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ON A POSITIVE-PRESERVING, ENERGY-STABLE NUMERICAL
SCHEME TO MASS-ACTION KINETICS WITH DETAILED BALANCE∗

CHUN LIU† , CHENG WANG‡ , AND YIWEI WANG§

Abstract. In this paper, we provide a detailed theoretical analysis of the numerical scheme
introduced in [C. Liu, C. Wang, and Y. Wang, J. Comput. Phys., 436:110253, 2021] for the reaction
kinetics of a class of chemical reaction networks that satisfies detailed balance condition. In contrast to
conventional numerical approximations, which are typically constructed based on ordinary differential
equations (ODEs) for the concentrations of all involved species, the scheme is developed using the
equations of reaction trajectories, which can be viewed as a generalized gradient flow of a physically
relevant free energy. The unique solvability, positivity-preserving, and energy-stable properties are
proved for the general case involving multiple reactions, under a mild condition on the stoichiometric
matrix.
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1. Introduction
Chemical reactions are fundamental to many physical, chemical, and biological pro-

cesses [1,6,8,16]. Mathematically, the reaction kinetics are often described by a system
of nonlinear ODEs in terms of concentrations of all involved species [8].

Consider a chemical reaction network (CRN) consisting of N species X1,X2,. ..,XN

and M reversible chemical reactions:

αl
1X1+αl

2X2+ .. .αl
NXN −−⇀↽−−βl

1X1+βl
2X2+ .. .βl

NXN , l=1,. ..,M, (1.1)

where αl
i,β

l
i ≥0 are stoichiometric coefficients for the l-th reaction. The reaction kinetics

is often formulated as [7]

dc(t)

dt
=Sr(c). (1.2)

Here, c(t)=(c1,c2,. ..,cN )T∈RN
+ represents the concentrations of all involved species,

r(c)=(r1(c),r2(c),. ..rM (c))∈RM denotes the reaction rates of the M reactions, and
S∈RN×M is the stoichiometric matrix, where each element Sil is defined as βl

i−αl
i.

It is often assumed that N ≥M and rank(S)=M [7]. The latter assumption indicates
that the M reactions are linearly independent in this reaction network. Under this
assumption, we have

d

dt
(γ ·c)=γ ·(Sr)=(STγ) ·c=0, γ ∈KerST, (1.3)

which indicates that the reaction kinetics (1.2) employs N−rank(S) conserved quanti-
ties.
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The reaction rate for the l-th reaction, rl(c), is often expressed as the difference
between the forward and backward reaction rates, denoted as r+l (c) and r−l (c), i.e.,
rl(c)= r+l (c)−r−l (c). These rates r±l (c) are commonly specified by the law of mass
action (LMA) [8]. The empirical law states that the reaction rate is directly proportional
to the product of the concentrations of the reactants, i.e.,

r+l (c)=k+l c
αl

, r−l (c)=k−l c
βl

, (1.4)

where cα
l

=
∏N

i=1 c
αl

i
i , cβ

l

=
∏N

i=1 c
βl
i

i . Consequently, the reaction kinetic equation (1.2)
is generally a highly nonlinear ODE system.

At a numerical level, solving the reaction kinetic equation (1.2) is often a challenge,
mainly due to the stiffness and nonlinearity [7]. Moreover, many standard ODE solvers
may fail to preserve the basic physical properties of the original system, such as the pos-
itivity of c and the intrinsic conservation laws. Although there has been a long history
of developing robust numerical methods for reaction kinetics [2, 3, 7, 18] to preserve the
positivity, as well as the conservation property, a significantly small step size is often
needed for most existing methods.

