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Abstract—A new class of accelerating structures employing a
uniformly twisted waveguide is considered. Such a twisted helical
structure can be designed to have a specified longitudinal cross sec-
tion. The design of twisted accelerating structures is discussed with
regard to particle velocity and strength of the accelerating field. It
is shown how to choose a cross section and twist rate in order to
produce a slow wave with a given velocity. With two representa-
tive structures, obtained wave velocities range from the speed of
light, , down to 61% the speed of light, while values of over
1,000 � � have been achieved. A novel two dimensional finite dif-
ference based solver is employed to analyze the twisted structures
considered. Two twisted cavity prototypes are fabricated and mea-
sured, and good agreement is obtained between measured and pre-
dicted dispersion curves.

Index Terms—Accelerator cavities, slow wave structures, trav-
eling wave tubes.

I. INTRODUCTION

A CCELERATING structures exploit the interaction of an
electromagnetic wave with a charged particle to increase

the kinetic energy of the particle. In order to accomplish this, the
velocity of the wave must be matched to that of the particle. This
precludes the use of any simple hollow waveguide structure, as
these all support waves that travel faster than .

The problem of slowing the phase velocity of an electromag-
netic wave to or below has been a topic of extensive investiga-
tion. The standard approach to slowing the EM wave has been to
introduce periodic reactive loading to the hollow waveguide or
cavity. This can be done by using periodically spaced irises as in
the conventional disk-loaded accelerating structure (see [1] for
a typical design) or by using some smoothly corrugated guide
as in the elliptical TESLA-type cavity [2]. Whatever the nature
of the reactive loading, the result can be a slow-wave periodic
structure whose phase velocity is matched to the particle. How-
ever, the non-uniform cross section of these cavities gives rise
to troubling trapped modes which can cause beam instabilities,
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fields whose magnitudes vary significantly along the axis, and
added manufacturing costs.

There have also been efforts to develop slow wave structures
which do not employ corrugation. For example, a simple method
that has been thoroughly investigated involves using a TM mode
in a waveguide partially loaded with dielectric material [3]–[5].
Dielectric loaded accelerating structures show great promise in
damping of higher order modes (HOMs) [3], yet the presence of
the dielectric presents challenges in areas of manufacturing cost
and vacuum conditioning. Also, application of dielectric loaded
cavities to superconducting accelerators is not practical.

Here, we discuss the accelerator application of a uniformly
twisted hollow waveguide and compare with conventional ac-
celerating cavities. Because the uniformly twisted guide is ge-
ometrically self-similar along a continuous helical path, it de-
serves consideration as a special class of periodic structure and
possesses unique features making it an interesting candidate for
accelerating structures.

The idea of a twisted waveguide accelerating structure was
proposed in a previous paper [6]. In that paper, it was shown
that a twisted waveguide could support electromagnetic waves
that traveled with a phase velocity less than . Since this type
of structure has a uniform cross section, it can possibly be fab-
ricated without welding or brazing unlike reactively loaded ac-
celerating structures. In [6], MAFIA code was used to simu-
late the twisted waveguide using stacked waveguide slices. In
this paper, we extend the analysis of the twisted waveguides
using a specially designed two-dimensional simulation method
[7]. Although ordinary EM codes (such as MAFIA) can yield
accurate results, the custom code we have developed specifi-
cally for twisted guides can run much faster and facilitate easier
optimizations.

An important design consideration is the optimization of the
shunt impedance , defined as

(1)

where is the on-axis accelerating potential and is the dissi-
pated power. Because this parameter is dependent on the mate-
rial of the cavity walls, the shunt impedance is often normalized
to the quality factor . Thus, the value of is an important
figure of merit for a cavity geometry. Often, when dealing with
waveguides or long cavities, is normalized to the length,
making a useful figure of merit if is the cavity length.

In this paper, we discuss the helical geometry specifically as it
compares to ordinary rotationally symmetric accelerating struc-
tures. Then, the electromagnetic modes of twisted structures
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are analyzed and discussed. Prototypes of twisted accelerating
structures are presented, and experimental results are compared
to theory. The dispersion characteristics of twisted guides are
discussed with relation to conventional periodically loaded ac-
celerating structures. Finally, we present some practical design
considerations for twisted accelerating guides.

II. TWISTED GEOMETRY

The mathematical definition of a twisted volume was given
in a previous paper [7], where we utilized the twisted (or heli-
coidal) coordinate transform employed by Lewin [8].

