1

2
�∇h(φ − ψ)�2

2. (2.12)

It is clear that

F̃h[Φ�, Φ�−1] → F[φe(t)],

as h, s → 0, for a sufficiently regular spatially Ω-periodic solution φe. Although we cannot guarantee
that the energy Fh is nonincreasing in time, we are able to prove the dissipation of auxiliary energy
F̃h. The unique solvability and the unconditional energy stability of Scheme 2.10 is assured by the
following theorem.

Theorem 2.4 Suppose that the exact solution φe is periodic, mean-zero, and sufficiently
regular, and φ0, φ1 ∈ Cper is obtained via mass-conservative projection, as defined above.
Given any (φk−1, φk) ∈ Cper, there is a unique solution φk+1 ∈ Cper to the Scheme 2.10.
The Scheme 2.10, with starting values φ0 and φ1, is unconditionally energy stable, that
is, for any s > 0 and h > 0, and any positive integer 2 ≤ k ≤ M − 1, The numerical
Scheme 2.10 has the following energy-decay property:

F̃h(φ
k+1, φk) ≤ F̃h(φ

k , φk−1) ≤ · · · ≤ F̃h(φ
1, φ0) ≤ C0, (2.13)

for all A ≥ 1
16 , where C0 > is a constant independent of s, h, and T.
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Proof The unique solvability follows from a convexity argument, and we omit it for the
sake of brevity. For the energy stability, taking an inner product with (2.10) by φk+1 −φk

yields

0 =
(

3φk+1 − 4φk + φk−1

2s
, φk+1 − φk

)

− (∇v
h · (|∇v

h φk+1|2∇v
h φk+1), φk+1 − φk) + (Δv

h(2φk − φk−1), φk+1 − φk)

+ As(Δ2
h(φ

k+1 − φk), φk+1 − φk) + ε2(Δ2
hφ

k+1, φk+1 − φk)

:= I1 + I2 + I3 + I4 + I5. (2.14)

We now establish the estimates for I1, · · · , I5. The temporal difference term could be
evaluated as follows

(
3φk+1 − 4φk + φk−1

2s
, φk+1 − φk

)
≥ 1

s

(
5
4
�φk+1 − φk�2

2 − 1
4
�φk − φk−1�2

2

)
. (2.15)

For the four-Laplacian term, we have

(−∇v
h · (|∇v

h φk+1|2∇v
h φk+1), φk+1 − φk) = (|∇v

h φk+1|2∇v
h φk+1, ∇v

h (φk+1 − φk)
)

≥ 1
4

(�∇v
h φk+1�4

4 − �∇v
h φk�4

4
)

. (2.16)

For the concave diffusive term, the following estimate is valid

(
Δv

h(2φk − φk−1), φk+1 − φk) = − (∇v
h (2φk − φk−1), ∇v

h (φk+1 − φk)
)

= − (∇v
h φk , ∇v

h (φk+1 − φk)
) − (∇v

h (φk − φk−1), ∇v
h (φk+1 − φk)

)

= −1
2
�∇v

h φk+1�2
2 + 1

2
�∇v

h φk�2
2 + 1

2
�∇v

h (φk+1 − φk)�2
2 − (∇v

h (φk − φk−1), ∇v
h (φk+1 − φk)

)

≥ −1
2

(�∇v
h φk+1�2

2 − �∇v
h φk�2

2
) − 1

2
�∇v

h (φk − φk−1)�2
2

≥ −1
2

(�∇v
h φk+1�2

2 − �∇v
h φk�2

2
) − 1

2
�∇h(φ

k − φk−1)�2
2, (2.17)

where the last step applied the Lemma 2.1.
For the surface diffusion term, we have

(
Δ2

hφ
k+1, φk+1 − φk) = (

Δhφ
k+1, Δh(φ

k+1 − φk)
) ≥ 1

2
(�Δhφ

k+1�2
2 − �Δhφ

k�2
2
)

. (2.18)

Similarly, the following identity is valid for the stabilizing term:

s
(
Δ2

h(φ
k+1 − φk), φk+1 − φk) = s�Δh(φ

k+1 − φk)�2
2. (2.19)

Meanwhile, an application of Cauchy inequality indicates the following estimate:

1
s
�φk+1 − φk�2

2 + As�Δh(φ
k+1 − φk)�2

2 ≥ 2A1/2�∇h(φ
k+1 − φk)�2

2. (2.20)

FENG et al. 1983
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Therefore, a combination of (2.15–2.17) and (2.20) yields

Fh(φ
k+1) − Fh(φ

k) + 1
4s

(�φk+1 − φk�2
2 − �φk − φk−1�2

2
)

+ 1
2

(�∇h(φ
k+1 − φk)�2

2 − �∇h(φ
k − φk−1)�2

2
)

≤
(

−2A1/2 + 1
2

)
�∇h(φ

k+1 − φk)�2
2 ≤ 0, (2.21)

provided that A ≥ 1
16 . Then the proof follows from the definition of the F̃h in (2.12).

Remark 2.5 There is another epitaxial thin film growth model, namely, the no-slope-
selection (NSS) equation that has attracted some attention over the years. Consider the
following energy functional:

E[φ] :=
∫

Ω

(
−1

2
ln(1 + |∇φ|2) + ε2

2
(Δφ)2

)
dx. (2.22)

The NSS dynamical equation is the L2 gradient flow with respect to this energy:

∂tφ = −μ, μ := δφE = ∇ ·
( ∇φ

1 + |∇φ|2

)
+ ε2Δ2φ. (2.23)

Some previous works have described and analyzed second-order accurate energy sta-
ble numerical schemes for the NSS equation (2.23). In particular, it has been demonstrated
in two recent works [26, 27] that, as the nonlinear term has automatically L∞-bounded
higher order derivatives in this model, either a linear scheme or a linear iteration algorithm
could be efficiently designed for the NSS equation (2.23), with energy stability theoreti-
cally justified. In other words, the logarithmic nature of the energy functional for the NSS
model enables one to derive linear schemes to obtain second order temporal accuracy and
energy stability, so that a complicated nonlinear solver may be avoided.

Remark 2.6 The idea of the proposed Scheme 2.10, the BDF temporal approximation
combined with a second-order Douglas-Dupont regularization, may provide a framework
for a more general class of gradient flows, specifically, those with p-Laplacian nonlinear
terms involved. For example, the square phase field crystal (SPFC) equation [28–31]
models crystal dynamics at the atomic scale in space but on diffusive scales in time, while
keeping “square” symmetry crystal lattice structures. This model is an H−1 gradient flow
of an energy functional containing a four-Laplacian energy density. As another example,
for the functionalized Cahn-Hilliard model [32–38] a convex–concave decomposition for
the corresponding energy functional has been revealed in a recent work [24], in which a
four-Laplacian term appears in the convex part. For these related models, the numerical
approach of this article could be extended to obtain second order accurate, energy stable
numerical schemes, and the preconditioned steepest descent and preconditioned nonlinear
conjugate gradient solvers, which will be outlined in Sections 4.1 and 4.2, could be
efficiently applied.