It has been well-known that if the reaction kinetics (1.2) with LMA (1.4) satisfies
the detailed balance condition, i.e., there exists a positive equilibrium point c∞∈RN

+ ,
such that

k+l (c
∞)α

l

=k−l (c
∞)β

l

, (1.5)

the reaction kinetics (1.2) admits a Lyapunov function or free energy [1, 14, 20], given
by

F [c]=

N∑
i=1

ci(ln(ci/c
∞
i )−1). (1.6)

Under the detailed balance condition (1.5), it was shown in [19] that the system can
be viewed as a generalized gradient flow of the reaction trajectoryR∈RM [15,19], which
accounts for the “number” of forward chemical reactions that have occurred by time t,
with respect to the free energy (1.6). More precisely, for the general reaction network
(1.1), one can introduce a reaction trajectory R(t)∈RM , and c(t) will be determined
by the kinematics

c(t)=c(R(t))=c0+SR(t), (1.7)

where S=(Sil)∈RN×M is the stoichiometric matrix and c0 is the initial concentration.
Subsequently, the reaction kinetics with LMA (1.4) can be viewed as a generalized
gradient flow of R, satisfying the energy-dissipation law

d

dt
F [c(R)]=−D(R,Ṙ), D(R,Ṙ)=

M∑
l=1

Ṙl ln

(
Ṙl

k−l (c(R))βl
+1

)
, (1.8)

where D(R,Ṙ) is the rate of energy dissipation.
Indeed, by a standard variational procedure, one can show that Rl(t) satisfies a

nonlinear ODE

ln

(
Ṙl

k−l (c(R))βl
+1

)
=− δF

δRl
,

δF
δRl

=

N∑
i=1

Sliµi, l=1,2,. ..M, (1.9)
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where µi=
δF
δci

is the chemical potential of i-th species, δF
δRl

is known as the chemical

affinity of l-th chemical reaction [9]. Using (1.5), one can rewrite (1.9) as

Ṙl=k+l (c(R))α
l

−k−l (c(R))β
l

, (1.10)

which is the LMA. Reaction kinetics beyond the law of mass action can be obtained
by choosing the dissipation in (1.8) differently. We refer the interested readers to [19]
for more detailed discussions. It is worth mentioning that, unlike mechanical systems,
D(R,Ṙ) is no longer quadratic in terms of Ṙ [19]. However, near chemical equilib-

rium, i.e., Ṙl≈0, ∀l, we have D(R,Ṙ)≈
∑M

l=1 |Ṙl|2/(k−l cβ
l

). Hence, the linear response
assumption is still valid at the last stage of chemical reactions [5].

The variational formulation (1.8) indicates that the reaction kinetics with the de-
tailed balance condition can be viewed as a generalized gradient flow of the reaction
trajectory. As a consequence, most numerical techniques for an L2−gradient flow can
be effectively applied to the reaction kinetics systems of this type. In [10], the au-
thors proposed a numerical scheme that discretizes the reaction trajectory Equation
(1.9) directly (see Section 2 for more details). The unique solvability, unconditional
energy stability, and the positivity-preserving property are established for the case with
M =1. The convergence analysis has been provided in [12], and an extension to the
second-order numerical algorithm has been reported in [11].

Although the numerical tests in [10,11] show that the proposed numerical schemes
work for cases with M>1, the theoretical analysis in [10, 11] is limited to the case of
M =1. The purpose of this short note is to provide a theoretical justification for the
proposed numerical scheme, in particular in terms of the positivity-preserving property,
unique solvability, and unconditional energy stability for the multiple reaction case, with
M>1. To clarify the idea, we only write down the details for the case with M =2 and
N =4, but the proof strategy works for the general case where N ≥M and rank(S)=M .

The remainder of this paper is organized as follows. The structure-preserving nu-
merical scheme is recalled in Section 2. The theoretical justification of the positivity-
preserving analysis and unique solvability is provided in Section 3.

