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CONVERGENCE ANALYSIS OF
STRUCTURE-PRESERVING NUMERICAL METHODS BASED ON

SLOTBOOM TRANSFORMATION FOR
THE POISSON–NERNST–PLANCK EQUATIONS∗

JIE DING† , CHENG WANG‡ , AND SHENGGAO ZHOU§

Abstract. The analysis of structure-preserving numerical methods for the Poisson–Nernst–Planck
(PNP) system has attracted growing interests in recent years. A class of numerical algorithms have
been developed based on the Slotboom reformulation, and the mass conservation, ionic concentration
positivity, free-energy dissipation have been proved at a discrete level. Nonetheless, a rigorous con-
vergence analysis for these Slotboom reformulation-based, structure-preserving schemes has been an
open problem for a long time. In this work, we provide an optimal rate convergence analysis and error
estimate for finite difference schemes based on the Slotboom reformulation. Different options of mo-
bility average at the staggered mesh points are considered in the finite-difference spatial discretization,
such as the harmonic mean, geometric mean, arithmetic mean, and entropic mean. A semi-implicit
temporal discretization is applied, which in turn results in a non-constant coefficient, positive-definite
linear system at each time step. A higher order asymptotic expansion is applied in the consistency
analysis, and such a higher order consistency estimate is necessary to control the discrete maximum
norm of the concentration variables. In convergence estimate, the harmonic mean for the mobility
average, which turns out to bring lots of convenience in the theoretical analysis, is taken for simplic-
ity, while other options of mobility average would also lead to the desired error estimate, with more
technical details involved. As a result, an optimal rate convergence analysis on concentrations, electric
potential, and ionic fluxes is derived, which is the first such result for the structure-preserving numerical
schemes based on the Slotboom reformulation. It is remarked that the convergence analysis leads to
a theoretical justification of the conditional energy dissipation analysis, which relies on the maximum
norm bounds of the concentration and the gradient of the electric potential. Some numerical results
are also presented to demonstrate the accuracy and structure-preserving performance of the associated
schemes.

Keywords. Poisson–Nernst–Planck equations; Slotboom reformulation; mobility average; conver-
gence analysis and error estimate; higher order consistency estimate.
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1. Introduction The Poisson–Nernst–Planck (PNP) equations are widely used
to describe charge transport in many applications, e.g., transmembrane ion chan-
nels [52], electrochemical devices [3], and semiconductors [30]. Such a system of equa-
tions can be formulated in a dimensionless form as

∂tc
l=∇·(∇cl+qlcl∇ψ), l=1, ·· · ,M, in Ω,

−κ∆ψ=

M∑
l=1

qlcl+ρf , in Ω,
(1.1)

where cl= cl(x,t) and ql are the ionic concentration and valence for the l-th species, κ
stands for the coefficient arising from nondimensionalization, ψ=ψ(x,t) is the electric
potential, and ρf =ρf (x) is the distribution of fixed charge density. For simplicity of
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presentation, we consider a cubic Ω with periodic boundary conditions. An extension
to the model with homogeneous Neumann boundary conditions is straightforward. The
initial condition for ionic concentrations is given by cl(x,0)= clin(x), where c

l
in is the

initial data. With periodic boundary conditions, the total mass of ions is conservative
in Ω for each species.

The evolution of ionic concentrations and electric potential described by the PNP
equations can be regarded as a gradient flow of an electrostatic free energy

F =

M∑
l=1

∫
Ω

[
cl logcl+

1

2
(qlcl+ρf )ψ

]
dV. (1.2)

In fact, one can derive the free-energy dissipation law

dF

dt
=

M∑
l=1

∫
Ω

∂cl

∂t

δF

δcl
dV =−

M∑
l=1

∫
Ω

1

cl
∣∣∇cl+qlcl∇ψ∣∣2dV ≤0. (1.3)

Much effort has been devoted to the development of numerical methods for the
PNP equations, such as finite difference, finite volume, and finite element meth-
ods [1, 4–8, 13, 14, 19, 24–26, 28, 29, 31–34, 36, 40, 41, 43, 53]. Many existing works focus
on the development of numerical algorithms that are able to preserve desirable physical
structure properties, including mass conservation, free-energy dissipation, and positiv-
ity of ionic concentrations at discrete level. For instance, a second-order accurate, mass
conservative, and energy dissipative finite difference method was proposed for the 1-D
PNP equations [25]. A finite element scheme that ensures positivity of ionic concentra-
tion via a variable transformation was developed for the PNP-type equations [31]. A
discontinuous Galerkin (DG) method was also developed in the work [26], in which the
positivity of the numerical solution was not theoretically proved, while such a property
was enforced by an accuracy-preserving limiter. The preservation of positivity in DG
method was theoretically addressed later in the work [27]. An implicit finite difference
method that guarantees numerical positivity and energy dissipation was developed in
the work [19]. A set of numerical schemes that unconditionally ensure positivity, unique
solvability, and energy dissipation was proposed in [40]. Recently, a mass conservative,
positivity-preserving, and energy stable finite difference scheme, based on a gradient-
flow formulation, was proposed and analyzed, and an optimal rate convergence analysis
has also been established [22]. Keeping the structure-preserving properties, it has been
extended to second-order accuracy, both in space and time, with corresponding conver-
gence analysis in a more recent work [23].