(2)

Here, is some constant twist rate. We consider that a twisted
structure can be designed to have any desired longitudinal cross
section by appropriately selecting a transverse cross section to
be twisted. Thus, all the well-known accelerator geometries
(iris-loaded, elliptical, etc.) have twisted analogs whose longi-
tudinal cross section is identical.

Such a twisted analog can be constructed in the following
fashion. Assume we have a rotationally symmetric structure de-
fined in cylindrical coordinates by

(3)

where is some periodic function with periodicity . We de-
fine a 2D transverse cross section

(4)

and set the twist rate

(5)

When varies in range from 0 to , the argument of
varies from 0 to . The reason for including two cycles of
the periodic structure in the 2D cross section is to ensure that
the resulting cross section has symmetry about the origin. (This
symmetry is necessary to ensure that the field components at the
center of the twisted guide are purely axial.) Once the cross sec-
tion has been obtained, the transformation of (2) is then used to
generate the analog. The twisted analog also allows some inter-
esting comparisons to be made between twisted and rotationally
symmetric non-twisted structures, as both can be used as slow
wave structures.

The twisted analog defined above is not unique. It is easily
observed that any two dimensional profile defined by

(6)

Fig. 1. A twisted analog to the disk-loaded slow-wave structure.

and twist rate

(7)

has identical longitudinal cross section to the original rotation-
ally symmetric structure for any even integer m. An example of
such a twisted analog is shown in Fig. 1. In this case, the “key-
hole” cross section of (a) is extruded along a twisted path to form
the volume (b), whose longitudinal cross section is identical to
a disk-loaded accelerating structure.

In this study, two twisted structures are compared to their ro-
tationally symmetric analogs. The first is the “keyhole” struc-
ture just described, and the second is an analog to the elliptical
TESLA-style cavity, specifically related to the medium beta su-
perconducting cavity at the Spallation Neutron Source (SNS)
[9].

III. ELECTROMAGNETIC MODES IN TWISTED WAVEGUIDES

In general, modes in twisted guides are hybrid in nature, being
neither strictly TE or TM. However, our current investigations
reveal that the modes tend to take on characteristics of either
quasi-TE modes which have a very small -directed electric
field, or quasi-TM modes with a relatively strong compo-
nent. Twisted guides can support both standing and traveling
waves modes. In this paper, our analysis is mostly concerned
with traveling wave modes. Standing wave solutions can be con-
structed simply from the traveling wave modes by superposing
two counter propagating traveling wave modes.

Because the twisted waveguides under consideration are
periodic in , Floquet’s theorem predicts that the fields will
also have the same periodicity, except for a multiplicative phase
factor. In this case, the period of the twisted waveguide will be

. However, for the case of a uniformly twisted waveguide,
it turns out that one can make an even stronger statement.

Assume the fields at some are known. Moving a
distance along the axis of the twisted structure, the struc-
ture is exactly the same except for some rotation of angle .
Therefore, as shown in [10] for structures having “screw sym-
metry”, the fields intuitively should be the same except for a
phase factor. This relation holds true for any , not just

. In particular, we can send to zero and discover that for
an infinite twisted waveguide, the variation of the fields along
the axis of propagation involves only simple phase variation. In
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other words, except for the constant rotation of the fields, the
dependence can be factored out as for some phase con-
stant . In terms of the twisted coordinates,

(8)

This separation of the dependence for twisted guides is signif-
icant, since it cannot generally be done for periodic structures.
In (8), it was possible to replace with , since and

are numerically equal. Similar relations hold for . Thus, if
a twisted coordinate system is used, the fields in a twisted wave-
guide can be represented in exactly the same fashion as for an in-
finite straight waveguide. A more mathematical way of showing
this equivalence between straight and twisted fields involves an
equivalent straight waveguide loaded with some anisotropic ma-
terial. This equivalent was given approximately in [6], and an
exact equivalent is given in [7], [11]. The anisotropic material
equivalent also shows that one can make a twisted structure ef-
fectively “look” like a dielectric loaded structure without having
the undesirable effects associated with real dielectrics.