2. The structure-preserving numerical discretization
In this section, we briefly review the numerical scheme for the reaction kinetics,

proposed in [10]. Instead of solving the reaction kinetics equation for the concentrations
of all involved species (1.2), the numerical discretization is constructed on the reaction
trajectory Equation (1.9), which can be viewed as a generalized gradient flow of R.
Similar to an L2-gradient flow, a first-order semi-implicit discretization to (1.9) can be
written as

ln

(
Rn+1

l −Rn
l

k−l (c
n)βl∆t

+1

)
=− δF

δRl
(Rn+1), 1≤ l≤M, (2.1)

where cn=c0+SRn and ∆t is the temporal step-size. Although this equation is non-
linear with respect to Rn+1

l , its variational structure allows us to reformulate it as an
optimization problem:

Rn+1=argminR∈VnJn(R), Jn(R)=d2R(R,Rn)+F [c(R)]. (2.2)

Here, c(R)=c0+SR, d2R(R,Rn) is a function measuring the difference between R and
Rn, defined as

d2R(R,Rn)=

M∑
l=1

(
(Rl−Rn

l +k−l (c
n)β

l

∆t)ln

(
Rl−Rn

l

k−l (c
n)βl∆t

+1

)
−(Rl−Rn

l )

)
, (2.3)
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and the admissible set is given by

Vn={R∈RM | c0+SR∈RN
+ , Rl−Rn

l +k−l (c
n)β

l

∆t>0, Jn(Rn+1)≤Jn(Rn)}.
(2.4)

Of course, Vn is a non-empty set, since Rn∈Vn. Moreover, noticing that d2R(R,Rn)→
∞ if ∥R∥→∞ and F [c(R)] is bounded from below, we conclude that Vn is a bounded
subset of RM . The set {R∈RM | c0+SR∈RN

+} is called a stoichiometric compatibility
class for the initial condition c0 [1]. It is straightforward to verify that

δJn(R)

δRl
=ln

(
Rl−Rn

l

k−l (c
n)βl∆t

+1

)
+

δF
δRl

, ∀ l. (2.5)

Hence, a critical point of Jn(R) in Vn gives a solution of the nonlinear Equation (2.1).

Remark 2.1. It is worth mentioning that an explicit treatment of R in the term

k−l (c(R))β
l

turns out to be crucial, and it enables the definition of d2R(R,Rn). More-

over, if
Rl−Rn

l

k−
l (cn)βl∆t

is small for any l, we observe the following Taylor expansion:

d2R(R,Rn)≈
m∑
l=1

1

k−l (c
n)βl∆t

(Rl−Rn
l )

2+higher order terms. (2.6)

Therefore, the numerical scheme is a natural generalization for the minimizing movement
scheme for an L2-gradient flow.

It is straightforward to prove the following unconditional energy stability result by
using the property of d2R(R,Rn).

Proposition 2.1. If Rn+1 is a global minimizer of Jn(R) in Vn, then the numerical
scheme is unconditionally energy stable.

Proof. Define f(x)=(x+a)ln(x/a+1)−x, where a>0 is a given constant. It is
clear that f(x) is a monotonic increasing function of x for x≥0 and f(0)=0. Conse-
quently, d2R(R,Rn)≥0 in Vn and d2R(R,Rn)=0 if and only if R=Rn. Hence, if Rn+1

is a global minimizer of Jn(R) in Vn, we have

F(Rn+1)≤Jn(Rn+1)≤Jn(Rn)=F(Rn), (2.7)

which gives the unconditional energy stability.

3. The positivity-preserving analysis and unique solvability
The main theoretical question associated with the numerical scheme (2.2) is the

existence and uniqueness of the global minimizer of Jn(R) in Vn. This property has
been proved in [10] for the case with M =1. In this section, we demonstrate that the
result can be generalized to the general case of M ≤N and rank(S)=M . More precisely,
we have the following theorem.

Theorem 3.1. If M ≤N and rank(S)=M, then given Rn∈RM , with cn=c0+SRn∈
RN

+ , there exists a unique solution Rn+1∈Vn for the numerical scheme (2.1).