The above-mentioned progress on structure-preserving numerical methods can be
sorted into two categories. One is based on the observation that the dynamics described
by the PNP equations is the gradient flow of the free energy (1.2) [22, 35, 40]. Implicit
discretization based on the gradient-flow structure naturally respects energy dissipation
due to the convexity of the free energy. The existence of positive concentration solution
is enforced by using the singularity of the logarithmic function at zero. Convergence
analysis and error estimate have been rigorously established for first-order and second-
order temporal discretization schemes in [22] and [23], respectively. The other category
is based on the Slotboom transformation [9,10,19,24,25,41], which converts the Nernst–
Planck (NP) equations into

∂tc
l=∇·(e−S

l

∇gl), Sl= qlψ, l=1, ·· · ,M. (1.4)
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Here gl= cleS
l

is a generalized Slotboom variable [42]. The advantage of such a re-
formulation is associated with the combination of the diffusion and convection into a
self-adjoint operator, which greatly facilitates the design of discretization schemes that
are able to preserve the discrete maximum principle. Conditional free-energy dissipa-
tion can be achieved if the electric potential is explicitly treated, and unconditional
dissipation can be proved with an implicit treatment of the electric potential. How-
ever, rigorous convergence analysis as well as error estimate is still an open problem for
structure-preserving numerical methods based on the Slotboom transformation.

In this work, we provide a theoretical proof of convergence analysis and error es-
timate for structure-preserving numerical schemes based on the Slotboom transforma-
tion. After the transformation, the PNP equations are spatially discretized with central
differencing approximations, and a semi-implicit treatment is considered for temporal
discretization. This in turn results in a non-constant coefficient, positive-definite lin-
ear system at each time step. Moreover, a discrete average of mobility functions is
needed at the staggered mesh points, and four different options are considered: the
harmonic mean, geometric mean, arithmetic mean, and entropic mean. The mass con-
servative, positivity-preserving, and energy dissipative properties of the finite difference
scheme with various mobility averages have already been established in a few recent
works [9, 10, 24, 25]. In particular, the energy dissipation analysis relies on the maxi-
mum norm bounds of the concentration, as well as the gradient of the electric potential,
while these bounds have to be established through an optimal rate convergence analy-
sis. We perform the error estimate by employing a higher order asymptotic expansion
in the consistency analysis, which is necessary to control the discrete maximum norm
of the concentration variables. This approach has been reported for a wide class of
nonlinear PDEs; see the related works [2,11,12,15,21,38,39,44–46]. In the convergence
estimate, the harmonic mean for the mobility average, which turns out to bring lots
of convenience in the theoretical analysis, is shown as an example, while other options
of mobility average would also lead to the desired error estimate, with more technical
details involved. As a result, an optimal rate convergence analysis is derived for ionic
concentrations, electric potential, and fluxes, which is the first such result for structure-
preserving numerical methods for the PNP equations that are based on the Slotboom
transformation.

The rest of the paper is organized as follows. In Section 2, we present the fully dis-
crete finite difference numerical scheme based on the Slotboom reformulation. The mass
conservative, positivity-preserving, and energy dissipative properties of the numerical
schemes are recalled in Section 3. Subsequently, the optimal rate convergence analysis
is presented in Section 4. Some numerical results are provided in Section 5. Finally,
conclusions and discussions are given in Section 6.

2. Numerical schemes

2.1. Discretization and notations. The PNP system (1.1) is discretized based
on the Slotboom transformation (1.4). For simplicity, a rectangular computational
domain Ω=(a,b)3 with periodic boundary conditions is considered. Let N ∈N∗ be the
number of grid points along each dimension, and h=(b−a)/N be the uniform grid
spacing. The computational domain is covered by the grid points

{xi,yj ,zk}=
{
a+(i− 1

2
)h,a+(j− 1

2
)h,a+(k− 1

2
)h

}
,

for i,j,k=1, ·· · ,N . Denote by cli,j,k, g
l
i,j,k, and ψi,j,k the discrete approximations of

cl(xi,yj ,zk, ·), gl(xi,yj ,zk,·), and ψ(xi,yj ,zk,·), respectively.
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We recall the following standard discrete operators and notations for finite difference
discretization [47,48]. The following space of periodic grid functions is introduced:

Cper :=
{
u
∣∣ui,j,k=ui+αN,j+βN,k+γN ,∀i,j,k,α,β,γ∈Z

}
,

Ex
per :=

{
ν
∣∣∣ νi+ 1

2 ,j,k
=νi+ 1

2+αN,j+βN,k+γN
, ∀i,j,k,α,β,γ∈Z

}
,

(2.1)

and

C̊per :=
{
u∈Cper

∣∣∣∣u=0

}
, u=

h3

|Ω|

N∑
i,j,k=1

ui,j,k.

Analogously, we define the spaces Ey
per and Ez

per, and denote E⃗per :=Ex
per×Ey

per×Ez
per.

We also introduce the following average and difference operators in x-direction:

Axfi+1/2,j,k :=
1

2
(fi+1,j,k+fi,j,k), Dxfi+1/2,j,k :=

1

h
(fi+1,j,k−fi,j,k) ,

axfi,j,k :=
1

2

(
fi+1/2,j,k+fi−1/2,j,k

)
, dxfi,j,k :=

1

h

(
fi+1/2,j,k−fi−1/2,j,k

)
.