In addition to simplifying the analysis greatly, this property
of the uniformity of the fields along the axis of propagation
also provides practical advantages for accelerating structures.
In a periodic structure, the fields can be expressed by an infinite
Floquet expansion. For example,

(9)

where

(10)

However, in the twisted coordinate system of (2), we have
for all , due to the fact that the waveguide becomes

equivalent to a straight waveguide under the coordinate trans-
formation. Thus, only a single space harmonic is present. In
conventional coordinates (cylindrical or cartesian), an infinite
number of space harmonics will still be needed, but along the
axis (which coincides with the axis of the twisted coordinate
transform) all higher space harmonics must vanish:

(11)

The implication of this is that along the axis of an infinite
twisted structure there is no variation in the magnitude of the
fields—only in the phase. This distinguishes the twisted guide
from conventional slow-wave structures (like corrugated or
iris-loaded waveguides). Since only the harmonic travels
synchronously with the particle beam and acts cumulatively to
accelerate the particles, the elimination of other harmonics is
very desirable, and it could be accomplished using the twisted
structure. Another important aspect of the twisted guides we
are considering is the fact that modes can be constructed such
that the on-axis fields are purely axial, i.e., the only field
components present at the center of the guide are and .

TABLE I
PARAMETERS FOR TWISTED ANALOG TO

DISK-LOADED ACCELERATING CAVITY

This is due to the fact that we have restricted ourselves to
twisted structures that are invariant to a 180 degree rotation
about the center axis. However, particles traveling off axis may
experience slight non-axial fields, and further investigation is
needed to determine whether narrow-band coupling devices
may cause problems for beams traveling slightly off axis.

To demonstrate the slow-wave capabilities of twisted struc-
tures, we again consider the shape of Fig. 1. To design a practical
accelerating structure having this geometry, we started out with
the dimensions of the well-known SLAC accelerating cavity [1].
It was found, however, that the twisted analog had phase velocity
greater than . To lower the phase velocity, the outer diameter of
the cavity was increased from 4.13 cm to 5.49 cm until the ve-
locity was . A similar increase in outer diameter was necessary
for each type of twisted analog we studied to keep the phase ve-
locity the same. (A detailed sensitivity analysis of the structure
to variations in cross-sectional dimensions is currently under in-
vestigation.) The physical parameters of this structure are given
in Table I. The accelerating parameters of this structure in terms
of and dispersion characteristics are discussed in detail in
later sections.

The notch angle referred to in Table I is the angle of the notch
in the “keyhole” transverse cross section. This example shows
how a twisted structure can easily be compared to a non-twisted
rotationally symmetric structure. For example, in the SLAC ac-
celerating cavity, the phase advance per cell is . Similarly,
one can consider one half twist of the twisted waveguide as a
“cell” and define a mode in the same way. However, it
should be noted that this assumption is simply for comparison,
since the phase advance determined for the corrugated structure
can not be related directly to the twisted structure.

A visual representation of the fields in such a structure is
provided using CST Microwave Studio simulation [12], and is
shown in Fig. 2. A periodic boundary condition was established
at the ends of the twisted structure. The Microwave Studio so-
lution represents a standing wave rather than a traveling wave
solution. Such a solution can be easily constructed from two
counter-propagating traveling wave solutions. The vector elec-
tric field is shown as arrows in the figure. The component of
the electric field is plotted in Fig. 3 for a particle on the -axis, a
particle 0.6 cm off axis, and a particle 0.9 cm off axis. Very far
from the center of the guide near the groove region, it is easily
seen that the field does not vary sinusoidally with the longitu-
dinal coordinate , indicating that many space harmonics are
present in this region. On the other hand, close to the center of
the guide, the field variation is sinusoidal as all space harmonics
except the fundamental disappear.
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Fig. 2. Electric field of twisted analog of a disk-loaded cavity: CST simulation.

Fig. 3. Magnitude of��� for on-axis and off-axis particles: CST simulation.

IV. EXPERIMENTAL INVESTIGATION

A twisted cavity prototype for the “keyhole” structure with
the dimensions in Table I was printed using an SLA (Stere-
olithography Apparatus) process. In this process, a resin base
structure is formed by 3D printing with 5 mil layers. The en-
tire process has a tolerance of 10 to 20 mils. The inside surface
was then electroplated with copper. The prototype is shown in
Fig. 4. Two identical prototypes were made and placed end to
end for a total of three complete twists. The structures were ter-
minated with copper shorting plates to form a cavity resonator.
The twisted cavity supports standing wave modes which can
be measured and compared to theoretical predictions. A small
probe was inserted through each shorting plate, and the trans-
mission was measured to determine the cavity resonances. A
bead pull measurement was also performed to determine the
value of the phase constant for each of the resonances. The

Fig. 4. Fabricated “keyhole” cross-section prototype.