To prove this result, we first observe the following lemma:

Lemma 3.1. If M ≤N and rank(σ)=M, 0<ci≤A∗, then Jn(R) is a convex function
of R in Vn.
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Proof. Denote g(R)=d2R(R,Rn). A direct calculation implies that

∂2g

∂R2
l

=
1

Rl−Rn
l +k−l (c

n)βl∆t
>0,

∂2g

∂Rl∂Rk
=0 if l ̸=k, ∀R∈Vn. (3.1)

Hence, g(R) is a convex function of R over Vn. For F [c(R)], we recall that c(R)=
c0+SR, and a direct calculation gives

∇2
RF (R)=ST(∇2

cF (c))S, (3.2)

where ∇2
cF =diag( 1

c1
, 1
c2
,. .. 1

cN
). Because of the definition of Vn, we have a uniform

bound of ci, i.e., 0<ci≤A∗, which results in

λmin(∇2
RF )≥ 1

A∗λmin(S
TS)>0.

Henceforth, F (R) is a convex function of R over Vn.

Since Vn is a bounded set of RM , and Jn(R) is a convex function of R in Vn, then
there exists a unique minimizer of Jn(R) in Vn. The key point of the proof is to show
that the minimizer of Jn(R) over Vn cannot occur on the boundary of Vn, so that the
global minimizer of Jn(R) is a critical point of Jn(R), which turns out to be a solution
of (2.1).

To illustrate this idea, we present the case with M =2 and N =4. The analysis
can be extended to different values of M and N following the same strategy. First, we
define a linear transformation of Ri

R̃1= c01+

2∑
j=1

S1jRj , R̃2= c02+

2∑
j=1

S2jRj . (3.3)

The positive stoichiometric compatibility class can be written in terms of R̃1 and R̃2,
given by

{(R̃1,R̃2)|R̃i>0,c03+

2∑
j=1

S̃3jR̃j >0, c04+

2∑
j=1

S̃4jR̃j >0},

where S̃3j and S̃4j are transformed stoichiometric coefficients in terms of R̃1 and R̃2.

Example 3.1. We consider a concrete example of a reaction network

X1+2X2−−⇀↽−−X3, X2+X3−−⇀↽−−2X4. (3.4)

In turn, the stoichiometric matrix is given by

S=


−1 0
−2 1
1 −1
0 2

. (3.5)

Assume that c0=(1,1,1,1)T, then the positive stoichiometric compatibility class corre-
sponds to the set in the reaction space

{(R1,R2)|1−R1>0,1−2R1+R2>0,1+R1−R2≥0,1+2R2>0}.
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In this case, the linear transformation of Ri is defined as

R̃1=1−R1, R̃2=1−2R1+R2,

and the stoichiometric compatibility class becomes

{(R̃1,R̃2)|R̃i>0,3−3R̃1+R̃2>0, −1+4R̃1−2R̃2>0.}

It is important to notice that the boundary of the stoichiometric compatibility class turns
out to be c3=0 and (or) c4=0.

Without ambiguity, we omit the tilde notation in the following description. With a
linear transformation, the kinematics can be rewritten as

c1=R1, c2=R2, c3= c30+S31R1+S32R2, c4= c40+S41R1+S42R2, (3.6)

and the free energy becomes

F [R1,R2]=R1 ln

(
R1

c∞1
−1

)
+R2 ln

(
R2

c∞2
−1

)
+c3 ln

(
c3
c∞3

−1

)
+c4 ln

(
c4
c∞4

−1

)
. (3.7)

Denote γn
l =Rn

l −k−l (c
n)∆t. Since Rn

l >0, it is clear that γn
l ≥0 for ∆t significantly

small. Without loss of generality, we assume that γn
l =0. In the case where γn

l >0,
we can adopt our approach to work on Rl−γn

l instead. Moreover, to simplify the
presentation, we take c̄30= c̄40=1. Then the admissible set is given by

Vn=Vn
0 ∩{R|Jn(R)≤Jn(Rn)}, (3.8)

where Vn
0 ={(R1,R2) | R1>0,R2>0,1+S31R1+S32R2>0,c1+S41R1+S42R2>0}.

Figure 3.1(a)-(i) displays the possible geometry of the set Vn
0 .

It is important to note that the set Vn
0 may not necessarily be bounded. Hence,

it is crucial to consider Vn
0 ∩{R|Jn(R)≤Jn(Rn)}. The boundedness of R comes from

the condition Jn(R)≤Jn(Rn). Due to this bound, we have 0<ci(R)<A∗, ∀R∈Vn

for some constant A∗.