Average and difference operators in y and z directions, denoted as Ay, Az, Dy, Dz, ay,
az, dy, and dz, can be analogously defined. The discrete gradient and discrete divergence
are given by

∇hfi,j,k=
(
Dxfi+1/2,j,k,Dyfi,j+1/2,k,Dzfi,j,k+1/2

)
,

∇h · f⃗i,j,k=dxfxi,j,k+dyf
y
i,j,k+dzf

z
i,j,k,

where f⃗ =(fx,fy,fz)∈E⃗per. The standard discrete Laplacian becomes

∆hfi,j,k :=∇h ·(∇hf)i,j,k=dx(Dxf)i,j,k+dy(Dyf)i,j,k+dz(Dzf)i,j,k.

For a periodic scalar function D that is defined at face center points and f⃗ ∈E⃗per, then
Df⃗ ∈E⃗per, in the sense of point-wise multiplication, and we denote

∇h ·
(
Df⃗
)
i,j,k

=dx (Dfx)i,j,k+dy (Df
y)i,j,k+dz (Df

z)i,j,k .

If f ∈Cper, then ∇h ·(D∇h·) :Cper→Cper is defined as

∇h ·
(
D∇hf

)
i,j,k

=dx (DDxf)i,j,k+dy (DDyf)i,j,k+dz (DDzf)i,j,k .

In addition, we introduce the following grid inner products

⟨f,ξ⟩ :=h3
N∑

i,j,k=1

fi,j,k ξi,j,k, f, ξ∈Cper, [f,ξ]x := ⟨ax(fξ),1⟩, f, ξ∈Ex
per,

[f,ξ]y := ⟨ay(fξ),1⟩, f, ξ∈Ey
per, [f,ξ]z := ⟨az(fξ),1⟩, f, ξ∈Ez

per.

[f⃗1, f⃗2] := [fx1 ,f
x
2 ]x+[fy1 ,f

y
2 ]y+[fz1 ,f

z
2 ]z , f⃗i=(fxi ,f

y
i ,f

z
i )∈E⃗per, i=1,2.

Then, the following norms can be defined for grid functions. If f ∈Cper, then ∥f∥22 :=
⟨f,f⟩, ∥f∥pp := ⟨|f |p,1⟩, for 1≤p<∞, and ∥f∥∞ :=max1≤i,j,k≤N |fi,j,k|. The gradient
norms are given by

∥∇hf∥22 := [∇hf,∇hf ]= [Dxf,Dxf ]x+[Dyf,Dyf ]y+[Dzf,Dzf ]z , ∀f ∈Cper,
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∥∇hf∥pp := [|Dxf |p,1]x+[|Dyf |p,1]y+[|Dzf |p,1]z , ∀f ∈Cper, 1≤p<∞.

The higher-order norms can be similarly defined:

∥f∥2H1
h
:=∥f∥22+∥∇hf∥22 , ∥f∥2H2

h
:=∥f∥2H1

h
+∥∆hf∥22 , ∀f ∈Cper.

In addition, we recall the following inequalities that shall be used in the convergence
analysis.
Lemma 2.1 ([16, 17]). For any f ∈C̊per, we have

∥f∥2+∥∇hf∥2≤C∥∆hf∥2, (2.2)

where C is a positive constant independent of h. In addition, the following estimates
are available:

∥f∥∞≤C(∥f∥2+∥∆hf∥2), ∀f ∈Cper, (2.3)

∥∇hf∥∞≤Ch−1∥f∥∞≤Ch−1∥∆hf∥2, ∀f ∈C̊per. (2.4)

2.2. Numerical schemes. Based on the Slotboom reformulation (1.4), spatial
discretization at (xi,yj ,zk) leads to a semi-discrete scheme [9,24,25]

d

dt
cli,j,k=∇h ·

(
e−S

l

ĝl
)
i,j,k

, (2.5)

where e−S
l

ĝl=(e−S
l

ĝlx,e
−Sl

ĝly,e
−Sl

ĝlz)∈E⃗per with

ĝlx,i+ 1
2 ,j,k

=Dx

(
cleS

l
)
i+ 1

2 ,j,k
, ĝly,i,j+ 1

2 ,k
=Dy

(
cleS

l
)
i,j+ 1

2 ,k
,

and ĝlx,i,j,k+ 1
2
=Dz

(
cleS

l
)
i,j,k+ 1

2

.

In terms of numerical approximation of the mobility function e−S
l

on the half-grid
points, there are several options

Harmonic mean: e
−Sl

i+1
2
,j,k =

2e−S
l
i+1,j,ke−S

l
i,j,k

e−S
l
i+1,j,k +e−S

l
i,j,k

=
(eSl

i+1,j,k +eS
l
i,j,k

2

)−1

,

Geometric mean: e
−Sl

i+1
2
,j,k =e−

Sl
i+1,j,k+Sl

i,j,k
2 ,

Arithmetic mean: e
−Sl

i+1
2
,j,k =

e−S
l
i+1,j,k +e−S

l
i,j,k

2
,

Entropic mean: e
−Sl

i+1
2
,j,k =

Sli+1,j,k−Sli,j,k
eS

l
i+1,j,k −eS

l
i,j,k

.