Fig. 5. Predicted and measured dispersion curves for two modes of a twisted
analog to a disk-loaded cavity. The mode with higher frequency is the quasi-TM
accelerating mode; the lower frequency mode is a quasi-TE mode. The �’s are
experimental points.

theory of the bead pull technique is discussed in [13]–[15]. This
measurement allowed us to determine the variation of the elec-
tric field along the cavity axis, from which the phase constant
could easily be extracted. Knowing the resonant frequency and
the phase constant for each resonant mode, it is now possible
to compare the dispersion characteristics to those predicted by
theory [7]. The comparison is shown in Fig. 5. The higher fre-
quency mode is the quasi-TM mode of interest, while the lower
frequency mode is a quasi-TE mode with very low . The
straight line is for , which represents the boundary be-
tween fast and slow waves. There is generally good agreement
between the experimental and theoretical results. The discrep-
ancies are likely caused by disturbances introduced by the end
walls, which perturb the cavity fields from what they would oth-
erwise be in an infinite twisted guide.
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Fig. 6. Cross section and cutaway view of the twisted elliptical prototype.

Fig. 7. Fabricated elliptical cross-section prototype.

A twisted analog to an elliptical (TESLA-style) cavity is
also considered. This design was accomplished in the same
way as the disk-loaded analog design, by using (4)–(5). It was
found necessary to increase the outer radius in order to ensure
that the relativistic , which is the same as
the SNS medium-beta superconducting cavity. (Note that this

is different from the phase constant discussed earlier.) The
final prototype design had inner radius 1.24 cm, outer radius
6.37 cm, and twist rate 96.2 Rad/m. Fig. 6 shows the “dumb-
bell” shape of the transverse cross section of this slow wave
structure, and a cutaway view showing the longitudinal cross
section, which is identical to the well-known TESLA-type el-
liptical profile. Again, two identical prototypes were fabricated,
and when placed end to end provide four complete twists.
The prototype is shown in Fig. 7, and the dispersion curve
for the accelerating mode is shown in Fig. 8. Many additional
resonances were observed other than the ones shown in Fig. 8,
but their relatively low values afforded by the rough cavity
walls and other experimental factors prohibited an accurate
bead pull measurement of these modes. However, the data
points gathered for the accelerating mode of interest show good
agreement with theory.

Fig. 8. Predicted and measured dispersion curves for the accelerating mode of
an elliptical twisted guide. The �’s are experimental points.

Fig. 9. Measured field in the twisted analog of the disk-loaded cavity.

Fig. 10. Measured field in the twisted elliptical cavity.

In addition to the dispersion characteristics, the profile of the
electric field gathered from the bead pull measurement was an-
alyzed, and experimental values for each of the two proto-
types were obtained. The component of the axial electric field
is proportional to the square root of the change in resonant fre-
quency due to the bead at each position. These measurements
are shown for the twisted analog to the disk-loaded and ellip-
tical cavities in Figs. 9 and 10, respectively.
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TABLE II
COMPARISON OF MEASURED AND PREDICTED ��� VALUES

FOR TWO TWISTED PROTOTYPES

The appearance of the electric field along the cavity axis is
seen to be roughly sinusoidal in the center of the cavity. Since
theory predicts the existence of only one space harmonic along
the center axis, and hence a simple sinusoidal variation of the
electric field, a sinusoidal curve was designed to fit the measured
data and is shown alongside the data in Figs. 9 and 10. The
sinusoid has distribution

(12)

where

(13)

Here, is the relativistic quantity that is equal to 1 for the
twisted analog of the disk-loaded cavity and 0.61 for that of the
elliptical cavity. The other constants, and , are chosen to best
fit the measured data. These data show that the electric field has
a sinusoidal appearance close to the center of the cavity, while
end effects cause a deviation close to the cavity end walls.

Using the techniques of [15], the standing wave values
of the twisted structures were found. While the measured
was for a standing wave pattern, in the simulation we assumed a
traveling wave. However, if a standing wave mode is considered
a sum of two traveling wave modes, it is obvious that only the
forward traveling wave (traveling synchronously with the par-
ticle) contributes to the acceleration, and thus to the value of

. Yet, the energy of the wave will reflect both the forward
and backward components. As a result, the traveling wave
is twice the standing wave value. Thus, to calculate the traveling
wave , the measured was multiplied by 2 and taken
over the length of the cavity.

