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a b s t r a c t

In this paper we analyze and implement a second-order-in-time numerical scheme for
the three-dimensional phase field crystal (PFC) equation. The numerical scheme was
proposed in Hu et al. (2009), with the unique solvability and unconditional energy stability
established. However, its convergence analysis remains open. We present a detailed con-
vergence analysis in this article, inwhich themaximumnormestimate of the numerical so-
lution over grid points plays an essential role. Moreover, we outline the detailed multigrid
method to solve the highly nonlinear numerical scheme over a cubic domain, and various
three-dimensional numerical results are presented, including the numerical convergence
test, complexity test of the multigrid solver and the polycrystal growth simulation.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Defects, such as vacancies, grain boundaries, and dislocations, are observed in crystalline materials, and a precise and
accurate understanding of their formation and evolution is of great interest. The phase field crystal (PFC)modelwas proposed
in [1] as a new approach to simulate crystal dynamics at the atomic scale in space but on diffusive scales in time. This model
naturally incorporates elastic andplastic deformations,multiple crystal orientations anddefects andhas already beenused to
simulate a wide variety of microstructures, such as epitaxial thin film growth [2], grain growth [3], eutectic solidification [4],
and dislocation formation and motion [3,5]. The idea is that the phase variable describes a coarse-grained temporal average
of the number density of atoms, and the approach can be related to dynamic density functional theory [6,7]. The method
represents a significant advantage over other atomistic methods, such asmolecular dynamicsmethodswhere the time steps
are constrained by atomic-vibration time scales. More detailed descriptions are available in [3,8,9], and the related works
for the amplitude expansion approach could be found in [8,10].

Consider the dimensionless energy of the form [1,2,11]:

E(�) =
Z

⌦



1
4
�4 + 1 � "

2
�2 � |r�|2 + 1

2
(1�)2
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dx, (1.1)
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where⌦ = (0, Lx) ⇥ (0, Ly) ⇥ (0, Lz) ⇢ R3, � : ⌦ ! R is the atom density field, and " > 0 is a constant. We assume that �
is periodic on⌦ . The PFC equation [1,2] is given by the H�1 gradient flow associated with the energy (1.1):

�t = r · (M(�)rµ) , in⌦T = ⌦ ⇥ (0, T ),
µ = ��E = �3 + (1 � ")� + 21� +12�, in⌦T ,
�(x, y, z, 0) = �0(x, y, z), in⌦.

(1.2)

in whichM(�) > 0 is a mobility and µ is the chemical potential. Periodic boundary conditions are imposed for1� and µ.
The PFC equation is a high-order (sixth-order) nonlinear partial differential equation. Regarding the PDE analysis,

existence and uniqueness of a global-in-time strong solution and smooth solution for the modified phase field crystal
(MPFC) equation – which generalizes the PFC equations and includes a second order temporal derivative ��tt – has been
established in a recent work [12]. In more detail, it was proved that, for any Hm (m � 3) initial data (for the phase variable
�), there is an Hm estimate for the solution at any time T > 0, so that a global-in-time strong solution and smooth solution
is available, dependent on the regularity of the initial data. Such an analysis could be easily extended to the case with
� = 0, corresponding to the parabolic PFC equation. Therefore, one could always assume the existence and uniqueness
of the solution for the PFC equation (1.2), if the initial data has a regularity of at least H3.

There have been some related works to develop numerical schemes for the PFC equation. Cheng and Warren [13]
introduced a linearized spectral scheme, similar to one for the Cahn–Hilliard equation analyzed in [14]. This scheme is not
expected to be provably unconditionally energy stable. The finite element PFC method of Backofen et al. [6] employs what
is essentially a standard backward Euler scheme, but where the nonlinear term �3 in the chemical potential is linearized via
(�k+1)3 ⇡ 3(�k)2�k+1 � 2(�k)3. Both energy stability and solvability are issues for this scheme, because the term 21� is
implicit in the chemical potential. Tegze et al. [15] developed a semi-implicit spectral scheme for the binary PFC equations
that is not expected to unconditionally stable. Also see other related numerical works [16–19] in recent years.

The energy stability of a numerical scheme has always been a very important issue, since it plays an essential role in
the accuracy of long time numerical simulation. The standard convex splitting scheme, originated from Eyre’s work [20],
has been a well-known approach to achieve numerical energy stability. In this framework, the convex part of the chemical
potential is treated implicitly, while the concave part is updated explicitly. A careful analysis leads to the unique solvability
and unconditional energy stability of the numerical scheme, unconditionally with respect to the time and space step sizes.
Such an idea has been applied to a wide class of gradient flows in recent years, and both first and second order accurate in
time algorithms have been developed. See the related works for the PFC equation and the modified PFC (MPFC) equation
[12,21–27].

On the other hand, a well-known drawback of the first order convex splitting approach is that an extra dissipation has
been added to ensure unconditional stability; in turn, the first order numerical approach introduces a significant amount of
numerical error [28]. For this reason, second-order energy stable methods have been highly desirable.

There have been other related works of ‘‘energy stable’’ schemes for the certain gradient flows in recent years. For
example, an alternate variable is used in [29], denoted as a second order approximation to v = �2 � 1 in the Cahn–Hilliard
model. A linearized, second order accurate scheme is derived as the outcome of this idea, and the stability is established for
a modified energy. A similar idea has been applied to the PFC model in a more recent article [30]. However, such an energy
stability is applied to a pair of numerical variables (�, v), and an H2 stability for the original physical variable � has not been
justified. As a result, the convergence analysis is not available for this numerical approach. Similar methodology has been
reported in the invariant energy quadratization (IEQ) approach [31–33], etc.