To show that the global minimizer of Jn(R1,R2) over Vn cannot be obtained on
the boundary, we only need to consider the following possible boundaries

Γ1={(R1,R2)|R1=0}, Γ2={(R1,R2)|R2=0},
Γ3={(R1,R2)|c3(R1,R2)=0}, Γ4={(R1,R2)|c4(R1,R2)=0}.

(3.9)

To this end, the following subset of Vn is taken into consideration:

Vn
δ ={(R1,R2)∈Vn | R1,R2≥g(δ),c3,c4≥ δ}⊂Vn. (3.10)

Let

Γδ
1={(R1,R2)|R1=g(δ)}, Γδ

2={(R1,R2)|R2=g(δ)},
Γδ
3={(R1,R2)|c3(R1,R2)= δ}, Γδ

4={(R1,R2)|c4(R1,R2)= δ},
(3.11)

where g(δ) is a certain function that will be specified later. We only need to prove
that the minimizer of Jn over Vn

δ could not occur on Γδ
i ∩Vn (i=1,. ..4), if δ is taken

significantly small. The strategy is to first assume that the minimizer of Jn(R1,R2)
over Vn

δ occurs at a boundary point (R∗
1,R

∗
2)∈Γδ

i for some i. In turn, if one can find
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(a) (b) (c)

(d) (e) (f)

(g) (h)
(i)

Fig. 3.1. Illustration of the transformed stoichiometric compatibility set Vn
0 ={(R1,R2) | R1>

0,R2>0,c3(R1,R2)>0,c4(R1,R2)>0} according to the signs of (S31,S32,S41,S42), (a) (−,−,−,−);
(b) (−,+,−,−) or (−,−,−,+); (c) (+,−,−,−) or (−,−,+,−); (d) (+,+,−,−) or (−,−,+,+); (e)
(+,+,−,+) or (−,+,+,+); (f) (−,+,−,+); (g) (−,+,+,−) or (+,−,−,+); (h) (+,−,+,+) or
(+,+,+,−); (i) (+,−,+,−). The case (+,+,+,+) is not shown.

(R′
1,R

′
2)∈ (Vn

δ )
◦ that Jn(R′

1,R
′
2)<Jn(R∗

1,R
∗
2), then it leads to a contradiction. Such a

strategy follows similar ideas as the positivity-preserving analysis reported in [4,10]. At
the beginning, we calculate the partial derivatives of Jn(R1,R2) with respect to R1 and
R2 . The derivatives are given by

∂Jn

∂R1
=ln

(
R1−Rn

1

k−1 (c
n)β1∆t

+1

)
+ln

(
R1

c∞1

)
+S31 ln

(
c3(R)

c∞3

)
+S41 ln

(
c4(R)

c∞4

)
,

∂Jn

∂R2
=ln

(
R2−Rn

2

k−2 (c
n)β2∆t

+1

)
+ln

(
R2

c∞2

)
+S32 ln

(
c3(R)

c∞3

)
+S42 ln

(
c4(R)

c∞4

)
.

(3.12)

We will use these derivatives extensively in the subsequent analysis.

It is noticed that Γδ
1∩Vn and Γδ

2∩Vn are always two boundary sections of Vn
δ . We

first consider the boundaries Γδ
1∩Vn and Γδ

2∩Vn, by assuming the minimizer occurs
at R∗

1=g(δ) or R∗
2=g(δ). Because of the symmetry, we only need to consider the case

that R∗
1=g(δ), which in turn indicates that

∂Jn

∂R1
|(R∗

1 ,R
∗
2)
=ln(g(δ))+ln(g(δ))+S31 ln(c

∗
3)+S41 ln(c

∗
4)+Q1, (3.13)

where Q1=−ln(k−1 (c
n)β1∆t)− lnc∞1 −S31 lnc

∞
3 −S41 lnc

∞
4 is a constant. Recall that
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δ≤ c∗3≤A∗ and δ≤ c∗4≤A∗, and we always have