1984 FENG et al.
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Remark 2.7 The stability property established in Theorem 2.4 is in terms of a modified
energy functional, as given by (2.12), which contains the original energy functional, com-
bined with two non-negative numerical corrections terms. In turn, the stability estimate
for such a modified energy functional indicates a uniform in time bound for the original
energy (at a discrete level), and such a bound is uniform in ε. Similar estimates could
be derived for the second order energy stable scheme [19], based on the Crank-Nicolson
approach. These uniform bounds for the original energy functional will play an essential
role in the convergence analysis.

In comparison, there has been other work of second order energy stable schemes for
the SS equation [16], with the invariant energy quadratization (IEQ) approach applied.
Meanwhile, we notice that, an alternate variable, denoted as a second order approximation
to v = |∇φ|2 − 1, has been introduced in the IEQ approach, and the energy stability is in
terms of a pair of numerical variables (φ, v). Conversely, an ε-independent bound for the
original energy functional is not available for this scheme. Furthermore, the authors of
[17] have observed spurious oscillation is the numerical solutions of some IEQ schemes.
This is due to the fact that the stability of the variable v is only quite weak.

Remark 2.8 It is clear that a fully implicit treatment for the four-Laplacian term is needed
in (2.10) to pass through the stability analysis, due to its convexity property. Meanwhile,
if the coefficient term, namely |∇v

h φk+1|2, is replaced by an explicit extrapolation one,
such as |∇v

h (2φk − φk−1)|2, the unique solvability could still be established, due to its
positivity, while a theoretical justification of the energy stability is not directly available.
We believe the stability analysis reported in [10] could be similarly applied for this
(variable-coefficient) linear scheme, with a different lower bound requirement for A,
expected to be singularly dependent on ε−1. The technical details are left to interested
readers.

2.3 �∞(0, T; H2
h) stability of the numerical scheme

The �∞(0, T ; H2
h ) bound of the numerical solution could be derived based on the modified energy

stability (2.13).

Theorem 2.9 Let φ ∈ CΩ, then the �∞(0, T ; H2
h ) bound of the numerical solution is as

follows:

�φ�H2
h

≤
√

2
C0 + |Ω|

C1ε2 := C2, (2.24)

where C2 is independent of s, h, and T.

Proof As

1
8
ψ4 − 1

2
ψ2 ≥ −1

2
, (2.25)

then we have

1
8
�∇v

h φ�4
4 − 1

2
�∇v

h φ�2
2 ≥ −1

2
|Ω|, (2.26)

FENG et al. 1985
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with the discrete H1
h norm introduced in (2.1). Then we arrive at the following bound, for

any φ ∈ CΩ:

Fh(φ) ≥ 1
8
�∇v

h φ�4
4 + ε2

2
�Δhφ�2

2 − 1
2
|Ω|

≥ 1
2
�∇v

h φ�2
2 + ε2

2
�Δhφ�2

2 − |Ω|

≥ ε2

2
�Δhφ�2

2 − |Ω|

≥ 1
2

C1ε
2�φ�2

H2
h

− |Ω|, (2.27)

in which C1 is a constant associated with the discrete elliptic regularity: �Δhφ�2
2 ≥

C1�φ�2
H2

h
, as stated in (2.7) of Proposition 2.2. Consequently, its combination with (2.12)

finishes the proof.

Remark 2.10 Note that the constant C2 is independent of s, h, and T, but does depends
on ε. In particular, C2 = O(ε−1).

Remark 2.11 As a further consequence of the H2
h bound (2.24), we are able to obtain

an �∞ estimate for the numerical solution

�φm�∞ ≤ C�φm�H2
h

≤ CC2, ∀m ≥ 0, (2.28)

in which the first inequality comes from a discrete Sobolev inequality, �f �∞ ≤ C�f �H2
h
,

as given by (2.9) in Proposition 2.2.
In addition to the � · �∞ bound for the phase variable, a discrete W 1,∞ estimate could

be derived through a more careful analysis. In more details, by taking a discrete inner
product with (2.10) by −Δ3

hφ
k+1, performing a nonlinear estimate, we are able to derive

an �∞(0, T ; H3
h ) estimate for the numerical solution, following similar ideas as in [39].

Subsequently, the discrete W 1,∞ bound comes from a similar discrete Sobolev inequality:
�f �∞ + �∇hf �∞ ≤ C�f �H3

h
.

3 CONVERGENCE ANALYSIS AND ERROR ESTIMATE

3.1 Error equations and consistency analysis
A detailed Taylor expansion implies the following truncation error:

3Φk+1 − 4Φk + Φk−1

2s
= ∇v

h · (|∇v
h Φk+1|2∇v

h Φk+1) − Δv
h(2Φk − Φk−1)

− AsΔ2
h(Φ

k+1 − Φk) − ε2Δ2
hΦ

k+1 + τk , (3.1)

with �τk�2 ≤ C(h2 + s2). Consequently, with an introduction of the error function

ek = Φk − φk , ∀k ≥ 0, (3.2)

1986 FENG et al.
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we get the following evolutionary equation, by subtracting (2.10) from (3.1):

3ek+1 − 4ek + ek−1

2s
= ∇v

h · (|∇v
h Φk+1|2∇v

h Φk+1 − |∇v
h φk+1|2∇v

h φk+1)

− Δv
h(2ek − ek−1) − AsΔ2

h(e
k+1 − ek) − ε2Δ2

hek+1 + τk , (3.3)

In addition, from the PDE analysis for the SS equation in [40, 44] and the global in time H2
h stability

(2.24) for the numerical solution, we also get the �∞, W 1,6, and H2
h bounds for both the exact solution

and numerical solution, uniform in time:

�Φk�∞, �Φk�W1,6 , �Φk�H2
h

≤ C3, �φk�∞, �φk�W1,6 , �φk�H2
h

≤ C3, ∀k ≥ 0, (3.4)

where the 3D embeddings of H2
h into �∞ and into W 1,6 have been applied, as well as the discrete

Sobolev embedding inequalities (2.8), (2.9) in Proposition 2.2.

3.1.1 Stability and convergence analysis

The convergence result is stated in the following theorem.

Theorem 3.1 Let Φ ∈ R be the projection of the exact periodic solution of the SS
equation (1.3) with the initial data φ0 := Φ0 ∈ H2

per(Ω), φ1 := Φ1 ∈ H2
per(Ω), and the

regularity class

R = H3(0, T ; C0(Ω)) ∩ H2(0, T ; C2(Ω)) ∩ H1(0, T ; C4(Ω)) ∩ L∞(0, T ; C6(Ω)). (3.5)

Suppose φ is the fully discrete solution of (2.10). Then, the following convergence result
holds as s, h goes to zero:

�ek�2 +
(

3
16

ε2s
k∑

�=0

�Δhe��2

)1/2

≤ C(s2 + h2), (3.6)

where the constant C > 0 is independent of s and h.