In comparison, a second order numerical scheme was proposed and studied for the PFC equation in [21]. By a careful
choice of the second order temporal approximations to each term in the chemical potential, the unique solvability and
unconditional energy were justified at a theoretical level, with the centered difference discretization taken in space. In
particular, this energy stability is derived with respect to the original energy functional, combined with an auxiliary, non-
negative correction term, so that a uniform in time H2 bound is available for the numerical solution. Meanwhile, a detailed
convergence analysis has not been theoretically reported for the proposed second order scheme, although the full conver-
gence order was extensively demonstrated in the numerical experiments. The key difficulty in the convergence analysis is
associated with the maximum norm bound estimate for the numerical solution, and such a bound plays an essential role
in the theoretical convergence derivation. In more details, the unconditional energy stability indicates a uniform in time H2

bound of the numerical solution at a discrete level. Although the Sobolev embedding from H2 to L1 is straightforward in
three-dimensional space, a direct estimate for the corresponding grid function is not directly available. In two-dimensional
space, such a discrete Sobolev embedding has been proved in the earlier works [21,27], using complicated calculations of
the difference operators. However, as stated in Remark 12 of [21], ‘‘the proof presented in [27] does not automatically extend
to three dimensions. This is because a discrete Sobolev inequality is used to translate energy stability into point-wise stability, and
the inequality fails in three dimensions. We are currently studying the three dimensional case in further detail’’.

In this paper, we provide a detailed convergence analysis for the fully discrete scheme formulated in [21], which is shown
to be second order accurate in both time and space. In particular, the maximum norm estimate of the three-dimensional
numerical solution is accomplished via a discrete Fourier transformation over a uniform numerical grid, so that the discrete
Parseval equality is valid. And also, the equivalence between the discrete and continuous H2 norms for the numerical grid
function and its continuous version, respectively, can be established. In turn, the discrete Sobolev inequality is obtained
from its continuous version. Such an `1 bound of the discrete numerical solution is crucial, so that the convergence analysis
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could go through for the scheme. Moreover, the Crank–Nicolson approximation to the surface diffusion term poses another
challenge in the convergence proof, since the diffusion coefficients at time steps tk+1 and tk are equally distributed, in
comparison with an alternate second order approximation reported in a few recent works [34,35], in which the diffusion
coefficients are distributed at time steps tk+1 and tk�1, respectively. To overcome this difficulty, we have to perform an error
analysis at time instant tk+1/2, in combination with a subtle estimate for the numerical error in the concave diffusion term.

In addition, we also present various numerical simulation results of three-dimensional PFC model in this article. It is
noted that most numerical results for the PFC equation reported in the existing literature are two-dimensional, or over
a two-dimensional surface; see [13,21,22,36–38], etc. For a gradient flow in which the nonlinear terms take a form of
�3 pattern, great efficiency and accuracy of the nonlinear multi-grid solver have been extensively demonstrated in the
numerical experiments; see the related works [21,22,35,39–42]. We apply the nonlinear multi-grid algorithm to implement
the three-dimensional numerical scheme; its great numerical efficiency enables us to compute the three-dimensionalmodel
using local servers. Both the numerical accuracy check and the detailed numerical simulation results of three-dimensional
polycrystal growth are reported.

The rest of paper is organized as follows. In Section 2, we introduce the finite difference spatial discretization in three-
dimensional space, and review a few preliminary estimates. In Section 3 we review the second order numerical scheme
proposed in [21], and state themain theoretical results. The detailed convergence proof is given in Section 4. Furthermore, the
details of the three-dimensional multi-grid solver is outlined in Section 5. Subsequently, the numerical results are presented
in Section 6. Finally, some concluding remarks are made in Section 7.

2. Finite difference discretization and a few preliminary estimates

For simplicity of presentation, we denote (·, ·) as the standard L2 inner product, and k · k as the standard L2 norm, and
k · kHm as the standard Hm norm.We use the notation and results for some discrete functions and operators from [27,35,42].
Let ⌦ = (0, Lx) ⇥ (0, Ly) ⇥ (0, Lz), where for simplicity, we assume Lx = Ly = Lz =: L > 0. It is also assumed that
hx = hy = hy = h and we denote L = m · h, where m is a positive integer. The parameter h = L

m is called the mesh or grid
spacing. We define the following two uniform, infinite grids with grid spacing h > 0:

E :=
n

⇠i+ 1
2
|i 2 Z

o

, C := {⇠i|i 2 Z},
where ⇠i = ⇠ (i) := (i � 1

2 ) · h. Consider the following 3D discrete periodic function spaces:

Cper :=
(

⌫ : C ⇥ C ⇥ C ! R

�

�

�

�

�

⌫i,j,k = ⌫i+↵m,j+�m,k+�m, 8 i, j, k,↵,�, � 2 Z

)

,

Ex
per :=

(
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�

⌫i+ 1
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.

The spaces Ey
per and Ez

per are analogously defined. The functions of Cper are called cell centered functions. The functions of Ex
per,

Ey
per, and Ez

per, are called east–west face-centered functions, north–south face-centered functions, and up-down face-centered
functions, respectively. We also define the mean zero space

Cper :=
8

<

:
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�

�

�

⌫ := h3

|⌦|
m
X
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⌫i,j,k = 0
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.

We now introduce the important difference and average operators on the spaces:

Ax⌫i+ 1
2 ,j,k := 1

2
�

⌫i+1,j,k + ⌫i,j,k
�

, Dx⌫i+ 1
2 ,j,k := 1

h
�

⌫i+1,j,k � ⌫i,j,k
�

,

Ay⌫i,j+ 1
2 ,k := 1

2
�
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�
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2 ,k := 1

h
�
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�

,
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2

:= 1
2
�

⌫i,j,k+1 + ⌫i,j,k
�

, Dz⌫i,j,k+ 1
2

:= 1
h
�

⌫i,j,k+1 � ⌫i,j,k
�

,

with Ax, Dx : Cper ! Ex
per, Ay, Dy : Cper ! Ey

per, Az, Dz : Cper ! Ez
per. Likewise,
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2
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with ax, dx : Ex
per ! Cper, ay, dy : Ey

per ! Cper, and az, dz : Ez
per ! Cper. The standard 3D discrete Laplacian,1h : Cper ! Cper,

is given by

1h⌫i,j,k := dx(Dx⌫)i,j,k + dy(Dy⌫)i,j,k + dz(Dz⌫)i,j,k
= 1

h2

�

⌫i+1,j,k + ⌫i�1,j,k + ⌫i,j+1,k + ⌫i,j�1,k + ⌫i,j,k+1 + ⌫i,j,k�1 � 6⌫i,j,k
�

.