S31 ln(c
∗
3)+S41 ln(c

∗
4)≤−|S31|lnδ−|S41| lnδ,

for some significantly small δ. One can always choose g(δ)= δα for some positive α
such that ∂Jn

∂R1
|(R∗

1 ,R
∗
2)
<0 with δ being significantly small. Then we can find R′

1>R∗
1=

g(δ) such that Jn(R′
1,R

∗
2)<Jn(R∗

1,R
∗
2). Because of the fact that (R′

1,R
∗
2)∈Vδ, this

contradicts the assumption that (R∗
1,R

∗
2) is a minimizer.

Next, we look at the possible boundary sections Γδ
3∩Vn and Γδ

4∩Vn,. The following
different cases have to be discussed separately.

Case 1. S31<0, S32<0, S41<0, S42<0: In this case, the admissible set is sketched
in Figure 3.1(a), and Vδn is the closed bounded set. We first assume that the minimizer
occurs on Γδ

3∩Vn. Since S31<0, S32<0, we see that either |S31|R∗
1≥ 1

3 or |S32|R∗
2≥ 1

3 ,
if δ is significantly small. Without loss of generality, it is assumed that |S31|R∗

1≥ 1
3 , so

that R∗
1≥ 1

−3S31
:=B∗

1 . Also notice that

∂Jn

∂R1
|(R∗

1 ,R
∗
2)
=ln

(
R1−Rn

1

k−1 (c
n)β1∆t

+1

)
+ln

(
R1

c∞1

)
+S31 ln

(
δ

c∞3

)
+S41 ln

(
c∗4
c∞4

)
=lnR1+lnR1+S31 ln(δ)+S41 ln(c

∗
4)+Q1

≥ lnB∗
1 +lnB∗

1 +S31 ln(δ)+S41 lnA
∗+Q1, (3.14)

where Q1=−ln(k−1 (c
n)β1∆t)− lnc∞1 −S31 lnc

∞
3 −S41 lnc

∞
4 is a constant, and A∗ is the

upper bound of c4 in Vn∩{R | Jn(R)≤Jn(Rn)}. Since B∗
1 , A

∗ and Q1 are constants
that are independent of ∆t and δ, we are able to choose δ significantly small such
that ∂Jn

∂R1
|(R∗

1 ,R
∗
2)
>0. In other words, one can find δ<R′

1<R1 such that J(R′
1,R

∗
2)≤

J(R∗
1,R

∗
2). The fact that c3(R

′
1,R

∗
2)>c∗3= δ∈Vn

δ leads to a contradiction that (R∗
1,R2∗)

is a minimizer in Vδ. Using a similar argument, we are able to prove that the minimizer
cannot occur at c∗4= δ, either.

Case 2. S31<0, S32<0, S41<0, S42>0, which corresponds to Figure 3.1(b): We
first consider the boundary Γδ

3∩Vn. On this boundary section, we see that either
R∗

1≥ 1
−3S31

=B∗
1 or R∗

2≥ 1
−3S32

=B∗
2 . In addition, denote B∗

3 =min(B∗
1 ,−1/S41). If

R∗
1≥B∗

3 , using similar arguments in the previous case, we have

∂Jn

∂R1
|(R∗

1 ,R
∗
2)
=lnR1+lnR1+S31 ln(δ)+S41 ln(c

∗
4)+Q1

≥ lnB∗
3 +lnB∗

3 +S31 ln(δ)+S41 lnA
∗+Q1. (3.15)

In turn, δ can be chosen significantly small, so that ∂Jn

∂R1
|(R∗

1 ,R
∗
2)
>0. This leads to a

contradiction. If R∗
1≤B∗

3 ≤B∗
1 , we get R∗

2≥B∗
2 , and notice that

c∗4=1+S41R
∗
1+S42R

∗
2≥1+S41B

∗
3 +S42B

∗
2 ≥S42B

∗
2 , (3.16)

and

∂Jn

∂R2
|(R∗

1 ,R
∗
2)
=ln(R∗

2)+ln(R∗
2)+S41 ln(δ)+S42 lnc

∗
4+Q2

≥ lnB∗
2 +lnB∗

2 +S31 lnδ+S42 ln(S42B
∗
2)+Q2. (3.17)