Proof Taking an inner product with the numerical error Equation 3.3 by ek+1 gives

0 =
(

3ek+1 − 4ek + ek−1

2s
, ek+1

)
+ (|∇v

h Φk+1|2∇v
h Φk+1 − |∇v

h φk+1|2∇v
h φk+1, ∇v

h ek+1)

− (∇v
h (2ek − ek−1), ∇v

h ek+1) + As
(
Δh(ek+1 − ek), Δhek+1)

+ ε2 (
Δhek+1, Δhek+1) − (

τk , ek+1)

=: J1 + J2 + J3 + J4 + J5 + J6. (3.7)

For the time difference error term J1,

(
3ek+1 − 4ek + ek−1

2s
, ek+1

)
= 3

4s
�ek+1�2

2 − 1
s
�ek�2

2 + 1
4s

�ek−1�2
2

+ 1
s
�ek+1 − ek�2

2 − 1
4s

�ek+1 − ek−1�2
2. (3.8)

FENG et al. 1987



14 FENG ET AL.

For the backwards diffusive error term J3, we have

− (∇v
h (2ek − ek−1), ∇v

h ek+1) = −1
2
�∇v

h ek+1�2
2 − �∇v

h ek�2
2 + 1

2
�∇v

h ek−1�2
2

+ �∇v
h (ek+1 − ek)�2

2 − 1
2
�∇v

h (ek+1 − ek−1)�2
2. (3.9)

And for the stabilizing term J4,

As
(
Δh(ek+1 − ek), Δhek+1) = As

2
(�Δhek+1�2

2 − �Δhek�2
2 + �Δh(ek+1 − ek)�2

2
)

. (3.10)

For the surface diffusion error term J5 and the local truncation error term J6, we have

ε2 (
Δhek+1, Δhek+1) = ε2�Δhek+1�2

2, (3.11)

and

− (
τk , ek+1) ≤ �τk�2 · �ek+1�2 ≤ 1

2
�τk�2

2 + 1
2
�ek+1�2

2. (3.12)

For the nonlinear error term J2, we adopt the same trick in [24], and get

J2 = (|∇v
h Φk+1|2∇v

h Φk+1 − |∇v
h φk+1|2∇v

h φk+1, ∇v
h ek+1)

= (∇v
h (Φk+1 + φk+1) · ∇v

h ek+1∇v
h Φk+1, ∇v

h ek+1) + (|∇v
h φk+1|2∇v

h ek+1, ∇v
h ek+1)

=: J2,1 + J2,2. (3.13)

For the first part J2,1 of (3.13), we have

−J2,1 ≤ C4
(�∇v

h Φk+1�6 + �∇v
h φk+1�6

) · �∇v
h Φk+1�6 · �∇v

h ek+1�6 · �∇v
h ek+1�2

≤ C5C2
3�∇v

h ek+1�6 · �∇v
h ek+1�2

≤ C5C2
3�∇v

h ek+1�6 · �∇hek+1�2, (3.14)

in which the W 1,6 bound (3.4) for the exact and numerical solutions was recalled in the
second step. Moreover, with an application of the discrete Sobolev embedding (2.9) (from
H2

h into W 1,6), and the discrete elliptic regularity estimate (2.7), in Proposition 2.2, we get

�∇v
h ek+1�6 ≤ C�ek+1�H2

h
≤ C(C1)

−1/2�Δhek+1�2. (3.15)

Meanwhile, the following interpolation inequality is valid:

�∇hek+1�2 ≤ �ek+1�
1
2
2 �Δhek+1�

1
2
2 , as�∇hek+1�2

2 = −(ek+1, Δhek+1) ≤ �ek+1�2 · �Δhek+1�2. (3.16)

In turn, a substitution of (3.15) and (3.16) into (3.14) results in

−J2,1 ≤ C6�Δhek+1�2 · �ek+1�
1
2
2 �Δhek+1�

1
2
2

= C6�ek+1�
1
2
2 · �Δhek+1�

3
2
2

≤ C7�ek+1�2
2 + 3

4
ε2�Δhek+1�2

2, (3.17)
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in which C6 = C(C1)
−1/2C5C2

3 , and the Young’s inequality was applied in the last step.
The estimate for the second part J2,2 of (3.13) is trivial:

J2,2 ≥ 0. (3.18)

Then, we arrive at

−J2 ≤ C8�ek+1�2
2 + 3

4
ε2�Δhek+1�2

2. (3.19)

Finally, a combination of (3.8), (3.9), (3.10), (3.11), (3.12), and (3.19) yields that

3
4s

(�ek+1�2
2 − �ek�2

2
) − 1

4s
(�ek�2

2 − �ek−1�2
2
) + 1

2s
�ek+1 − ek�2

2

− 1
2s

�ek − ek−1�2
2 + As

2
(�Δhek+1�2

2 − �Δhek�2
2
) + ε2�Δhek+1�2

2

≤ 1
2
�τk�2

2 + 1
2
�ek+1�2

2 + C8�ek+1�2
2 + 3

4
ε2�Δhek+1�2

2

− �∇v
h ek+1�2

2 − 2�∇v
h ek�2

2 − �∇v
h (ek+1 − ek−1)�2

2

+ 4ε−2�ek+1�2
2 + 288ε−2�ek�2

2 + 72ε−2�ek−1�2
2

+ 1
16

ε2 (�Δhek+1�2
2 + �Δhek�2

2 + �Δhek−1�2
2
)

. (3.20)

A summation in time implies that

3
4s

(�ek+1�2
2 − �e1�2

2
) − 1

4s
(�ek�2

2 − �e0�2
2
) + 1

2s
�ek+1 − ek�2

2

− 1
2s

�e1 − e0�2
2 + As

2
(�Δhek+1�2

2 − �Δhe0�2
2
) + 3

16
ε2

k∑
�=1

�Δhe�+1�2
2

≤ 1
2

n∑
�=1

�τ��2
2 +

k∑
�=1

(
1
2

+ C8 + 4ε−2
)

�e�+1�2
2

+ 72ε−2
k∑

�=1

(
4�e��2

2 + �e�−1�2
2
) + 1

16
ε2

k∑
�=1

(�Δhe��2
2 + �Δhe�−1�2

2
)

. (3.21)

In turn, an application of discrete Gronwall inequality yields the desired convergence
result (3.1). This completes the proof of Theorem 3.6.

4 PRECONDITIONED DESCENT SOLVERS

4.1 Preconditioned steepest descent
In this section, we describe a preconditioned steepest descent (PSD) algorithm following the practical
and theoretical framework in [20]. The nonlinear, fully discrete scheme (2.10) at a fixed time level
may be expressed as

Nh[φ] = f , (4.1)

FENG et al. 1989
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with

Nh[φ] = φk+1 − 2s
3

∇v
h · (|∇v

h φk+1|2∇v
h φk+1) + 2s(ε2 + As)

3
Δ2

hφ
k+1, (4.2)

and

f = 4
3
φk − 1

3
φk−1 − 2s

3
Δv

h(2φk − φk−1) + 2As2

3
Δ2

hφ
k . (4.3)

The problem can be recast as a minimization problem: For any φ ∈ Cper, the following energy functional
is introduced:

Eh[φ] = 1
2
�φ�2

2 + 2s
12

�∇v
h φ�4

4 + 2s(ε2 + As)
6

�Δhφ�2
2 − (f , φ) . (4.4)

One observes that the fully discrete scheme (4.1) is the discrete variation of the strictly convex energy
(4.4) set equal to zero. In particular, the discrete variation is

δφEh[φ] = Nh[φ] − f .