Now we are ready to define the following grid inner products:

(⌫, ⇠)2 := h3
m
X

i,j,k=1

⌫i,j,k⇠i,j,k, ⌫, ⇠ 2 Cper, [⌫, ⇠ ]x := (ax(⌫⇠ ), 1)2, ⌫, ⇠ 2 Ex
per,

[⌫, ⇠ ]y := �

ay(⌫⇠ ), 1
�

2, ⌫, ⇠ 2 Ey
per, [⌫, ⇠ ]z := (az(⌫⇠ ), 1)2, ⌫, ⇠ 2 Ez

per.

We now define the following norms for cell-centered functions. If ⌫ 2 Cper, then k⌫k2
2 := (⌫, ⌫)2; k⌫kp

p := �|⌫|p, 1�2
(1  p < 1), and k⌫k1 := max1i,j,km

�

�⌫i,j,k
�

�. Similarly, we define the gradient norms: for ⌫ 2 Cper,

krh⌫k2
2 := [Dx⌫,Dx⌫]x + ⇥

Dy⌫,Dy⌫
⇤

y + [Dz⌫,Dz⌫]z.

Consequently,

k⌫k2
2,2 := k⌫k2

2 + krh⌫k2
2 + k1h⌫k2

2 .

In addition, the discrete energy Fh(�) : Cper ! R is defined as

Fh(�) = 1
4
k�k4

4 + 1 � "

2
k�k2

2 � krh�k2
2 + 1

2
k1h�k2

2. (2.1)

The following preliminary estimates are cited from earlier works. For more details we refer the reader to [21,27].

Lemma 2.1. For any f , g 2 Cper, the following summation by parts formulas are valid:

(f ,1hg) = �(rhf , rhg), (f ,12
hg) = (1hf ,1hg), (f ,13

hg) = �(rh1hf , rh1hg). (2.2)

Lemma 2.2. Suppose � 2 Cper. Then

k1h�k2
2  1

3↵2 k�k2
2 + 2↵

3
krh(1h�)k2

2, (2.3)

is valid for arbitrary ↵ > 0.

Lemma 2.3. For � 2 Cper, we have the estimate

Fh(�) � Ck�k2
2,2 � L3

4
, (2.4)

with C only dependent on⌦ , and Fh(�) given by (2.1).

3. The fully discrete second order numerical scheme and the main results

Let Nt 2 Z+, and set ⌧ := T/Nt , where T is the final time. For our present and future use, we define the canonical grid
projection operator Ph : C0

per(⌦) ! Cper via [Phv]i,j,k = v(⇠i, ⇠j, ⇠k). Set vh,s := Phu(·, s). Then Fh(vh,s)+ 1
2krh(vh,s�vh,0)k2

2 !
E(u(·, 0)) as h ! 0 and s ! 0 for sufficiently regular v. We denote �e as the exact (periodic) solution to the PFC equation
(1.2) and take�` := Ph�e( · , t`).

Our second order numerical scheme in [21] can be formulated as follows: for 1    Nt � 1, given � ,��1 2 Cper, find
�+1, µ+

1
2 ,!+

1
2 2 Cper such that

�+1 � �

⌧
= 1hµ

+ 1
2 ,

µ+
1
2 := �

�

� ,�+1�+ (1 � ")�+
1
2 +1h�̃

+ 1
2 +1h!

+ 1
2 ,

!+
1
2 := 1h�

+ 1
2 ,

(3.1)

where �0 := �0, �1 := �1,

�+
1
2 := 1

2
�

�+1 + �
�

, �̃+
1
2 := 3

2
� � 1

2
��1, and � (�, ) := 1

4
(� +  )

�

�2 +  2� .
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A direct application of the Crank–Nicolson/trapezoidal discretization is made to !, while the chemical potential, µ, is
approximated using several different second-order temporal stencils. Our careful treatment facilitates the energy stability
and solvability analyses, which can be found in the following result from [21]:

Proposition 3.1. Suppose that the exact solution �e is periodic and sufficiently regular, and �0,�1 2 Cper is obtained via grid
projection, as defined above. For each 1    Nt � 1, there is a unique solution �+1 2 Cper to the scheme (3.1). Furthermore,
the scheme (3.1), with starting values �0 and �1, is unconditionally energy stable in the following sense: for any ⌧ > 0 and h > 0,
and any positive integer 2    Nt ,

Fh(� )  Fh(�1) + 1
2
krh(�1 � �0)k2

2  C0, (3.2)

where C0 > 0 is independent of h, ⌧ , " and T .

Remark 3.2. In the earlier work [21], the energy stability is based on a ‘‘ghost’’ point initial data assumption: ��1 = �0.
Under such an assumption, the energy stability result turns out to be simpler, and the addition correction term appearing in
(3.2), 1

2krh(�1 � �0)k2
2, does not appear. In this article, we make an alternative assumption: �0 := �0, �1 := �1, which in

turn leads to the O(⌧ 2) numerical correction term. Meanwhile, such an additional term still assures a uniform in time energy
bound, since both �1 and �0 are given initial data.

On the other hand, with the ‘‘ghost’’ point initial data assumption as presented in [21], a theoretical justification of the
second order temporal accuracy is not obvious, since ��1 = �0 is only an O(⌧ ) approximation to ��1. Such a theoretical
puzzle could be explained as follows. Although the ‘‘ghost’’ extrapolation formula ��1 = �0 is only first order accurate
in time, the corresponding numerical solution for �1 is still second order accurate, due to the subtle fact that, a first order
accurate approximation for the right hand side, combined with the temporal discretization �1��0

⌧
, yields a second order

accurate �1. In other words, a first order numerical scheme in the first time step results in a second order accurate solution
for �1. After an O(⌧ 2) accurate solution for �1 is obtained, the numerical algorithm at all the subsequent time steps has the
O(⌧ 2) temporal truncation error, so that a second order accuracy in time is formally assured.

In this article, the alternative initial data we use: �0 := �0, �1 := �1, avoid the above complicated argument, so that
this approach is expected to simplify the convergence analysis in later sections.