(2.6)

The approximation of e
−Sl

i,j+1
2
,k and e

−Sl

i,j,k+1
2 can be analogously defined. Similar

average of mobility functions in discretization cells have been implemented in the liter-
ature [18,50,51]. The periodic boundary conditions are imposed at a discrete level:

cl1
2 ,j,k

= clN+ 1
2 ,j,k

, cli, 12 ,k
= cli,N+ 1

2 ,k
, cli,j, 12

= cli,j,N+ 1
2

for i,j,k=1, ·· · ,N. (2.7)

Remark 2.1. The spatial discretization with the harmonic mean of mobility functions
on half-grid points can lead to a coefficient matrix that has been proved to have an upper
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bound on the condition number [9]. The discretization with entropic mean, which leads
to the well-known Scharfetter–Gummel scheme, is the only one, among those four means,
that can reduce to an upwind scheme when the convection is large.

Given the semi-discrete approximations cli,j,k, the Poisson’s equation is discretized
as

−κ∆hψi,j,k=

M∑
l=1

qlcli,j,k+ρ
f
i,j,k for i,j,k=1,. ..,N. (2.8)

The periodic boundary conditions could be formulated as

ψ 1
2 ,j,k

=ψN+ 1
2 ,j,k

, ψi, 12 ,k=ψi,N+ 1
2 ,k
, ψi,j, 12 =ψi,j,N+ 1

2
for i,j,k=1, ·· · ,N. (2.9)

Remark 2.2. To guarantee the existence of a solution to (2.8), it is assumed that the

initial conditions and fixed charge distribution satisfy
∑M
l=1q

lclin+ρ
f ∈C̊per. In addition,

we consider a zero-average constraint for ψ, i.e., ψ∈C̊per, to make the solution to the
discrete Poisson’s equation unique.

With a uniform time step size ∆t and tn=n∆t, a semi-implicit scheme is proposed:
Given ψn∈C̊per and cl,n∈Cper, l=1, ·· · ,M , find cl,n+1∈Cper, l=1, ·· · ,M , ψn+1∈C̊per
by solving 

cl,n+1−cl,n

∆t
=∇h ·

(
e−q

lψn

∇h(c
l,n+1eq

lψn

)
)
, l=1, ·· · ,M,

−κ∆hψ
n+1=

M∑
l=1

qlcl,n+1+ρf , ψn+1=0.

(2.10)

We shall refer the fully discrete scheme (2.10) as the “Slotboom scheme” in the following
sections.

3. Theoretical properties
In this section, we recall several important properties of the semi-implicit

scheme (2.10) in preserving mass conservation, ionic positivity, and energy dissipation
at a discrete level. The detailed proof could be found in the works [9, 10,24,25].

Theorem 3.1 (Mass conservation). The semi-implicit scheme (2.10) conserves total
ionic mass, i.e.,

h3
N∑

i,j,k=1

cl,n+1
i,j,k =h3

N∑
i,j,k=1

cl,ni,j,k. (3.1)

Theorem 3.2 (Positivity preserving). The semi-implicit scheme (2.10) is positivity-

preserving in the sense that if cl,ni,j,k>0, then

cl,n+1
i,j,k >0 for i,j,k=1,·· · ,N.

The fully discrete free energy is given by

Fnh =

M∑
l=1

N∑
i,j,k=1

h3
[
cl,ni,j,k logc

l,n
i,j,k+

1

2
(qlcl,ni,j,k+ρ

f
i,j,k)ψ

n
i,j,k

]
, (3.2)
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which is a second-order accurate approximation of F in (1.2) in space. It has been proved
that the semi-implicit scheme (2.10) respects free-energy dissipation at a discrete level
conditionally [24].

Theorem 3.3 (Energy dissipation). If the time step size ∆t satisfies the sufficient
condition 0<∆t≤ τ∗, where

τ∗=
κ

C1
e−h|q

l|∥∇hψ
n∥∞ , with C1=

M∑
l=1

|ql|2 max
1≤l≤M

{∥cl,n+1∥∞}, (3.3)

then the discrete free energy Fnh is non-increasing, in the sense that

Fn+1
h −Fnh ≤−∆t

2
In, (3.4)

where

In=

M∑
l=1

N∑
i,j,k=1

h3e
−Sl,n

i+1
2
,j,kDx(c

l,n+1eS
l,n

)i+ 1
2 ,j,k

Dx(log(c
l,n+1eS

l,n

))i+ 1
2 ,j,k

+

M∑
l=1

N∑
i,j,k=1

h3e
−Sl,n

i,j+1
2
,kDy(c

l,n+1eS
l,n

)i,j+ 1
2 ,k
Dy(log(c

l,n+1eS
l,n

))i,j+ 1
2 ,k

+

M∑
l=1

N∑
i,j,k=1

h3e
−Sl,n

i,j,k+1
2Dz(c

l,n+1eS
l,n

)i,j,k+ 1
2
Dz(log(c

l,n+1eS
l,n

))i,j,k+ 1
2

≥0.

Following the proof given in the work [24], we prove this theorem for the semi-
implicit scheme (2.10) with the entropic mean in the Appendix.

Remark 3.1. It is noticed that, the sufficient condition for the time step size (3.3)
relies on the ∥·∥∞ norm of the concentration variable, as well as the W 1,∞

h norm of
the electrostatic potential variable, at both the previous and next time steps. Nonethe-
less, both quantities (for the numerical solutions) are not automatically available; these
quantities have to be justified by the convergence estimate of the numerical solution and
the corresponding bounds for the exact solution. The details of these estimates shall
be presented in the next section. Afterward, a theoretical justification of the discrete
energy dissipation is complete.