The main idea of the PSD solver is to use a linearized version of the nonlinear operator as a
preconditioner, or in other words, as a metric for choosing the search direction. A linearized version
of the nonlinear operator Nh, denoted as Lh : C̊per → C̊per, is defined as follows:

Lh[ψ] := ψ − γsΔhψ + 2s(ε2 + As)
3

Δ2
hψ,

where γ ≥ 0 is a parameter chosen to optimize the performance of the pre-conditioner. Clearly, this is
a positive, symmetric operator, and we use this as a preconditioner for the method. Specifically, this
“metric” is used to find an appropriate search direction for the steepest descent solver [20]. Given the
current iterate φn ∈ Cper, we define the following search direction problem: find dn ∈ C̊per such that

Lh[dn] = f − Nh[φn] := rn,

where rn is the nonlinear residual of the nth iterate φn. This last equation can be solved efficiently using
the Fast Fourier Transform (FFT).

We then obtain the next iterate as

φn+1 = φn + αndn, (4.5)

where αn ∈ R is the unique solution to the steepest descent line minimization problem

αn := argmin
α∈R

Eh[φn + αdn] = argzero
α∈R

δφEh[φn + αdn](dn). (4.6)

The theoretical analysis in [20] suggests that the iteration sequence φn converges geometrically to
φk+1, with φk+1 the exact numerical solution of scheme (2.10) at time level k + 1, that is, Nh[φk+1] = f .
Importantly, the analysis implies a convergence rate that is independent of h.
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Remark 4.1 The energy stable Crank-Nicolson (CN-ES) scheme for the SS equation
(1.3), proposed and analyzed in [19], takes the following (spatially continuous) form:

φk+1 − φk

s
= χ(∇φk+1, ∇φk) − Δ

(
3
2
φk − 1

2
φk−1

)
− ε2

2
Δ2 (

φk+1 + φk) ,

χ(∇φk+1, ∇φk) := 1
4
∇ · (

(|∇φk+1|2 + |∇φk|2)∇(φk+1 + φk)
)

. (4.7)

In this numerical approach, every term in the chemical potential is evaluated at time
instant tk+1/2.

Both the CN-ES scheme (4.7) and the BDF2-ES scheme (2.10) require a nonlinear
solver, while the nonlinear term in (4.7) takes a more complicated form than (2.10), which
comes from different time instant approximations. As a result, a stronger convexity of the
nonlinear term in the BDF one (2.10) is expected to improve the numerical efficiency in
the nonlinear iteration.

Such a numerical comparison has been undertaken for the Cahn-Hilliard (CH) model
in recent works: the analogous CN-ES and BDF2-ES numerical schemes for the CH
equation, proposed in [39, 23], respectively, were tested using a similar numerical setup.
The numerical experiments have indicated that, since the nonlinear term in the BDF2-
ES approach has a stronger convexity than the one in the CN-ES scheme, a 20 to 25%
improvement of the computational efficiency is generally available for the CH model.

For the numerical comparison between the present BDF2-ES and CN-ES approaches
for the SS equation (1.3), namely (2.10), and (4.7), respectively, such an efficiency
improvement is expected to be even greater. This expectation comes from a subtle fact
that, the modified CN approximation to the four-Laplacian term, χ(∇φk+1, ∇φk), does
not correspond to a convex energy functional, because of the vector gradient form (other
than a scalar form) in the four-Laplacian expansion. As a consequence, the PSD algo-
rithm proposed in this section fails to have theoretical justification as a solver for (4.7).
An application of the Polak-Ribiére variant of NCG method [21] to solve for (4.7), as
reported in [19], has shown fairly poor numerical performance, although this may be
improved by some preconditioning strategy. See more details in Section 5.

4.2 Preconditioned nonlinear conjugate gradient solvers
The preconditioned nonlinear conjugate gradient (PNCG) algorithm is given by the following recursive
formulae [42]:

rn = f − Nh[φn]; (4.8)

yn = L−1
h [rn]; (4.9)

dn =
{

y0 n = 0
yn + βndn−1 n ≥ 1

; (4.10)

φn+1 = φn + αndn, αn = argzero
α∈R

δEh[φn + αdn](dn) (4.11)

There are several different ways to choose the parameter βn. We use the following in our tests:

FENG et al. 1991



18 FENG ET AL.

Fletcher-Reeves [43]:

βFR
n = (rn)T yn

(rn−1)
T yn−1

. (4.12)

Polak-Ribière [44]:

βPR
n = (rn)T (yn − yn−1)

(rn−1)
T yn−1

. (4.13)

PNCG1:

βn+1 = max
{
0, βPR

n+1
}

. (4.14)

PNCG2 [45]:

βn+1 = max
{
0, min

{
βFR

n+1, βPR
n+1

}}
, (4.15)

called the hybrid conjugate gradient algorithm in [45].

5 NUMERICAL EXPERIMENTS

5.1 Convergence test and the complexity of the preconditioned solvers
In this subsection, we demonstrate the accuracy and complexity of the preconditioned solvers. We
present the results of the convergence test and perform some sample computations to investigate the
effect of the time step s and stabilized parameter A for the energy Fh(φ).

To simultaneously demonstrate the spatial accuracy and the efficiency of the solver, we perform a
typical time-space convergence test for the fully discrete scheme (2.10) for the slope selection model.
As in [19, 22, 46], we perform the Cauchy-type convergence test using the following periodic initial
data [19]:

u(x, y, 0) = 0.1sin2
(

2πx
L

)
· sin

(
4π(y − 1.4)

L

)

− 0.1 cos
(

2π(x − 2.0)

L

)
· sin

(
2πy

L

)
, (5.1)

with Ω = [0, 3.2]2, ε = 0.1, s = 0.01h, A = 1/16, and T = 0.32. We use a linear refinement path,
that is, s = Ch. At the final time T = 0.32, we expect the global error to be O(s2) + O(h2) = O(h2),
in either the �2 or �∞ norm, as h, s → 0. The Cauchy difference is defined as δφ := φhf − I f

c (φhc),
where I f

c is a bilinear interpolation operator (which is similar to the 2D case in [20, [24] and the
3D case in [47]). This requires a relatively coarse solution, parametrized by hc, and a relatively fine
solution, parametrized by hf , in particular hc = 2hf , at the same final time. The �2 norms of Cauchy
difference and the convergence rates can be found in Table 1. The results confirm our expectation for
the second-order convergence in both space and time.