Remark 3.3. In the standard PFC model, the parameter " is set to be 0  "  1, so that the energy 1�"
2 k�k2 is convex in

the expansion of (1.1); most practical physical cases have also supported such an assumption. On the other hand, even if in
the case of " > 1, the corresponding energy functional 1�"

2 k�k2 becomes concave, we are still able to treat the associated
chemical potential in an explicit way, namely to replace �+1/2 by �̃+1/2 = 3

2�
k � 1

2�
k�1, to ensure the energy stability.

The k · k1 bound of a grid function could be controlled with the help of a discrete Sobolev inequality, as stated by the
following theorem; its proof will be given in Section 4.

Theorem 3.4. Let � 2 Cper. Then there exists a constant C independent of ⌧ or h such that

k�k1  Ck�k2,2. (3.3)

As a combination of Proposition 3.1, Theorem 3.4 and inequality (2.4) in Lemma 2.3, the following k · k1 estimate for the
numerical solution is available.

Corollary 3.5. For the numerical scheme (3.1), we have

k�k1  C
✓

C0 + L3

4

◆

:= C̃0, 8 � 0. (3.4)

The main theoretical result is stated in the following theorem. Its proof will be given in Section 4.

Theorem 3.6. Suppose the unique solution �e for the three-dimensional PFC equation (1.2), with M(�) ⌘ 1, is of regularity class

�e 2 R := H3(0, T ; C0
per) \ H2(0, T ; C4

per) \ L1(0, T ; C8
per), (3.5)

and the initial data �0,�1 2 Cper are defined as above. Define eijk := �
ijk � �ijk. Then, provided ⌧ and h are sufficiently small, for

all positive integers  , such that ⌧ ·   T , we have

kek2  Ĉ(h2 + ⌧ 2), (3.6)

for some Ĉ > 0 that is independent of h and ⌧ .
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4. The detailed convergence analysis

4.1. The proof of Theorem 3.4

We begin with the proof of Theorem 3.4, which provides a tool to bound the k · k1 norm of a grid function in terms of its
discrete k · k2,2 norm.

Proof. For a function � 2 Cper with value �ijk at (⇠i, ⇠j, ⇠k), the IDFT is given by [43]:

�ijk =
R
X

r,s,t=�R

�̂rste2⇡ i(r⇠i+s⇠j+t⇠k)/L, i, j, k = 1, . . . ,m, (4.1)

where �̂ is the DFT of �, and, for simplicity of writing, where we have assumed thatm is odd:m = 2R+1. The corresponding
interpolation function is defined as

�F (x, y, z) =
R
X

r,s,t=�R

�̂rste2⇡ i(rx+sy+tz)/L.

Using the Parseval’s identity (at both the discrete and continuous levels), we have

k�k2
2 = k�Fk2

L2 = L3
R
X

r,s,t=�R

�

�

�

�̂rst

�

�

�

2
,

Dx�i+ 1
2 ,j,k = 1

h
(�i+1,j,k � �i,j,k)

= 1
h

R
X

r,s,t=�R

�̂rst
⇥

e2⇡ i(r⇠i+1+s⇠j+t⇠k)/L � e2⇡ i(r⇠i+s⇠j+t⇠k)/L
⇤

= 1
h

R
X

r,s,t=�R

�̂rste
2⇡ i

✓

r⇠
i+ 1

2
+s⇠j+t⇠k

◆

/L · 2i sin ⇡rh
L

=
R
X

r,s,t=�R

ur �̂rste
2⇡ i

✓

r⇠
i+ 1

2
+s⇠j+t⇠k

◆

/L
,

@x�F (x, y, z) =
R
X

r,s,t=�R

vr �̂rste2⇡ i(rx+sy+tz)/L,

with

ur = 2i sin ⇡rh
L

h
, vr = 2i⇡r

L
.

A comparison of Fourier eigenvalues between |ur | and |vr | shows that
2
⇡

|vr |  |ur |  |vr |, �R  r  R,

[Dx�,Dx�]x = h3
m
X

i,j,k=1

�

�

�

Dx�i+ 1
2 ,j,k

�

�

�

2 = L3
R
X

r,s,t=�R

|ur |2|�̂rst |2,

k@x�Fk2 = L3
R
X

r,s,t=�R

|vr |2|�̂rst |2.

Then we get

k@x�Fk2 =
�

�

�

�

vr

ur

�

�

�

�

2

[Dx�,Dx�]x 
⇣⇡

2

⌘2[Dx�,Dx�]x.
Similarly, the following estimates are available:

k@y�Fk2 
⇣⇡

2

⌘2[Dy�,Dy�]y,

k@z�Fk2 
⇣⇡

2

⌘2[Dz�,Dz�]z .
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For the second order derivatives, the following estimates are valid:

dx(Dx�)i,j,k = 1
h

⇣

Dx�i+ 1
2 ,j,k � Dx�i� 1

2 ,j,k

⌘

= 1
h

 

R
X

r,s,t=�R

ur �̂rste
2⇡ i

✓

r⇠
i+ 1

2
+s⇠j+t⇠k

◆

/L �
R
X

r,s,t=�R

ur �̂rste
2⇡ i

✓

r⇠
i� 1

2
+s⇠j+t⇠k

◆

/L
!

=
R
X

r,s,t=�R

u2
r �̂rste2⇡ i(r⇠i+s⇠j+t⇠k)/L,

@2x �F (x, y, z) =
R
X

r,s,t=�R

v2
r �̂rste2⇡ i(rx+sy+tz)/L.

As a consequence, these inequalities yield the following result:

k@2x �Fk2 =
�

�

�

�

vr

ur

�

�

�

�

4

kdx(Dx�)k2
2 

⇣⇡

2

⌘4kdx(Dx�)k2
2.

Similarly,

k@2y�Fk2 
⇣⇡

2

⌘4kdy(Dy�)k2
2, k@2z �Fk2 

⇣⇡

2

⌘4kdz(Dz�)k2
2,

and

k@x@y�Fk2  1
2
(k@2x �Fk2 + k@2y�Fk2),

k@x@z�Fk2  1
2
(k@2x �Fk2 + k@2z �Fk2),

k@y@z�Fk2  1
2
(k@2y�Fk2 + k@2z �Fk2).