Again, since other terms are constants, we can choose δ significantly small, such that
∂Jn

∂R2
|(R∗

1 ,R
∗
2)
>0. Therefore, one can find R′

2<R∗
2, such that Jn(R∗

1,R
′
2)<Jn(R∗

1,R
∗
2),

which leads to a contradiction as c3(R
∗
1,R

′
2)∈Vδ.



CHUN LIU, CHENG WANG, AND YIWEI WANG 1455

Next, we consider the case of c∗4= δ (and R∗
2>δ). Notice that, by choosing δ

significantly small, we have

S41R
∗
1= δ−1−S42R

∗
2≤ δ−1,⇒R∗

1≥
−1+δ

S41
. (3.18)

By choosing δ significantly small, we get R∗
1≥− 1

2S41
=B∗

4 . Therefore, the following
inequality is valid:

∂Jn

∂R1
|(R∗

1 ,R
∗
2)
≥ lnB∗

4 +lnB∗
4 +S31 lnA

∗+S32 lnδ+Q1, (3.19)

so that δ could be chosen significantly small satisfying ∂Jn

∂R1
|(R∗

1 ,R
∗
2)
>0. Combining all

these arguments, we conclude that a minimization point cannot occur at either c∗3= δ
or c∗4= δ, provided that δ is sufficiently small, in the case of S31<0, S32<0, S41<0,
S42>0.

Due to the symmetry, the following cases (shown in Figure 3.1(c)) could be analyzed
in a similar manner:

• S31<0,S32>0,S41<0,S42<0

• S31>0,S32<0,S41<0,S42<0

• S31<0,S32<0,S41>0,S42<0

Case 3. S31<0, S32>0, S41<0, S42>0, which corresponds to Figure 3.1(f): If
a minimization point occurs at (R∗

1,R
∗
2) with c∗4=(1+S41R

∗
1+S42R

∗
2)= δ, we see that

R∗
1≥ −1

S41
:=B∗

4 (since S42>0). In turn, the following estimate could be derived:

∂Jn

∂R1
≥ lnB∗

4 +lnB∗
4 +S31 lnA

∗+S32 lnδ+Q1. (3.20)

Again, the value of lnB∗
4 +lnB∗

4 +S31 lnA
∗+S32 lnδ becomes a fixed constant with a

fixed ∆t, and we could always choose δ significantly small such that ∂R1
J |(R∗

1 ,R
∗
2)
>0,

which makes a contradiction to the assumption that J(R1,R2) reaches a minimization
point at (R∗

1,R
∗
2) over Vδ. Using similar arguments, a minimization point cannot occur at

(R∗
1,R

∗
2) with c∗3=1+S31R

∗
1+S32R

∗
2= δ, either, in the case of S31<0, S32>0, S41<0,

S42>0, if δ is sufficiently small. Because of the symmetry, the case of S31>0, S32<0,
S41>0, S42<0, as shown in Figure 3.1(i), could be analyzed in a similar style (by
switching R1 and R2).

Case 4. S31<0, S32>0, S41>0, S42<0, which corresponds to Figure 3.1(g): If
a minimization point occurs at (R∗

1,R
∗
2) with c∗3=(1+S31R

∗
1+S32R

∗
2)= δ, we see that

R∗
1≥ −1

S31
:=B∗

5 (since S31>0, S32<0). This in turn indicates that

∂Jn

∂R1
|(R∗

1 ,R
∗
2)
≥ lnB∗

5 +lnB∗
5 +S31 lnA

∗+S32 lnδ+Q1. (3.21)

Again, the uniform bound c∗4≤A∗ has been applied in the derivation. We could always
choose δ significantly small so that ∂Jn

∂R1
|(R∗

1 ,R
∗
2)
>0, which makes a contradiction to the

assumption that J(R1,R2) reaches a minimization point at (R∗
1,R

∗
2) over Vδ. Using

similar arguments, a minimization point cannot occur at (R∗
1,R

∗
2) with c∗4=1+S41R

∗
1+

S42R
∗
2= δ, either, due to the fact that R∗

2 is bounded from below. Due to the symmetry,
the case of S31>0, S32<0, S41<0, S42>0, could be analyzed in a similar fashion.