In the second part of this test, we demonstrate the complexity of the preconditioned solvers with
initial data (5.1). In Figure 1, we plot the semilog scale of the relative residuals versus preconditioned
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TABLE 1 Errors, convergence rates, average iteration numbers and average CPU time (in seconds) for each
time step

PSD PNCG1 PNCG2

hc hf ‖δφ‖2 Rate #iter Tcpu(hf ) #iter Tcpu(hf ) #iter Tcpu(hf )

3.2
16

3.2
32 1.3938 × 10−2 – 11 .0019 9 .0016 9 .0015

3.2
32

3.2
64 1.7192 × 10−3 3.02 10 .0103 9 .0093 8 .0085

3.2
64

3.2
128 3.8734 × 10−4 2.15 08 .0529 8 .0486 7 .0454

3.2
128

3.2
256 9.4766 × 10−5 2.03 07 .2512 7 .2038 6 .2046

3.2
256

3.2
512 2.3564 × 10−5 2.01 07 1.6650 7 1.6268 6 1.5207

Parameters are given in the text, and the initial data is defined in (5.1). The refinement path is s = .01h

solvers’ iteration numbers for various values of h and ε at T = .02, with time step s = 10−3. The other
common parameters are set as A = 1/16, Ω = [0, 3.2]2. The figures in the top row of Figure 1 indicate
that the convergence rate (as gleaned from the error reduction) is nearly uniform and nearly independent
of h for a fixed ε. And the plots in the bottom row of Figure 1 show that the number of preconditioned
solvers’ iterations increases with a decreasing value of ε, which confirms the theoretical results that the
PSD solver is dependent on parameter ε in [20]. Figure 1 confirms the expected geometric convergence
rate of the PSD solver predicted by the theory in [20]. Moreover, the number of the interaction steps in
Figure 1 also indicate that PNCG2 is the most efficient one and PNCG1 is better than PSD, especially
when ε is small.

In the third part of this test, we perform CPU time comparison between the proposed preconditioned
solvers and the PSD solver with random initial data. The initial data for the simulations are taken as
essentially random:

u0
i,j = .05 · (2ri,j − 1), (5.2)

FIGURE 1 Complexity tests showing the solvers’ performance for changing values of h and ε. Top row: h-
independence with ε = 0.1; Bottom row: ε-dependence with h = 3.2/512. The rest of the parameters are given
in the text. (a) Energy profiles with various s (b) evolutions of energy w.r.t various A [Color figure can be viewed at
wileyonlinelibrary.com]

FENG et al. 1993



20 FENG ET AL.

TABLE 2 The average iteration numbers and total CPU
time (in seconds) for the preconditioned methods with fixed time
steps s = .001

Methods PSD PNCG1 PNCG2

#iter 20 14 13
T cpu(s) 4406.1764 3212.2898 3035.4369
Speedup – 1.37 1.45

Parameters are given in the text.

where the ri,j are uniformly distributed random numbers in [0, 1]. The parameters for the comparison
simulations are Ω = [0, 12.8]2, ε = 3 × 10−2, h = 12.8/512, s = .001, and T = 1. The average
iteration numbers, total CPU time (in seconds) and speedups for the preconditioned methods can be
found in Table 2. The Table 2 indicates that the PNCG1 solver and PNCG2 solver have provided a
1.37 × and 1.45 × speedup over PSD solver, respectively.

In the last part of this test, we investigate the effect of the parameters s and A for the energy Fh(φ)

with initial data (5.1). As the proposed solvers give the same results, we only present the results from
PSD solver in the rest of the article. The evolutions of the energy with various time steps s and stabilized
parameter A are given in Figure 2. As can be seen in Figure 2a, the larger time steps produce inaccurate
or nonphysical solutions. In turn, Figure 2a indicates the proper time steps and provides the motivation
of using adaptive time stepping strategy. Figure 2b shows that the proposed scheme and PSD solver is
not that sensitive to the stabilized parameter A when A ≤ 1. Meanwhile, for large values of A, such as
A = 5 and A = 20, the accuracy loss becomes significant.

5.2 Long-time coarsening, energy dissipation and mass conservation
Coarsening processes in thin film system can take place on very long-time scales [48]. In this subsection,
we perform a long-time simulation for the SS equation. Such a test, which has been performed in many
existing articles, can confirm the expected coarsening rates and serve as a benchmarks for the proposed
solver; see, for example, [19, 20, 22].

FIGURE 2 The effect of time steps s and stabilized parameter A for the energy Fh(φ). Left: the effect of time step
s. The other parameters are Ω = [0, 3.2]2, ε = 3.0 × 10−2, h = 3.2/512, and A = 1/16; Right: the effect of stabilized
parameter A. The other parameters are Ω = [0, 3.2]2, ε = 3.0 × 10−2, h = 3.2/512 and s = 0.001. (a) t = 10 (b)
t = 100 (c) t = 500 (d) t = 2000 (e) t = 4000 (f) t = 10000 [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Time snapshots of the evolution with preconditioned solvers for the epitaxial thin film growth model
at t = 10, 100, 500, 2000, 4000 and 10000. Left: contour plot of u, Right: contour plot of Δu. The parameters are
ε = 0.03, Ω = [12.8]2, s = 0.001, h = 12.8/512 and A = 1/16. These simulation results are consistent with earlier
work on this topic in [13, 41, 43, 46]. (a) Energy evolution (b) Roughness evolution [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 4 The log-log plots of energy and roughness evolution and the corresponding linear regression for the
simulation depicted in Figure 3. (a) t = 0 (b) t = 2 (c) t = 4 [Color figure can be viewed at wileyonlinelibrary.com]
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The initial data for these simulations are taken as (5.2). Time snapshots of the evolution for the
epitaxial thin film growth model can be found in Figure 3. The coarsening rates are given in Figure 4.
The discrete film roughness is calculated as

W(tn) =
√√√√ h2

L2

m∑
i,j=1

(φn
i,j − φ)

2, (5.3)

where m is the number of the grid points in the x and y direction, and φ is the discrete average value
of φ on the uniform grid. The log–log plots of roughness and energy evolution and the corresponding
linear regression are presented in Figure 4. The linear regression in Figure 4 indicates that the surface
roughness grows like t1/3, while the energy decays like t−1/3, which verify the one-third power laws
predicted in [6]. More precisely, the linear fits have the form aetbe with ae = 3.09870, be = −.33554
for energy evolution and amtbm with am = −5.35913, bm = .32555 for roughness evolution. The linear
regression is only taken up to t = 3000, as the system saturates at later times. These simulation results
are consistent with earlier works on this topic in [8, 19, 20, 22].