Then we arrive at

k�Fk2
H2 = |�F |20,2 + |�F |21,2 + |�F |22,2

 k�Fk2 + k@x�Fk2 + k@y�Fk2 + k@z�Fk2 + 2(k@2x �Fk2 + k@2y�Fk2 + k@2z �Fk2)

 k�k2
2 +

⇣⇡

2

⌘2
�[Dx�,Dx�]x + [Dy�,Dy�]y + [Dz�,Dz�]z

�

+ 2 ⇥
⇣⇡

2

⌘4
�kdx(Dx�)k2

2 + kdy(Dy�)k2
2 + kdz(Dz�)k2

2
�

= k�k2
2 +

⇣⇡

2

⌘2krh�k2
2 + 2 ⇥

⇣⇡

2

⌘4k1h�k2
2

 2 ·
⇣⇡

2

⌘4
(k�k2

2 + krh�k2
2 + k1h�k2

2)

= 2 ·
⇣⇡

2

⌘4k�k2
2,2.

Meanwhile, since � is the discrete interpolant of the continuous function, we observe that k�k1  k�FkL1 , which implies
the following estimate:

k�k1  k�FkL1  C1k�FkH2 
p
2⇡2

4
C1k�k2,2,

which gives (3.3). This completes the proof of Theorem 3.4. ⌅

4.2. The proof of Theorem 3.6

Corollary 3.5 is a direct consequence of Theorem 3.4, so that a uniform in time k · k1 bound of the numerical solution
becomes available. With the help of the bound (3.4), we proceed into the convergence proof in Theorem 3.6.



L. Dong et al. / Computers and Mathematics with Applications 75 (2018) 1912–1928 1919

Proof. An application of the Taylor expansion for the exact solution �e at (⇠i, ⇠j, ⇠k, t+ 1
2
) implies that

�+1
ijk ��

ijk

⌧
= 1hU

+ 1
2

ijk + Rijk, 1  i  m, 1  j  n, 1  k  l, 2    Nt ,

U
+ 1

2
ijk = (�

+ 1
2

ijk )(�2
ijk)

+ 1
2 + (1 � ")�

+ 1
2

ijk + 31h�

ijk �1h�

�1
ijk +1h(1h�ijk)+

1
2 + Sijk,

1  i  m, 1  j  n, 1  k  l, 2    Nt ,

�0
ijk =  (⇠i, ⇠j, ⇠k) 1  i  m, 1  j  n, 2  k  l,

(4.2)

in which the local truncation errors Rijk and Sijk satisfy

|Rijk|  C3(⌧ 2 + h2), |Sijk|  C3(⌧ 2 + h2), 1  i  m, 1  j  n, 1  k  l, 2    Nt , (4.3)

for some C3 � 0, dependent only on T and L.
To facilitate the convergence analysis, we denote

C4 = k�kL1(0,T ;⌦). (4.4)

The uniform in time k · k1 bound for the numerical solution is given by C̃0, as defined as (3.4). These two bounds will be
useful in the nonlinear error estimate.

Subtracting (3.1) from (4.2) leads to the following error evolutionary equation:

e+1 � e

⌧
= 1h

nh⇣

�+ 1
2

⌘

(�2)+
1
2 �

⇣

�+
1
2

⌘

(�2)+
1
2

i

+ (1 � ")e+
1
2

+ (31he �1he�1) +1h(1he)+
1
2 + S

o

+ R .
(4.5)

Taking a discrete inner product with (4.5) by e+
1
2 , we get

✓

e+1 � e

⌧
, e+

1
2

◆

=
⇣

�+ 1
2 (�2)+

1
2 � �+

1
2 (�2)+

1
2 ,1he+

1
2

⌘

+ (1 � ")
⇣

1he+
1
2 , e+

1
2

⌘

+
⇣

1h(31he �1he�1), e+
1
2

⌘

+
⇣

13
he
+ 1

2 , e+
1
2

⌘

+
⇣

1hS , e+
1
2

⌘

+
⇣

R , e+
1
2

⌘

.

(4.6)

For the left hand side of (4.6), the following identity is valid:
✓

e+1 � e

⌧
, e+

1
2

◆

= 1
2⌧

(ke+1k2
2 � kek2

2). (4.7)

For the nonlinear error term on the right hand side of (4.6), we have
⇣

�+ 1
2 (�2)+

1
2 � �+

1
2 (�2)+

1
2 ,1he+

1
2

⌘

=
✓

�+ 1
2
(� )2 + (�+1)2

2
� �+

1
2
(� )2 + (�+1)2

2
,1he+

1
2

◆

=
✓

�+ 1
2

✓

(�+1)2 � (�+1)2

2
+ (� )2 � (� )2

2

◆

+
⇣

�+ 1
2 � �+

1
2

⌘ (� )2 + (�+1)2

2
,1he+

1
2

◆

=
✓

�+ 1
2

✓

�+1 + �+1

2
e+1 + � + �

2
e
◆

+ (�)2 + (�+1)2

2
e+

1
2 ,1he+

1
2

◆

 1
4

h

2C2
4 + (C4 + C̃0)2

i

(ke+1k2 + kek2) ·
�

�

�

1he+
1
2

�

�

�

2

 1
2

�

�

�

1he+
1
2

�

�

�

2

2
+ C(C4

4 + C̃4
0 )(ke+1k2

2 + kek2
2),

(4.8)

in which the discrete Hölder inequality has been repeatedly applied. The second and fourth terms on the right hand side of
(4.6) could be analyzed in a straightforward way:

(1 � ")
⇣

1he+
1
2 , e+

1
2

⌘

= �(1 � ")
�

�

�

rhe+
1
2

�

�

�

2

2
, (4.9)

⇣

13
he
+ 1

2 , e+
1
2

⌘

= �
�

�

�

rh1he+
1
2

�

�

�

2

2
. (4.10)
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For the third term of the right hand side of (4.6), the following estimate is applied:
⇣

1h(31he �1he�1), e+
1
2

⌘

(4.11)

=
⇣

31he �1he�1,1he+
1
2

⌘

=
⇣

31he �1h

⇣

2e�
1
2 � e

⌘

,1he+
1
2

⌘

(4.12)

=
⇣

41he � 21he�
1
2 ,1he+

1
2

⌘

(4.13)

=
⇣

(21he+1 + 21he ) � (21he+1 � 21he ) � 21he�
1
2 ,1he+

1
2

⌘

(4.14)