Case 5. S31>0, S32>0: In this case, the boundary section c∗3=α3(1+S31R
∗
1+

S32R
∗
2)= δ will never be reached, because of the fact that R∗

1>0, R∗
2>0. In turn, the
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four boundary section constraints will be reduced to the three-boundary-section version,
and the analysis in the previous cases could be recalled.

Case 6. S41>0, S42>0: Similarly, the boundary section c∗4=1+S41R
∗
1+S42R

∗
2= δ

will never be reached in this case, since R∗
1>0, R∗

2>0. Similarly, the four boundary sec-
tion constraints will be reduced to the three-boundary-section version, and the analysis
in the previous cases could be recalled.

Therefore, a combination of all these cases has demonstrated that the minimizer of
J(R1,R2) could not occur at a boundary point of Vδ where either c3= δ or c4= δ, which
completes the proof.

4. Numerical experiments

In this section, we provide numerical evidence to validate the proposed numerical
scheme. We consider a generalized Michaelis-Menten equation that is widely used to
model enzyme kinetics [8, 13,17]. The corresponding reaction network is given by

E+S
k1

+

−−−⇀↽−−−
k1

−
ES, ES

k2
+

−−−⇀↽−−−
k2

−
EP, EP

k3
+

−−−⇀↽−−−
k3

−
E+P. (4.1)

Here, E is the enzyme that catalyzes the reaction S−−⇀↽−−P, SE and SP are two inter-
mediates. It is often assumed that k−2 ≪k+2 and k−3 ≪k+3 , so that most of S will be
converted to E. This is a reaction network with 5 species and 3 reactions. Let ci rep-
resent the concentration of species E, S, ES, EP, and P respectively, the generalized
Michaelis-Menten equation can be written as

dc1
dt =−k+1 c1c2+k−1 c3+k+3 c4−k−3 c1c5

dc2
dt =−k+1 c1c2+k−1 c3

dc3
dt =k+1 c1c2−k−1 c3−k+2 c3+k−2 c4

dc4
dt =k+2 c3−k−2 c4−k+3 c4+k−3 c1c5

dc5
dt =k+3 c4−k−3 c1c5
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Fig. 4.1. Numerical results for the Generalized Michaelis-Menten kinetics with two intermediate
states (∆t=1/50) : (a) The concentrations of different species with respect to time, (b) the numerical
free energy with respect to time.
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Let R=(R1,R2,R3)
T denote three reaction trajectories, the energy-dissipation law

of the system can be formulated as

d
dt

(∑5
i=1 ci(lnci−1+Ui)

)
=−

∫ ∑3
l=1∂tRl ln

(
∂tRl

ηl(c(R) )−1
)
. (4.2)

where U1=−ln(k−
1 k−

2 k−
3 ), U2=ln(k+

1 k
−
3 ), U3=− lnk−

2 , U4=−lnk+2 , U5=−ln(k+1 k
+
2 k

+
3 ),

η1(c)=k−1 c3, η2(c)=k−2 c4, η2(c)=k−3 c1c5. We take k+1 =1, k−1 =0.5, k+2 =100, k−2 =1,
k+3 =100 and k−3 =1 in the numerical simulation.

It is difficult to preserve the positivity of all species, as the concentration of ES
and EP will be around 0. Figure 4.1 shows the numerical result with initial condition
c1=1,c2=0.8,c3= c4= c5=0.01. The time step size used in the simulation is ∆t=1/50.
The numerical result clearly shows the positivity-preserving and energy-stable properties
of the proposed numerical scheme.
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