4. Convergence analysis
Let (ψe,c

1
e,c

2
e,·· · ,cMe ) be the exact solutions for the PNP system (1.1). Define

clN :=PNcle(·,t), ψN :=PNψe(·,t), ρfN :=PNρf (·), the Fourier projection of the exact
solution into BK , which is the space of trigonometric polynomials of the degree to and
including K (with N =2K+1). The following projection approximation is standard: if
(cle,ψe)∈L∞(0,T ;Hm

per(Ω)), for any m∈N with 0≤k≤m,

∥ψN −ψe∥L∞(0,T ;Hk)≤Chm−k∥ψe∥L∞(0,T ;Hm),

∥clN −cle∥L∞(0,T ;Hk)≤Chm−k∥cle∥L∞(0,T ;Hm), l=1,2,·· · ,M.
(4.1)

Denote by ψnN =ψN (·,tn) and cl,nN = clN (·,tn) for l=1, ·· · ,M . In addition, we define
restriction operators

(PhψnN )i,j,k :=ψ
n
N (xi,yj ,zk) for i,j,k=1,2, ·· · ,N,
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(Phcl,nN )i,j,k := c
l,n
N (xi,yj ,zk) for i,j,k=1,2,·· · ,N.

Therefore, the mass conservative projections for the initial data are ψ0=PhψN (·,t=0),
cl,0=PhclN (·,t=0) for l=1,·· · ,M .

The error grid function is defined as

enψ :=PhψnN −ψn, el,n :=Phcl,nN −cl,n, l=1,·· · ,M, n∈N∗. (4.2)

As indicated above, one can verify that ēnψ=0, ēl,n=0, for l=1, ·· · ,M , n∈N∗.

Theorem 4.1. Let enψ and el,n be the error grid functions defined in (4.2). Then, under
the linear refinement requirement C1h≤∆t≤C2h, the following convergence result is
available as ∆t,h→0:

M∑
l=1

∥∥el,n∥∥
2
+
(
∆t

M∑
l=1

n∑
k=1

∥∥∇he
l,k
∥∥2
2

) 1
2

+
∥∥enψ∥∥H2

h

≤C(∆t+h2), (4.3)

where the constant C>0 is independent of ∆t and h.

4.1. Higher-order consistency analysis. It follows from the truncation error
analysis that the numerical solution to the Slotboom scheme (2.10) approximates the
projection solution (ψN ,c

1
N ,·· · ,cMN ) with only first order accuracy in time and second

order accuracy in space. Such a first order accuracy in time is not sufficient to recover
an a-priori ℓ∞ bound to ensure the energy stability analysis. Instead, a higher order
consistency analysis is performed by adding perturbation terms to recover such a bound.
We first construct auxiliary variables, cl∆t, ψ∆t, č

l, ψ̌, and ρ̌f :

ψ̌=ψN +∆tPNψ∆t, ρ̌
f =ρfN , č

l= clN +∆tPNcl∆t, l=1,·· · ,M, (4.4)

so that the higher O(∆t2+h2) consistency is achieved between the numerical solution
and the constructed solution (ψ̌, čl). The constructed variables ψ∆t, c

l
∆t, l=1, ·· · ,M ,

which solely depend on the exact solutions cle and ψe, can be found by a perturbation
expansion.

It follows from the Taylor expansion for the temporal discretization and the estimate
for the projection solution that

cl,n+1
N −cl,nN

∆t
=∇·

(
e−q

lψn
N∇(cl,n+1

N eq
lψn

N )
)
+∆tGl,n(0)+O(∆t2), l=1,·· · ,M,

−κ∆ψn+1
N =

M∑
l=1

qlcl,n+1
N +ρfN ,

∫
Ω

ψn+1
N dx=0,

(4.5)

where the functions Gl,n(0), l=1,·· · ,M, are smooth enough in the sense that the temporal

and spatial derivatives are bounded. In addition, Gl,n(0) is a spatial function with sufficient

regularity for a fixed time step tn.
The temporal perturbation variables

(
ψ∆t,c

1
∆t,·· · ,cM∆t

)
can be found by solving

∂tc
l
∆t=∇·

(
e−q

lψN∇(qlclNe
qlψNψ∆t)+e

−qlψN∇(eq
lψN cl∆t)

−qle−q
lψNψ∆t∇(clNe

qlψN )
)
−Gl(0),
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−κ∆ψ∆t=

M∑
l=1

qlcl∆t,

∫
Ω

ψ∆tdx=0.

This is a linear PDE system that depends on the projection solutions (ψN ,c
1
N , ·· · ,cMN ),

and the existence of its solution is straightforward. In addition, the derivatives of
(ψ∆t,c

1
∆t, ·· · ,cM∆t) in various orders are bounded. A semi-implicit discretization leads to

cl,n+1
∆t −cl,n∆t

∆t
=∇·

(
e−q

lψn
N∇(qlcl,n+1

N eq
lψn

Nψn∆t)+e
−qlψn

N∇(eq
lψn

N cl,n+1
∆t )

−qle−q
lψn

Nψn∆t∇(cl,n+1
N eq

lψn
N )
)
−Gl,n(0)+O(∆t), l=1,·· · ,M,

−κ∆ψn+1
∆t =

M∑
l=1

qlcl,n+1
∆t ,

∫
Ω

ψn+1
∆t dx=0.