= 4
�

�

�

1he+
1
2

�

�

�

2

2
� k1he+1k2

2 + k1hek2
2 � 2

⇣

1he�
1
2 ,1he+

1
2

⌘

(4.15)

 4
�

�

�

1he+
1
2

�

�

�

2

2
� k1he+1k2

2 + k1hek2
2 +

�

�

�

1he�
1
2

�

�

�

2

2
+
�

�

�

1he+
1
2

�

�

�

2

2
(4.16)

 5
�

�

�

1he+
1
2

�

�

�

2

2
+
�

�

�

1he�
1
2

�

�

�

2

2
� k1he+1k2

2 + k1hek2
2. (4.17)

The fifth term and sixth terms on the right hand side of (4.6) could be bounded with an application of Cauchy inequality:
⇣

1hS , e+
1
2

⌘

 1
2
kSk2

2 + 1
2

�

�

�

1he+
1
2

�

�

�

2

2
, (4.18)

⇣

R , e+
1
2

⌘

 1
2
kRk2

2 + 1
2

�

�

�

e+
1
2

�

�

�

2

2
. (4.19)

Therefore, a substitution of (4.7)–(4.18) into (4.6) yields

1
2⌧

(ke+1k2
2 � kek2

2) +
�

�

�

rh1he+
1
2

�

�

�

2

2
+ (1 � ")

�

�

�

rhe+
1
2

�

�

�

2

2

 C(C4
4 + C̃4

0 )(ke+1k2
2 + kek2

2) + 1
2
ke+ 1

2 k2
2 + 1

2
(kSk2

2 + kRk2
2)

+ 6
�

�

�

1he+
1
2

�

�

�

2

2
+
�

�

�

1he�
1
2

�

�

�

2

2
� k1he+1k2

2 + k1hek2
2

 C(C4
4 + C̃4

0 + 1)(ke+1k2
2 + kek2

2) + 1
2
(kSk2

2 + kRk2
2)

+ 6
�

�

�

1he+
1
2

�

�

�

2

2
+
�

�

�

1he�
1
2

�

�

�

2

2
� k1he+1k2

2 + k1hek2
2.

(4.20)

By Lemma 2.2, we obtain

6
�

�

�

1he+
1
2

�

�

�

2

2
 6

✓

122

3

�

�

�

e+
1
2

�

�

�

2

2
+ 2

36

�

�

�

rh1he+
1
2

�

�

�

2

2

◆

, (4.21)

�

�

�

1he�
1
2

�

�

�

2

2

✓

12

3

�

�

�

e�
1
2

�

�

�

2

2
+ 2

3

�

�

�

rh1he�
1
2

�

�

�

2

2

◆

. (4.22)

Going back (4.20), we arrive at

1
2⌧

(ke+1k2
2 � kek2

2) +
�

�

�

rh1he+
1
2

�

�

�

2

2
+ k1he+1k2

2 � k1hek2
2

 288
�

�

�

e+
1
2

�

�

�

2

2
+ 1

3

�

�

�

rh1he+
1
2

�

�

�

2

2
+ 1

3

�

�

�

e�
1
2

�

�

�

2

2
+ 2

3

�

�

�

rh1he�
1
2

�

�

�

2

2

+ 1
2
(kSk2

2 + kRk2
2) + C(C4

4 + C̃4
0 + 1)(ke+1k2

2 + kek2
2).

(4.23)

A summation in time implies that

1
2⌧

(ke+1k2
2 � ke1k2

2) + k1he+1k2
2 � k1he1k2

2  1
2


X

i=1

(kSik2
2 + kRik2

2) + C

X

i=0

(C4
4 + C̃4

0 + 1)keik2
2. (4.24)

Note that the constant C appearing on the right hand side of (4.24) is different than that appearing on the right hand side of
(4.23), and we have used the fact that

1
2

1
2 �C(C4

4+C̃4
0+1)⌧

 1
2 + C 0(C4

4 + C̃4
0 + 1)⌧ . In turn, an application of discrete Gronwall

inequality (cited from [44], stated in Appendix), combined with the local truncation error estimate (4.3), yields the desired
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convergence result

ke+1k2
2 + 2⌧k1he+1k2

2  �ke1k2
2 + 2⌧k1he1k2

2 + 2C2
3 T (⌧

2 + h2)2
�

exp(C̃ t )

 C2
3 (2T + 2) exp(C̃ t )(⌧ 2 + h2)2, (4.25)

with C̃ = C(C4
4 + C̃4

0 + 1). Therefore, the convergence estimate (3.6) is valid, for the right hand constant Ĉ taken as

Ĉ = C3(2T + 2)1/2 exp(C̃ t ). (4.26)

This completes the proof of Theorem 3.6. ⌅

5. Nonlinear multigrid solvers

In this section we present the details of the nonlinear multigrid method that we use for solving the semi-implicit
numerical scheme (3.1). The fully finite-difference scheme (3.1) is formulated as follows: Find �+1

i,j,k , µ
+1/2
i,j,k and !+1/2

i,j,k in
Cper such that

�+1
i,j,k � ⌧dx

⇣

M
⇣

Ax�̃
+ 1

2

⌘

Dxµ
+ 1

2

⌘

i,j,k

� ⌧dy
⇣

M
⇣

Ay�̃
+ 1

2

⌘

Dyµ
+ 1

2

⌘

i,j,k
� ⌧dz

⇣

M
⇣

Az �̃
+ 1

2

⌘

Dzµ
+ 1

2

⌘

i,j,k
= �i,j,k, (5.1)

µ
+ 1

2
i,j,k � 1

4
�

�+1
i,j,k + �i,j,k

� �

(�+1
i,j,k )

2 + (�i,j,k)
2�� 1 � "

2
�

�+1
i,j,k + �i,j,k

�

� 31h�

i,j,k +1h�

�1
i,j,k �1h!

+ 1
2

i,j,k = 0, (5.2)

!
+ 1

2
i,j,k � 1

2
�

1h�
+1
i,j,k +1h�


i,j,k
� = 0, (5.3)

where �̃+
1
2 = 3

2�
 � 1

2�
�1. Denote u = (�+1

i,j,k , µ
+1/2
i,j,k ,!