5.3 Direct comparison with other schemes
In this section, we compare the accuracy and performance of three other schemes to the one proposed
in this article. The schemes are as follows:

5.3.1 Energy stable, order-two Backward Differentiation Formula (BDF2-ES) scheme

We first re-state the scheme proposed in this paper, which is labeled the BDF2-ES scheme:

3φk+1 − 4φk + φk−1

2s
= ∇v

h · (|∇v
h φk+1|2∇v

h φk+1) − Δv
h(2φk − φk−1)

− AsΔ2
h(φ

k+1 − φk) − ε2Δ2
hφ

k+1. (5.4)

The associated nonlinear operator is

Nh[φ] = φ − 2s
3

∇v
h · (|∇v

h |2∇v
h φ) + 2s(ε2 + As)

3
Δ2

hφ, (5.5)

and the linear preconditioner that we use is

Lh[φ] = φ − s
6
Δhφ + 2s(ε2 + As)

3
Δ2

hφ. (5.6)

5.3.2 Pure order-two Backward Differentiation Formula (BDF2) scheme

The BDF2 scheme is

3φk+1 − 4φk + φk−1

2s
= ∇v

h · (|∇v
h φk+1|2∇v

h φk+1) − Δv
hφ

k+1 − ε2Δ2
hφ

k+1. (5.7)

The associated nonlinear operator is

Nh[φ] = φ − 2s
3

∇v
h · (|∇v

h |2∇v
h φ) + 2s

3
Δv

hφ + 2sε2

3
Δ2

hφ, (5.8)
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and the linear preconditioner that we use is

Lh[φ] = φ − s
6
Δhφ + 2sε2

3
Δ2

hφ. (5.9)

We observe that the nonlinear operator is not unconditionally positive, because of the presence of the
term + 2s

3 Δv
hφ, which has the wrong sign.

5.3.3 Energy stable Crank-Nicolson (CN-ES) scheme

The energy stable Crank-Nicolson scheme was proposed in [19] and takes the following form:

φk+1 − φk

s
= χ(∇φk+1, ∇φk) − Δ

(
3
2
φk − 1

2
φk−1

)
− ε2

2
Δ2 (

φk+1 + φk) ,

χ(∇φk+1, ∇φk) := 1
4
∇ · (

(|∇φk+1|2 + |∇φk|2)∇(φk+1 + φk)
)

. (5.10)

The corresponding nonlinear operator is

N k
h [φ] = φ − s

4
∇v

h · (
(|∇v

h φ|2 + |∇v
h φk|2)∇v

h (φ + φk)
) + sε2

2
Δ2

hφ
k+1, (5.11)

and the linear preconditioner that we use is

Lh[φ] = φ − s
4
Δhφ + sε2

2
Δ2

hφ. (5.12)

5.3.4 Pure Crank-Nicolson (CN) scheme

The pure Crank-Nicolson scheme is based on an idea by Du and Nicolaides [49] and takes the following
form:

φk+1 − φk

s
= χ(∇φk+1, ∇φk) − 1

2
Δ

(
φk+1 + φk) − ε2

2
Δ2 (

φk+1 + φk) ,

χ(∇φk+1, ∇φk) := 1
4
∇ · (

(|∇φk+1|2 + |∇φk|2)∇(φk+1 + φk)
)

. (5.13)

This scheme is exactly energy stable, in the sense that

sFh[φk+1] + �φk+1 − φk�2 = sFh[φk],

though it is not unconditionally uniquely solvable. The corresponding nonlinear operator is

N k
h [φ] = φ − s

4
∇v

h · (
(|∇v

h φ|2 + |∇v
h φk|2 − 2)∇v

h (φ + φk)
) + sε2

2
Δ2

hφ
k+1, (5.14)

and the linear preconditioner that we use is

Lh[φ] = φ − s
4
Δhφ + sε2

2
Δ2

hφ, (5.15)

which is the same as that for the CN-ES scheme.
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FIGURE 5 Initial data and high-resolution approximate solutions at t = 2 and t = 4. A high-resolution solution is
computed using the BDF2 scheme 5.7 with the initial data shown in the figure (t = 0). The parameters for the high-
resolution approximation are s = .00005 and h = 3.2/256. The other parameters are Ω = (0, 3.2) × (0, 3.2)

and ε = 3.0 × 10−2. Significant coarsening occurs between t = 0 and t = 4 [Color figure can be viewed at
wileyonlinelibrary.com]

5.3.5 Initial data and a high-resolution approximate solution at t = 4

A high-resolution solution is computed using the BDF2 Scheme 5.7 with the initial data shown in
Figure 5 (t = 0). The parameters for the approximation are s = 5 × 10−5 and h = 3.2/256. The other
parameters are Ω = (0, 3.2)× (0, 3.2) and ε = 3.0 × 10−2. The time step size s = 5 × 10−5 is 20 times
smaller than what will be used in the comparison tests, and we will treat the approximation obtained
here as the target solution.

5.3.6 Comparison results

For the comparison computations, we use the same parameters but with a larger time step size: s = 0.001
and h = 3.2/256, Ω = (0, 3.2) × (0, 3.2) and ε = 3.0 × 10−2. To solve all of the schemes, we use
the preconditioned steepest descent (PSD) and preconditioned nonlinear conjugate gradient (PNCG)
solvers, even though in some cases the nonlinear operators are not necessarily guaranteed to be positive.
For the PNCG solver, for simplicity, we use only the Polak-Ribière method.

The results of the tests are reported in Table 3, and they paint a complicated picture. The BDF2
scheme shows excellent accuracy and efficiency. Our new BDF2-ES scheme is slightly more efficient,
but not as accurate. The accuracy of the BDF2-ES scheme improves greatly by setting the splitting
parameter A = 0.

The Crank-Nicolson schemes also have excellent accuracy, but, as expected the CPU time per
iteration for either CN scheme is much higher than for the BDF2 schemes, more than double that of the
BDFs schemes. What is interesting is that the average number of iterations for the solvers for the CN
schemes is smaller than for the BDF2 schemes, which is surprising, given the complicated structure of
the nonlinear operators for the CN schemes. Clearly, the BDF schemes dominate in terms of efficiency
per time step. But, when accuracy is considered in the calculus, the most efficient scheme, the new
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TABLE 3 The errors, average iteration numbers, and average CPU time (in seconds) for the preconditioned
methods with fixed time and space step sizes s = .001 and h = 3.2/256

Scheme Solver Error t = 2 Error t = 4 Ave. Iterations Ave. CPU Time

BDF2 PSD 1.7720e − 07 4.1570e − 07 6.1307 .0452
BDF2 PNCG 1.7778e − 07 4.1705e − 07 5.4227 .0433
BDF2-ES, A = 1/16 PSD 5.9459e − 04 1.5551e − 03 6.0438 .0426
BDF2-ES, A = 1/16 PNCG 5.9459e − 04 1.5551e − 03 5.3738 .0408
BDF2-ES, A = 0 PSD 1.5988e − 05 2.3541e − 05 6.1043 .0432
BDF2-ES, A = 0 PNCG 1.5975e − 05 2.3523e − 05 5.4288 .0416
CN PSD 2.2686e − 07 4.4921e − 07 5.3202 .1228
CN PCNG 2.2693e − 07 4.5077e − 07 4.8117 .1150
CN-ES PSD 7.3157e − 06 8.4747e − 06 5.2760 .1228
CN-ES PNCG 7.3090e − 06 8.4596e − 06 4.7250 .1143

The other parameters are Ω = (0, 3.2) × (0, 3.2) and ε = 3.0 × 10−2. The “errors,” which are reported at times
t = 2 and t = 4, are precisely the differences between the comparison approximations and the high-resolution target
approximation computed using the BDF2 with the much smaller time step size s = 5 × 10−5

BDF2-ES scheme, does not compare as favorably. The question remains, given a target accuracy, what
is the CPU time per iteration that is required to achieve that accuracy? The answer to this question,
and the test that will give that answer, we will save for a future work.