(4.6)

Therefore, a combination of (4.5) and (4.6) gives the temporal truncation error for čl

and ψ̌:

čl,n+1− čl,n

∆t
=∇·

(
e−q

lψ̌n

∇(čl,n+1eq
lψ̌n

)
)
+O(∆t2), l=1, ·· · ,M,

−κ∆ψ̌n+1=

M∑
l=1

qlčl,n+1+ ρ̌f ,

∫
Ω

ψ̌n+1dx=0.

(4.7)

In fact, the following linearized expansions have been used in the derivation of (4.7):

eq
lψ̌=eq

l(ψN+∆tPNψ∆t)=eq
lψN +∆tqlPNψ∆te

qlψN +O(∆t2),

e−q
lψ̌=e−q

l(ψN+∆tPNψ∆t)=e−q
lψN −∆tqlPNψ∆te

−qlψN +O(∆t2).

After spatial discretization, one can obtain by the Taylor expansion for (ψ̌, č1, ·· · , čM ):

čl,n+1− čl,n

∆t
=∇h ·

(
e−q

lψ̌n

∇h(č
l,n+1eq

lψ̌n

)
)
+τ l,n+1, l=1, ·· · ,M,

−κ∆hψ̌
n+1=

M∑
l=1

qlčl,n+1+ ρ̌f , ψ̌n+1=0,

(4.8)

where

∥τ l,n+1∥2≤C(∆t2+h2).

Remark 4.1. Since the correction functions only depend on (ψN ,c
1
N ,c

2
N ,·· · ,cMN )

and the exact solution, we can obtain discrete W 1,∞ bounds from the regularity of the
constructed solutions:

∥čl,n∥∞≤C∗
0 , ∥∇hč

l,n∥∞≤C∗
0 , l=1, ·· · ,M,

∥ψ̌n∥∞≤C∗
0 , ∥∇hψ̌

n∥∞≤C∗
0 ,

(4.9)

at any time step tn.
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4.2. Error estimate. Instead of working on the original numerical error func-
tions defined in (4.2), we first consider the following ones

ψ̃n :=Phψ̌n−ψn, c̃l,n :=Phčl,n−cl,n, l=1,2,·· · ,M, N ∈N∗. (4.10)

By the consistency estimate (4.8), a higher-order truncation accuracy is available for
these numerical error functions.

Subtracting the numerical scheme (2.10) from the consistency estimate (4.8) yields

c̃l,n+1− c̃l,n

∆t
=∇h ·

(
(e−q

lψ̌n

−e−q
lψn

)∇h(č
l,n+1eq

lψ̌n

)
)
+∇h ·

(
e−q

lψn

∇h(c̃
l,n+1eq

lψn

)
)

+∇h ·
(
e−q

lψn

∇h(č
l,n+1(eq

lψ̌n

−eq
lψn

))
)
+τ l,n+1, l=1, ·· · ,M,

−κ∆hψ̃
n+1=

M∑
l=1

qlc̃l,n+1, ψ̃n+1=0, (4.11)

where ψ̃n+1, c̃l,n+1∈C̊per, l=1,2,·· · ,M . As an example, we now take the harmonic

mean for the evaluation of the nonlinear mobility functions e−q
lψn

(or e−q
lψ̌n

) over the
staggered mesh points.

Since čl,n+1 and čl,n+1eq
lψ̌n

only depend on the exact solutions and the constructed
variables, one can assume a discrete W 1,∞ bound

∥∇h(č
l,n+1eq

lψ̌n

)∥∞, ∥čl,n+1∥∞+∥∇hč
l,n+1∥∞≤C⋆0 . (4.12)

In addition, the following a-priori assumption is made, so that the nonlinear analysis
could be accomplished by an induction argument:

∥c̃l,n∥2≤∆t
15
8 +h

15
8 , l=1,2, ·· · ,M. (4.13)

This a-priori assumption will be recovered by the optimal rate convergence analysis at
the next time step, as will be demonstrated later. With the error equation for ψ̃n+1

in (4.11), we apply the preliminary inequalities (2.3), (2.4) in Lemma 2.1 and obtain

∥ψ̃n∥∞≤C∥∆hψ̃
n∥2≤C

M∑
l=1

ql∥c̃l,n∥2≤C(∆t
15
8 +h

15
8 )≤ 1

4
, (4.14)

∥∇hψ̃
n∥∞≤ C∥ψ̃n∥∞

h
≤ C(∆t

15
8 +h

15
8 )

h
≤C(∆t

7
8 +h

7
8 )≤ 1

4
, (4.15)

in which the fact that ψ̃n∈C̊per has been applied. Therefore, its combination with the

regularity Assumption (4.9) gives a W 1,∞
h bound for the numerical solution ψn at the

previous time step:

∥ψn∥∞≤∥ψ̌n∥∞+∥ψ̃n∥∞≤ C̃3 :=C
⋆
0 +

1

4
, ∥∇hψ

n∥∞≤∥∇hψ̌
n∥∞+∥∇hψ̃

n∥∞≤ C̃3.

(4.16)

Before proceeding with the convergence analysis, the following preliminary results
are needed.