+1/2
i,j,k )T . Then the above discrete nonlinear system can be written

in terms of a nonlinear operator N and source term S such that

N(u) = S. (5.4)

The 3 ⇥ m ⇥ n ⇥ l nonlinear operator N(u+1) = �

N (1)
i,j,k(u),N

(2)
i,j,k(u),N

(3)
i,j,k(u)

�T can be defined as

N (1)
i,j,k(u) = �+1

i,j,k � ⌧dx
⇣

M
⇣

Ax�̃
+ 1

2

⌘

Dxµ
+ 1

2

⌘

i,j,k
� ⌧dy

⇣

M
⇣

Ay�̃
+ 1

2

⌘

Dyµ
+ 1

2

⌘

i,j,k

� ⌧dz
⇣

M
⇣

Az �̃
+ 1

2

⌘

Dzµ
+ 1

2

⌘

i,j,k
, (5.5)

N (2)
i,j,k(u) = µ

+ 1
2

i,j,k � 1
4
�

�+1
i,j,k + �i,j,k

� �

(�+1
i,j,k )

2 + (�i,j,k)
2�� 1 � "

2
�+1
i,j,k �1h!

+ 1
2

i,j,k , (5.6)

N (3)
i,j,k(u) = !

+ 1
2

i,j,k � 1
2
1h�

+1
i,j,k , (5.7)

and the 3 ⇥ m ⇥ n ⇥ l source S = �

S(1)i,j,k, S
(2)
i,j,k, S

(3)
i,j,k
�T is given by

S(1)i,j,k = �i,j,k, (5.8)

S(2)i,j,k = 1 � "

2
�i,j,k + 31h�


i,j,k �1h�

�1
i,j,k , (5.9)

S(3)i,j,k = 1
2
1h�


i,j,k. (5.10)

The system (5.4) can be efficiently solved using a nonlinear Full Approximation Scheme (FAS) multigrid method
(Algorithm 1: ⌫1 and ⌫2 are pre-smoothing and post-smoothing steps, `, L are the current level and coarsest levels, and
I

`+1
` , I``+1 are coarsening and interpolating operators, respectively). More details can be found in [45]. Since we are using
a standard FAS V-cycle approach, as reported in earlier works [21,22,35,42,46], we only provide the details of nonlinear
smoothing scheme. For smoothing operator, we use a nonlinear Gauss–Seidel method with Red–Black ordering.

Let n be the smoothing iteration, and define

Mx
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:= M

✓
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Algorithm 1 Nonlinear Multigrid Method (FAS)
1: Given u

0

2: procedure FAS(N0,u0, S0, ⌫1, ⌫2, ` = 0)
3: while residual > tolerance do
4: Pre-smooth: u` :=smooth(N`,u`, S`, ⌫1) F nonlinear Gauss–Seidel method
5: Residual: r` = S

` � N

`
u

`

6: Coarsening: r`+1 = I

`+1
` r

`,u`+1 = I

`+1
` u

`

7: if ` = L then
8: Solve: N`+1

v

`+1 = N

`+1
u

`+1 + r

`+1 F Cramer’s rule
9: Error: e`+1 = v

`+1 � u

`+1

10: else

11: Recursion: FAS(N`+1,u`+1, S`+1, ⌫1, ⌫2, `+ 1)
12: end if

13: Correction: u` = u

` + I

`
`+1e

`+1

14: Post-smooth: u` :=smooth(N`,u`, S`, ⌫2) F nonlinear Gauss–Seidel method
15: end while

16: end procedure

Then the smoothing scheme is given by: for every (i, j, k), stepping lexicographically from (1, 1, 1) to (m, n, l), find
�+1,n+1
i,j,k , µ

+ 1
2 ,n+1

i,j,k , 
+ 1

2 ,n+1
i,j,k that solve the 3 ⇥ 3 linear system
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where

S̃(1)i,j,k := S(1)i,j,k + ⌧
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.

The above linearized system, which comes from a local Picard linearization of the cubic term in the Gauss–Seidel scheme,
can be solved by Cramer’s Rule.

6. Numerical results

In this section, we perform some numerical simulations for the three-dimensional scheme (3.1), to verify the theoretical
results.

6.1. Convergence and complexity of the multigrid solver

In this subsection we demonstrate the accuracy and efficiency of the multigrid solver. We present the results of the
convergence tests and perform some sample computations to verify the convergence and near optimal complexity with
respect to the grid size h.

In the first part of this test, we demonstrate the second order accuracy in time and space. The initial data is given by

�0(x, y, z) = 0.2 + 0.05 cos
�

2⇡x/3.2
�

cos
�

2⇡y/3.2
�

cos
�

2⇡z/3.2
�

, (6.1)

with⌦ = [0, 3.2]3, " = 2.5⇥ 10�2, ⌧ = 0.05h and T = 0.16. We use a linear refinement path, i.e., ⌧ = Ch. At the final time
T = 0.16, we expect the global error to be O(⌧ 2) + O(h2) = O(h2) under either the `2 or `1 norm, as h, ⌧ ! 0. Since we
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Table 1

Average CPU time for each time iteration (relatively fine grid), errors and
convergence rates. Parameters are given in the text, and the initial data are
defined in (6.1). The refinement path is ⌧ = 0.05h. The grid sizes indicate
the relatively coarse-fine grid sizes.

Grid sizes 163 � 323 323 � 643 643 � 1283

CPU (s) 0.5744 1.5149 8.8971
Error 2.3371 ⇥ 10�8 5.8027 ⇥ 10�9 1.4411 ⇥ 10�9

Rate – 2.0099 2.0096

Table 2

The number of multigrid iterations of each residual below the tolerance tol =
10�8 at the 10-th time step (i.e. at time 1.0 ⇥ 10�2 with time steps ⌧ =
1.0⇥ 10�3), The rest of parameters are " = 2.5⇥ 10�2, and ⌦ = [0, 3.2] ⇥
[0, 3.2] ⇥ [0, 3.2].

(⌫1, ⌫2) Grid sizes
16 32 64 128

(1, 1) 7 9 12 21
(2, 2) 4 5 5 5

(a) The energy decay. (b) Mass conservation.