Table II shows a comparison between measured and predicted
traveling wave values. There are several sources of mea-
surement error. The formulas given in [15] are only valid if all
other field components except are zero, which may not be
exactly the case for the measured twisted structures. Tempera-
ture drift during the measurement and uncertainty regarding the
precise value of the form factor for the perturbing metal bead
also contributed some error. In addition, end effects may play a
role, causing an increase of the field strength close to the metal
end walls of the cavity. This would cause the measured to
be more than what would be predicted assuming the cavity was
infinite in length, explaining why the measured values to
be higher than predicted for an infinite structure. This is partic-
ularly the case with the elliptical structure, where edge effects
are seen from Fig. 10 to be quite pronounced.

The problem of reducing end effects requires careful consid-
eration. Although not addressed in detail here, we have shown
previously that in some cases the end effects can be mitigated

by introducing a curved boundary surface as the end wall [6].
Another approach is to eliminate the end walls and leave them
open to a waveguide interface, which then has to be properly
matched to the twisted structure. These considerations are be-
yond the scope of the present paper.

We have considered the twisted structure in terms of
since this accelerating parameter is geometry dependent only,
not material dependent. Also, is very easy to determine
using the 2D simulation method we have used. A future in-
vestigation may be made into values of shunt impedance for a
number of different materials, both superconducting and normal
conducting, since the shunt impedance ultimately determines
the beam energy gain at a given amount of rf input.

V. DISCUSSION OF DISPERSION CHARACTERISTICS

In this section, we will discuss two desirable features of the
dispersion characteristics that are unique to twisted guides.
First, we would show that the dispersion characteristics are
particularly desirable in the prevention of certain types of
higher order trapped modes. Second, we demonstrate that the
problem of mode separation can be dealt with more easily than
in non-twisted periodic geometries. There are several mech-
anisms which can lead to trapping of higher order modes in
accelerating cavities. One is the frequency difference between
the end cells and inner cells caused by improper RF matching of
the end cells. These types of trapped modes are not the subject
of our discussion here. However, higher order trapped modes
can also appear in accelerating structures of infinite extent
(independent of the influence of boundary cells) because of
stop-bands in the dispersion characteristics. When beam energy
is deposited in such a stop band, the excited fields are evanes-
cent and cannot propagate out of the structure to higher-order
mode dampers. Such modes are particularly problematic in su-
perconducting cavities, because the large values allow these
unwanted resonances to continue for a long time before finally
decaying due to wall losses. In the case of the twisted guide,
however, there are no stop bands above the cutoff frequency of
the fundamental propagating mode. Although this may not be
apparent from the appearance of Figs. 5 and 8, these figures
show only the first branch of the propagating modes (i.e., those
whose phase constant is between 0 and ). In reality, these
modes can be thought of to continue on to infinitely high values
of by virtue of the straight waveguide equivalent.

A second observation relates to mode spacing in these ac-
celerating structures. Many standing wave periodically loaded
accelerating cavities operate close to mode, or 180 degrees of
phase shift per unit cell. However, near the point on the disper-
sion curve where , the group velocity (calculated as

) typically approaches zero. This prohibits effective op-
eration, since nearby unwanted modes would be excited very
easily. One solution to eliminate the problem of zero group ve-
locity at mode is the deliberate creation of confluent pass
bands, with the point of confluence judiciously selected as the
point of the desired mode operation [16]. However, this re-
quirement places a significant constraint on the design of the
periodic accelerating structure. In the case of the twisted wave-
guide no such problem exists, as the group velocity remains
nonzero for all values of the phase constant .



WILSON et al.: APPLICATIONS OF TWISTED HOLLOW WAVEGUIDES AS ACCELERATING STRUCTURES 1485

Fig. 11. Simulated effect of changing the inner radius on ����.

VI. DESIGN CONSIDERATIONS

In our discussion of practical design consideration, we will
consider mainly variations on the twisted analogs to the disk-
loaded accelerating structure. While there are infinite number
of possible cross sections, this shape can be particularly instruc-
tive due to its simplicity. Other cavity shapes, such as the twisted
elliptical cavity, can be thought of (at least to first order approx-
imation) as a disk-loaded analog with rounded edges.

We consider the effect of a varying cross section on these
curves. Two parameters in particular are varied: the inner radius
of the notch (corresponding to the iris radius of the disk loaded
analog) and the value of in (6).

In particular, it was investigated how to maximize the value of
with respect to the rate of twisting for the twisted analog

to the disk-loaded accelerating structure. We assumed that the
structure was constrained to have a phase velocity equal to for
accelerating relativistic particles. For each value of the twist rate

, the frequency was adjusted in simulation in order to satisfy the
phase velocity constraint. This adjustment will be shown later.

was calculated for a traveling wave structure from simu-
lation using the technique found in Appendix I. For the twisted
analog to the disk loaded accelerating structure, we show
performance for inner radii of 0.7 cm, 1.135 cm (design value),
and 1.5 cm. This is shown as a function of the twist rate in
Fig. 11. A clear optimum value of can be seen, its value
and location being functions of the twist rate.