Proposition 4.1. Under the a-priori Assumption (4.13) for the numerical error
function at the previous time step, we have

∥e−q
lψn

∥∞, ∥∇h(e
qlψn

)∥∞≤ C̃4, (4.17)
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∥e−q
lψ̌n

−e−q
lψn

∥2≤ C̃5∥ψ̃n∥2, (4.18)

∥eq
lψ̌n

−eq
lψn

∥2≤ C̃6∥ψ̃n∥2, ∥∇h(e
qlψ̌n

−eq
lψn

)∥2≤ C̃7(∥ψ̃n∥2+∥∇hψ̃
n∥2), (4.19)

for any l=1, ·· · ,M , in which the harmonic mean formula in (2.6) has been applied in the

evaluation of e−q
lψ̌n

and e−q
lψn

at the staggered grid points. Notice that the constants
C̃j (4≤ j≤7) are independent of ∆t and h.

Proof. By the harmonic mean formula for e−q
lψn

(in (2.6)), we find that∣∣∣e−qlψn

i+1
2
,j,k

∣∣∣=(eqlψn
i+1,j,k +eq

lψn
i,j,k

2

)−1

≤
(
e|q

l|·(−C̃3)
)−1

=e|ql|C̃3 , (4.20)

at each staggered grid point (i+ 1
2 ,j,k), in which the ∥·∥∞ bound (4.16) has been

used. Similar derivations could be applied at the staggered grid points in the y and z

directions. Then we get ∥e−qlψn∥∞≤e|ql|C̃3 . Using similar argument, we are able to

prove that ∥e−qlψ̌n∥∞≤e|ql|C⋆
0 .

For the second inequality in (4.17), we observe the following expansion at each
numerical mesh cell, from (i,j,k) to (i+1,j,k):

Dx(e
qlψn

)i+ 1
2 ,j,k

=
eq

lψn
i+1,j,k −eq

lψn
i,j,k

h
= qleq

lξ(1)(Dxψ
n)i+ 1

2 ,j,k
, (4.21)

in which the intermediate value theorem has been applied, and ξ(1) is between ψni,j,k
and ψni+1,j,k. Then we conclude that

∥eq
lξ(1)∥∞≤e|q

l|·∥ψn∥∞ ≤e|q
l|C̃3 . (4.22)

As a consequence, an application of discrete Hölder inequality gives

∥Dx(e
qlψn

)∥∞≤∥eq
lξ(1)∥∞ ·∥Dxψ

n∥∞≤|ql|e|q
l|C̃3C̃3, (4.23)

in which the a-priori estimate (4.16) has been applied in the last step. Similar bounds

could be derived for ∥Dy(e
qlψn

)∥∞, ∥Dz(e
qlψn

)∥∞, respectively. Then we obtain

∥∇h(e
qlψn

)∥∞≤|ql|e|ql|C̃3C̃3. As a result, both inequalities in (4.17) have been proved,

by taking C̃4=max(e|q
l|C̃3 ,|ql|e|ql|C̃3C̃3).

To prove the inequality (4.18), we see that the expansion (4.20) indicates the fol-
lowing identity:

e
−qlψ̌n

i+1
2
,j,k −e

−qlψn

i+1
2
,j,k

=−e
−qlψ̌n

i+1
2
,j,ke

−qlψn

i+1
2
,j,k

(eqlψ̌n
i+1,j,k +eq

lψ̌n
i,j,k

2
− eq

lψn
i+1,j,k +eq

lψn
i,j,k

2

)
=−e

−qlψ̌n

i+1
2
,j,ke

−qlψn

i+1
2
,j,k

(eqlψ̌n
i+1,j,k −eq

lψn
i+1,j,k

2
+
eq

lψ̌n
i,j,k −eq

lψn
i,j,k

2

)
=− ql

2
e
−qlψ̌n

i+1
2
,j,ke

−qlψn

i+1
2
,j,k

(
eq

lξ(2) ψ̃ni+1,j,k+e
qlξ(3) ψ̃ni,j,k

)
, (4.24)

in which the intermediate value theorem has been applied, ξ(2) is between ψni+1,j,k

and ψ̌ni+1,j,k, ξ
(3) is between ψni,j,k and ψ̌ni,j,k, respectively. By the regularity Assump-

tion (4.9) and the a-priori ∥·∥∞ bound (4.16), we see that

∥eq
lξ(2)∥∞, ∥eq

lξ(3)∥∞≤e|q
l|C̃3 . (4.25)
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Therefore, an application of discrete Hölder inequality reveals that

∥e−q
lψ̌n

−e−q
lψn

∥2

≤|ql|
2

∥e−q
lψ̌n

∥∞ ·∥e−q
lψn

∥∞
(
∥eq

lξ(2)∥∞ ·∥ψ̃n∥2+∥eq
lξ(3)∥∞ ·∥ψ̃n∥2

)
≤|ql|

2
e|q

l|C̃3 ·e|q
l|C̃∗

0 ·2e|q
l|C̃3∥ψ̃n∥2≤|ql|e3q

lC̃3∥ψ̃n∥2, (4.26)

in which (4.17) is recalled. This proves the inequality (4.18), by taking C̃5= |ql|e3qlC̃3 .
To prove the inequalities (4.19), we begin with the following difference formula at

each grid point:

eq
lψ̌n

i,j,k −eq
lψn

i,j,k = qleq
lξ

(4)
i,j,k ψ̃ni,j,k, (4.27)

using the intermediate value theorem, with ξ
(4)
i,j,k being between ψni,j,k and ψ̌ni,j,k. There-

fore, we have

∥ξ(4)∥∞≤max(∥ψn∥∞,∥ψ̌n∥∞)≤max(C̃3,C
∗
0 )= C̃3, ∥eq

lξ(4)∥∞≤e|q
l|·∥ξ(4)∥∞ ≤e|q

l|C̃3 .
(4.28)