Fig. 1. The plots of energy decay and mass conservation. The rest of parameters are⌦ = [0, 3.2]3, h = 3.2/128, " = 2.5 ⇥ 10�2, ⌧ = 0.05h and T = 0.16
and the initial condition is (6.1).

(a) ⌫1 = ⌫2 = 1. (b) ⌫1 = ⌫2 = 2.

Fig. 2. The reduction in the norm of the residual for each V-cycle iteration at the 10th time step (i.e. at time 1.0 ⇥ 10�1 with time steps ⌧ = 1.0 ⇥ 10�3).
The rest of parameters are " = 5.0 ⇥ 10�2, and⌦ = [0, 3.2] ⇥ [0, 3.2] ⇥ [0, 3.2] and the initial condition is (6.1).
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Fig. 3. Three-dimensional periodic micro-structures snapshots with initial condition (6.2) at t = 40, 200, 2000, 4000, 6000, 8000, 10 000 and 12 000.
Left: iso-surface plots of � = 0.0, Right: snapshots of micro-structures plots. The parameters are " = 2.5 ⇥ 10�1, h = 64/64 = 1.0, ⌦ =
[0, 64] ⇥ [0, 64] ⇥ [0, 64], ⌧ = 1.0 ⇥ 10�2.

do not have an exact solution, instead of calculating the error at the final time, we compute the Cauchy difference, which is
defined as �� := �hf � I f

c (�hc ), where I f
c is a bilinear interpolation operator (We applied Nearest Neighbor Interpolation in

Matlab, which is similar to the 2D case in [47,48]). This requires having a relatively coarse solution, parametrized by hc , and
a relatively fine solution, parametrized by hf , where hc = 2hf , at the same final time. The `2 norms of Cauchy difference and
the convergence rates can be found in Table 1. The results confirm our expectation for the convergence order. Moreover, the
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Fig. 4. The plots of energy evolution and mass difference depicted in Fig. 3.

plots of the energy and mass difference evolution indicate that the energy is non-increasing and the mass is conservative,
up to a tolerance of 10�10, for the simulation with initial condition (6.1) (see Fig. 1).

Remark 6.1. When calculating the Cauchy difference between the two different grids, the interpolation operator should
be consistent with the discrete stencil, otherwise the optimal convergence rate may not be observed. We applied Nearest
Neighbor Interpolation in Matlab.

In the second part of this test, we investigate the complexity of the multigrid solver. The number of multigrid iterations
to reach the residual tolerance is given in Table 2, for various choices of grid sizes and (⌫1, ⌫2). Table 2 indicates that the
iteration numbers are nearly independent on h, whenwe use 2 pre-smoothing and 2 post-smoothing. The detailed reduction
in the norm of the residual for each V-cycle iteration at the 10th time step can be found in Fig. 2. As can be seen, the norm of
the residual of each V-cycle is reduced by approximately the same rate each time with ⌫1 = ⌫2 = 2, regardless of h. This is a
typical feature of multigrid when it is operating with optimal complexity [42,45,49]. For ⌫1 = ⌫2 = 1, we do not observe a
similar feature.Moreover, we also observe thatmoremultigrid iterations are required for smaller values of h, which confirms
our convergence analysis.

6.2. Growth of a polycrystal

The initial data for this simulation are taken as essentially random:

�0
i,j,k = 0.2 + 0.005 · ri,j,k, (6.2)

where the ri,j,k are uniformly distributed random numbers in [0, 1]. We use " = 2.5 ⇥ 10�1, and L = 64 (in the simulation
shown in Fig. 3) and L = 128 (in the simulation shown in Fig. 5). Time snapshots of the micro-structure can be found
in Figs. 3 and 5, which display the transition between the liquid and solid states with random initial liquid density. The
numerical results are consistent with the experiments on this topic in [37]. The corresponding energy and mass difference
evolution depicted in Fig. 3 are presented in Fig. 4.

7. Conclusions

In this paper, we have provided a detailed convergence analysis of a finite difference scheme for the three-dimensional
PFC equation, with the second order accuracy in both time and space established. The numerical scheme was proposed
in [21], with the unique solvability and unconditional energy stability already proved in the earlier work. Meanwhile, a
theoretical justification of the convergence analysis turns out to be challenging, due to a difficulty to obtain a maximum
norm bound of the numerical solution in three-dimensional space. We overcome this difficulty with the help of discrete
Fourier transformation, and repeated applications of Parseval equality in both continuous and discrete spaces. With such a
discretemaximumnorm bound developed for the numerical solution, the convergence analysis could be derived by a careful
process of consistency estimate and stability analysis for the numerical error function.

In addition, we describe the detailed multigrid solver to implement this numerical scheme over a three-dimensional
domain. Various numerical results are presented, including the numerical convergence test and the three-dimensional
polycrystal growth simulation. The efficiency and robustness of the nonlinear multigrid solver has been extensively
demonstrated in these three-dimensional numerical experiments.
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Fig. 5. Three-dimensional periodic micro-structures snapshots with initial condition (6.2) at t = 40, 200, 2000, 4000, 6000, 8000, 10 000 and 12 000.
Left: iso-surface plots of � = 0.0, Right: snapshots of micro-structures plots. The parameters are " = 2.5 ⇥ 10�1, h = 128/128 = 1.0, ⌦ =
[0, 128] ⇥ [0, 128] ⇥ [0, 128], ⌧ = 1.0 ⇥ 10�2.
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Appendix. The discrete Gronwall inequality

We need the following discrete Gronwall inequality cited in [44]:

Lemma A.1. Fix T > 0. Let M be a positive integer, and define ⌧  T
M . Suppose {am}Mm=0, {bm}Mm=0 and {cm}M�1

m=0 are non-negative
sequences such that ⌧

PM�1
m=0 cm  C1, where C1 is independent of ⌧ and M. Further suppose that,

a` + ⌧
X̀

m=0

bm  C2 + ⌧

`�1
X

m=0

amcm, 8 1  `  M, (A.1)

where C2 > 0 is a constant independent of ⌧ and M. Then, for all ⌧ > 0,

a` + ⌧
X̀

m=0

bm  C2 exp

 

⌧

`�1
X

m=0

cm

!

 C2 exp(C1), 8 1  `  M. (A.2)
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