6 CONCLUSIONS

In this article, we have proposed and analyzed a second order accurate, unconditionally energy stable
finite difference scheme for solving the two-dimensional epitaxial thin film model with Slope Selection
(SS). The unique solvability, unconditional energy stability and optimal convergence analysis have
been theoretically justified. In addition, a class of efficient preconditioned methods are applied to
solve the nonlinear system. This framework can be easily generalized to the higher order in time BDF
schemes. Various numerical results are also presented, including a second-order-in-time accuracy test,
a complexity test and energy dissipation tests. We have also included a preliminary test comparing
our new scheme with other existing schemes. In terms of efficiency per time iteration, the new scheme
performs well. It also has good accuracy properties, though not the best of the schemes that we tested.
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APPENDIX: A PROOF OF PROPOSITION 2.2

For simplicity of presentation, in the analysis of �∇hφ�6, we are focused on the estimate of �Dxφ�6. We
suppose for simplicity that m is odd and we set m = 2K + 1. Due to the periodic boundary conditions
for φ and its cell-centered representation, it has the discrete Fourier representation

φi,j =
K∑

k,�=−K

φ̂m
k,�e

2πi(kxi+�yj)/L, (A.1)

where xi = (i − 1
2 )h, yj = (j − 1

2 )h, and φ̂m
k,� are discrete Fourier coefficients. Then we make its

extension to a continuous function:

φF(x, y) =
K∑

k,�=−K

φ̂m
k,�e

2πi(kx+�y)/L. (A.2)

Similarly, we denote a grid function fi+ 1
2 ,j+ 1

2
= Dxφi+ 1

2 ,j+ 1
2

= Ay(Dxφ)i+ 1
2 ,j+ 1

2
. The periodic

boundary conditions for f and its mesh location indicates the following discrete Fourier transformation:

fi+ 1
2 ,j+ 1

2
=

K∑
k,�=−K

f̂ m
k,�e

2πi

(
kx

i+ 1
2

+�y
j+ 1

2

)
/L

, (A.3)

with f̂ m
k,� the discrete Fourier coefficients. Similarly, its extension to a continuous function is given by

fF(x, y) =
K∑

k,�=−K

f̂ m
k,�e

2πi(kx+�y)/L. (A.4)

Meanwhile, we also observe that φ̂m
0,0 = 0 and f̂ m

0,0 = 0. The first identity comes from the fact that
φ = 0, while the second one is due to the fact that f̄ = Dxφ = 0, for any periodic grid function φ.

The following preliminary estimates will play a very important role in the later analysis.
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Lemma A.1 We have

�φ�2 = �φF�, (A.5)
2
π

�∇φF� ≤ �∇hφ�2 ≤ �∇φF�,
4
π2 �ΔφF� ≤ �Δhφ�2 ≤ �ΔφF�, (A.6)

�∂xfF� ≤ �∂2
x φF�, �∂yfF� ≤ �∂x∂yφF�. (A.7)

Proof Parseval’s identity (at both the discrete and continuous levels) implies that

m∑
i,j=1

|φi,j|2 = m2
K∑

k,�=−K

|φ̂m
k,�|2, �φF�2 = L2

K∑
k,�=−K

|φ̂m
k,�|2. (A.8)

Based on the fact that hm = L, this in turn results in

�φ�2
2 = �φF�2 = L2

K∑
k,�=−K

|φ̂m
k,�|2, (A.9)

so that (A.5) is proven.
For the comparison between f = Dxφ and ∂xφF, we look at the following Fourier

expansions:

fi+ 1
2 ,j+ 1

2
= φi+1,j − φi,j + φi+1,j+1 − φi,j+1

2h
=

K∑
k,�=−K

μk,�φ̂
m
k,�e

2πi

(
kx

i+ 1
2

+�y
j+ 1

2

)
/L

, (A.10)

fF(x, y) =
K∑

k,�=−K

μk,�φ̂
m
k,�e

2πi(kx+�y)/L, (A.11)

∂xφF(x, y) =
K∑

k,�=−K

νkφ̂
m
k,�e

2πi(kx+�y)/L, (A.12)

with

μk,� = −2i sin kπh
L

h
cos(�πh), νk = −2kπi

L
. (A.13)

A comparison of Fourier eigenvalues between |μk,�| and |νk| shows that

2
π

|νk| ≤ |μk,�| ≤ |νk|, for − K ≤ k, � ≤ K , (A.14)

which in turn leads to

2
π

�∂xφF� ≤ �Dxφ�2 ≤ �∂xφF�. (A.15)

A similar estimate could also be derived:

2
π

�∂yφF� ≤ �Dyφ�2 ≤ �∂yφF�. (A.16)

A combination of (A.15) and (A.16) yields the first inequality of (A.6).
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For the second estimate of (A.6), we look at similar Fourier expansions:

(Δhφ)i,j =
K∑

k,�=−K

(
μ2

k + μ2
�

)
φ̂m

k,�e
2πi(�xi+myj)/L, (A.17)

ΔφF(x, y) =
K∑

k,�=−K

(
ν2

k + ν2
�

)
φ̂m

k,�e
2πi(kx+�y)/L, (A.18)

with μk = − 2i sin kπh
L

h , μ� = − 2i sin �πh
L

h . It is also clear that 2
π
|ν�| ≤ |μ�| ≤ |ν�|, for any

−K ≤ � ≤ K . In turn, an application of Parseval’s identity yields

�Δhφ�2
2 = L2

K∑
k,�=−K

|μ2
k + μ2

�|2|φ̂m
k,�|2, (A.19)

�ΔφF�2 = L2
K∑

k,�=−K

|ν2
k + ν2

�|2|φ̂m
k,�|2. (A.20)

The eigenvalue comparison estimate (A.14) implies the following inequality:

4
π2 |ν2

k + ν2
�| ≤ |μ2

k + μ2
�| ≤ |ν2

k + ν2
�|, for − K ≤ k, � ≤ K . (A.21)

As a result, inequality (A.6) comes from a combination of (A.19), (A.20) and (A.21).
For the estimate (A.7), we observe the following Fourier expansions:

∂xfF(x, y) =
K∑

k,�=−K

νkμk,�φ̂
m
k,�e

2πi(kx+�y)/L, (A.22)

∂2
x φF(x, y) =

K∑
k,�=−K

ν2
kφ̂

m
k,�e

2πi(kx+�y)/L, (A.23)

which in turn leads to (with an application of Parseval’s identity)

�∂xfF�2 = L2
K∑

k,�=−K

|νkμk,�|2|φ̂m
k,�|2, (A.24)

�∂2
x φF�2 = L2

K∑
k,�=−K

|νk|4|φ̂m
k,�|2. (A.25)

Similarly, the following inequality could be derived, based on the eigenvalue comparison
estimate (A.14):

|νkμk,�|2 ≤ |νk|4, for − K ≤ k, � ≤ K . (A.26)