In conventional accelerator cavities, a small iris radius is de-
sirable for higher shunt impedances, but has the drawback that
it decreases the maximum allowable size of the beam; so a de-
sign tradeoff is often needed. For the experimental prototype,
the twist rate was only 89.76 Rad/m, so in practice a relatively
higher value for the twist rate will yield higher values of .
Fig. 11 indicates that while the can be increased somewhat
by choosing a smaller inner radius, a larger radius can possibly
be desirable at low twist rates, although a higher can be
achieved at higher twist rates with smaller inner radius.

For the design case of 1.135 cm inner radius, the frequency
is be adjusted as a function of the twist rate as shown in Fig. 12.
This adjustment is necessary in order to maintain the phase ve-
locity at . In practice, changing the frequency is rather imprac-
tical, but a similar adjustment could be affected by scaling all

Fig. 12. Simulated frequency as a function of twist rate (phase velocity held
equal to �).

Fig. 13. Simulated effect of changing � on ����.

dimensions of the accelerating structure. Such a scaling would
(at least to first order) leave both the phase velocity and
unchanged. would, in turn, be scaled by the ratio of the
new frequency to the original frequency.

We then investigated changing the parameter in (6). For
a given twist rate, changing leads to either compressing or
expanding the longitudinal cross sectional shape in the axial di-
rection. For even values of , the cross section will be identical
to that of a disk loaded cavity. For odd values of , the cross
section would be a “staggered” version of the original cross sec-
tion. Again, we hold all other parameters constant, and show the
effect of changing on as a function of the twist rate. We
considered values of ranging from 1 to 3, with the
design value. The results are presented in Fig. 13. In general,
the value of does not effect the value significantly ex-
cept at high twist rates. However, higher values of lead to a
more complex structure and may be more difficult to manufac-
ture. Generally, then, lower values are preferable.

VII. CONCLUSION

We investigated a new type of accelerating structure con-
sisting of a uniformly twisted waveguide. Using the simple
method presented in this paper, it is possible to construct a
twisted accelerating structure whose longitudinal cross section
matches a predefined shape. Twisted structures have been
successfully modeled using a theory presented previously [7],
and experimental measurements on two twisted accelerating
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(14)

(15)

cavity candidates indicate excellent agreement with theory in
terms of dispersion characteristics.

It has been demonstrated that twisted waveguides are able
to slow an electromagnetic wave to velocities below without
the introduction of problematic dielectrics or open structures.
These slow wave modes permit interaction with an electron or
ion beam. Twisted structures also offer the possibility of HOM
free acceleration of on-axis particles because of the vanishing
of all higher order space harmonics along the center axis of the
guide.

APPENDIX

NUMERICAL SIMULATION DETAILS

The twisted accelerating structures were simulated using the
two dimensional methods found in [7], specifically the two-di-
mensional finite-difference frequency domain method. The fre-
quency domain method permits direct extraction of the eigen-
vectors given a propagation constant . For each twisted cross
section, a two-dimensional structured mesh was generated using
the computer code UNAMALLA [17]. We then use the coordi-
nates of the structured mesh to compute the metric tensor com-
ponents [7]: See equation (14) at the top of the page. At each
point in the rectangular domain, the physical coordi-
nates and are given by the mesh generation program, and
the partial derivatives in the equation above can then be approx-
imated using finite differences. For the simulations in this paper,
a 51x51 mesh was employed and reasonable convergence was
achieved.

The value can be computed from the simulated trav-
eling wave eigenmode if the energy per unit length is cal-
culated. Then, the following formula is utilized: See equation
(15) at the top of the page. Here, and represent the co-
variant component of the respective fields in the transformed
coordinate system, correspond to the components of the con-
travariant metric tensor, and is the determinant of the covariant
metric tensor. Equation (15) is valid at the center of the guide,
where . The expression for the total energy per unit
length , which appears in the denominator, is the same whether
derived in twisted or Cartesian coordinates. The integration is
then performed over the rectangular cross section in
the transformed coordinate system. The method was analyzed

by comparing results to CST for the case of an infinite twisted
disk loaded analog of the same type as the measured prototype
except with a slightly more rapid twist rate of 150 Rad/m. An
agreement to within 6.7% was achieved.
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