Consequently, a combination of (A.24), (A.25) and (A.26) leads to the first inequality in
(A.7). The second inequality, �∂yfF� ≤ �∂x∂yφF�, could be derived in the same manner.
The proof of Lemma A.1 is complete.
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With the estimates in Lemma A.1, we are able to make the following derivations:

�φ�2
H2

h
= �φ�2

2 + �∇hφ�2
2 + �Δhφ�2

2 ≤ �φF�2 + �∇φF�2 + �ΔφF�2 ≤ �φF�2
H2

h
, (A.27)

�φF�2
H2

h
≤ B0�ΔφF�2,

(
elliptic regularity, since

∫

Ω

φFd x = 0
)

, (A.28)

so that �Δhφ�2
2 ≥ 4

π2 �ΔφF�2 ≥ 4
π2B0

�φF�2
H2

h
≥ 4

π2B0
�φ�2

H2
h
, (A.29)

so that (2.7) (in Proposition 2.2) is proved with C1 = 4
π2B0

.
Inequality (2.8) could be proved in a similar way. The following fact is observed:

�φ�∞ ≤ �φF�L∞ ≤ C�φF�H2
h

≤ C�φ�H2
h
, (A.30)

in which the first step is based on the fact that, φ is the grid interpolation of the continuous function φF,
the second step comes from the Sobolev embedding, while the last step comes from the the estimates
in Lemma A.1.

For the proof of (2.9), the last inequality in Proposition 2.2, the following lemma is needed, which
gives a bound of the discrete �p (with p = 4, 6) norm of the grid functions φ and f, in terms of the
continuous Lp norm of its continuous version fF.

Lemma A.2 For φ ∈ Cper, f ∈ Vper, we have

�φ�p ≤
√

p
2
�φF�Lp , �f �p ≤

√
p
2
�fF�Lp , with p = 4, 6. (A.31)

Proof For simplicity of presentation, we only present the analysis for �f �p ≤ √ p
2�fF�Lp ;

the analysis for φ could be carried out in the same fashion. And also, we are focused on
the case of p = 4. The case with p = 6 could be handled in a similar, yet more tedious
way.

We denote the following grid function

gi,j = (
fi,j

)2. (A.32)

A direct calculation shows that

�f �4 = (�g�2
) 1

2 . (A.33)

Note that both norms are discrete in the above identity. Moreover, we assume the grid
function g has a discrete Fourier expansion as

gi,j =
K∑

k,�=−K

ĝm
k,�e

2πi(kxi+�yj), (A.34)

and denote its continuous version as

G(x, y) =
K∑

k,�=−K

ĝm
k,�e

2πi(kx+�y) ∈ PK . (A.35)
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With an application of the Parseval equality at both the discrete and continuous levels,
we have

�g�2
2 = �G�2 =

K�
k,�=−K

|ĝm
k,�|2. (A.36)

On the other hand, we also denote

H(x, y) = (fF(x, y))2 =
2K�

k,�=−2K

(ĥm)k,�e2πi(�x+my) ∈ P2K . (A.37)

The reason for H ∈ P2K is because fF ∈ PK . We note that H �= G, since H ∈ P2K , while
G ∈ PK , although H and G have the same interpolation values on at the numerical grid
points (xi, yj). In other words, g is the interpolation of H onto the numerical grid point
and G is the continuous version of g in PK . As a result, collocation coefficients ĝm for G
are not equal to ĥm for H, due to the aliasing error. In more detail, for −K ≤ k, � ≤ K ,
we have the following representations:

ĝm
k,� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ĥm)k,� + (ĥm)k+m,� + (ĥm)k,�+m + (ĥm)k+m,�+m, k < 0, � < 0,
(ĥm)k,� + (ĥm)k+m,�, k < 0, � = 0,
(ĥm)k,� + (ĥm)k+m,� + (ĥm)k,�−m + (ĥm)k+m,�−m, k < 0, � > 0,
(ĥm)k,� + (ĥm)k−m,� + (ĥm)k,�−m + (ĥm)k−m,�−m, k > 0, � > 0,
(ĥm)k,� + (ĥm)k−m,�, k > 0, � = 0,
(ĥm)k,� + (ĥm)k−m,� + (ĥm)k,�+m + (ĥm)k−m,�+m, k > 0, � < 0,
(ĥm)k,� + (ĥm)k,�+m, k = 0, � < 0,
(ĥm)k,�, k = 0, � = 0,
(ĥm)k,� + (ĥm)k,�−m, k = 0, � > 0.

(A.38)

With an application of Cauchy inequality, it is clear that

K�
k,�=−K

|ĝm
k,�|2 ≤ 4

����
2K�

k,�=−2K

(ĥm)k,�

����
2

. (A.39)

Meanwhile, an application of Parseval’s identity to the Fourier expansion (A.37) gives

�H�2 =
����

2K�
k,�=−2K

(ĥm)k,�

����
2

. (A.40)

Its comparison with (A.36) indicates that

�g�2
2 = �G�2 ≤ 4�H�2, i.e. �g�2 ≤ 2�H�, (A.41)

with the estimate (A.39) applied. Meanwhile, since H(x, y) = (fF(x, y))2, we have

�fF�L4 = (�H�L2)
1
2 . (A.42)
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Therefore, a combination of (A.33), (A.41) and (A.42) results in

�f �4 = (�g�2
) 1

2 ≤ (2�H�L2)
1
2 ≤ √

2�fF�L4 . (A.43)

This finishes the proof of (A.31) with p = 4, the inequality with p = 6 could be proved in
the same fashion.

Now we proceed into the proof of (2.9) in Proposition 2.2.

Proof We begin with an application of (A.31) in Lemma A.2:

�Dxφ�6 = �f �6 ≤ √
3�fF�L6 . (A.44)

Meanwhile, using the fact that fF = 0, we apply the 2-D Sobolev inequality and get

�fF�L6 ≤ B(1)

0 �fF�H1 ≤ C(�fF� + �∇fF�). (A.45)

Moreover, the estimates (A.5–A.7) (in Lemma A.1) indicate that

�fF� ≤ �∂xφF� ≤ π

2
�∇hφ�2, (A.46)

�∂xfF� ≤ �∂2
x φF� ≤ M0�ΔφF� ≤ π2M0

4
�Δhφ�2, (A.47)

�∂yfF� ≤ �∂x∂yφF� ≤ M0�ΔφF� ≤ π2M0

4
�Δhφ�2, (A.48)

so that �fF� + �∇fF� ≤
√

2π2M0

4
(�∇hφ�2 + �Δhφ�2), (A.49)

in which the following elliptic regularity estimate is applied:

�∂2
x φF�, �∂x∂yφF� ≤ M0�ΔφF�. (A.50)

Therefore, a substitution of (A.47), (A.49), and (A.45) into (A.44) results in

�Dxφ�6 ≤
√

6π2M0B(1)

0

4
�φ�H2

h
. (A.51)

The estimate for �Dyφ�6 could be derived in the same fashion:

�Dyφ�6 ≤
√

6π2M0B(1)

0

4
�φ�H2

h
. (A.52)

As a consequence, (2.9) is valid, by setting C = √
2B(1)

0 . The proof of Proposition 2.2
is complete.
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