In turn, an application of discrete Hölder inequality gives

∥eq
lψ̌n

−eq
lψn

∥2≤∥eq
lξ(4)∥∞ ·∥ψ̃n∥2≤|ql|e|q

l|C̃3∥ψ̃n∥2, (4.29)

so that the first inequality in (4.19) is proved, by taking C̃6= |ql|e|ql|C̃3 .
To prove the second inequality in (4.19), we recall the point-wise expansion (4.27),

and look at the numerical mesh cell from (i,j,k) to (i+1,j,k):

eq
lψ̌n

i,j,k −eq
lψn

i,j,k = qleq
lξ

(4)
i,j,k ψ̃ni,j,k, eq

lψ̌n
i+1,j,k −eq

lψn
i+1,j,k = qleq

lξ
(4)
i+1,j,k ψ̃ni+1,j,k, (4.30)

which in turn leads to the gradient expansion in the x direction:

Dx(e
qlψ̌n

−eq
lψn

)i+ 1
2 ,j,k

= qleq
lξ

(4)
i,j,k(Dxψ̃)i+ 1

2 ,j,k
+
eq

lξ
(4)
i+1,j,k −eq

lξ
(4)
i,j,k

h
qlψ̃ni+1,j,k. (4.31)

With the ∥·∥∞ bound in (4.28), it is straightforward to get an ∥·∥2 estimate for the
first term. For the second term, we begin with the following observation:

eq
lξ

(4)
i,j,k −eq

lψn
i,j,k = qleq

lξ
(5)
i,j,k(ξ

(4)
i,j,k−ψ

n
i,j,k), with ξ

(5)
i,j,k between ξ

(4)
i,j,k and ψni,j,k .

(4.32)

Moreover, by the fact that ξ
(4)
i,j,k is between ψni,j,k and ψ̌ni,j,k, we conclude that

∥ξ(5)∥∞≤max(∥ψn∥∞,∥ψ̌n∥∞)≤max(C̃3,C
∗
0 )= C̃3, |eq

lξ
(5)
i,j,k |≤e|q

l·|∥ξ(5)∥∞ ≤e|q
l|C̃3 ,

(4.33)

|ξ(4)i,j,k−ψ
n
i,j,k|≤ |ψ̌ni,j,k−ψni,j,k|= |ψ̃ni,j,k|, (4.34)

so that |eq
lξ

(4)
i,j,k −eq

lψn
i,j,k |≤Ce|q

l|C̃3(∆t
15
8 +h

15
8 ), (4.35)

in which the a-priori ∥·∥∞ estimate (4.14) has been applied. Using similar arguments,
the following estimate is also available:

|eq
lξ

(4)
i+1,j,k −eq

lψn
i+1,j,k |≤Ce|q

l|C̃3(∆t
15
8 +h

15
8 ). (4.36)
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Then we arrive at∣∣∣eqlξ(4)i+1,j,k −eq
lξ

(4)
i,j,k

h

∣∣∣≤∣∣∣eqlψn
i+1,j,k −eq

lψn
i,j,k

h

∣∣∣+ Ce|q
l|C̃3(∆t

15
8 +h

15
8 )

h

≤∥∇h(e
qlψn

)∥∞+
1

4
≤ C̃4+

1

4
, (4.37)

under the linear refinement constraint C1h≤∆t≤C2h, and the bound (4.17) has been
recalled in the last step. Since this inequality is valid at any numerical mesh, we get

∥Dx(e
qlξ(4))∥∞≤ C̃4+

1

4
. (4.38)

Therefore, an application of discrete Hölder inequality to the expansion formula (4.31)
indicates that

∥Dx(e
ql·ψ̌n

−eq
lψn

)∥2≤|ql| ·∥eq
lξ(4)∥∞ ·∥Dxψ̃∥2+ |ql| ·∥Dx(e

qlξ(4))∥∞ ·∥ψ̃n∥2

≤|ql| ·e|q
l|C̃3∥Dxψ̃∥2+ |ql|(C̃4+

1

4
)∥ψ̃n∥2. (4.39)

Similar estimates could be derived for the discrete gradient in the y and z directions,
and we are able to obtain the following inequality:

∥∇h(e
qlψ̌n

−eq
lψn

)∥2≤|ql|e|q
l|C̃3∥∇hψ̃∥2+

√
3|ql|(C̃4+

1

4
)∥ψ̃n∥2. (4.40)

As a result, the second inequality of (4.19) is established, by taking C̃7=

|ql|max(e|q
l|C̃3 ,

√
3(C̃4+

1
4 )). This finishes the proof of Proposition 4.1.

Now we proceed with the error estimate. Taking a discrete inner product with
2c̃l,n+1 leads to

1

∆t

(
∥c̃l,n+1∥22−∥c̃l,n∥22+∥c̃l,n+1− c̃l,n∥22

)
+2
〈
e−q

lψn

∇h(c̃
l,n+1eq

lψn

),∇hc̃
l,n+1

〉
=−2

〈
(e−q

lψ̌n

−e−q
lψn

)∇h(č
l,n+1eq

lψ̌n

),∇hc̃
l,n+1

〉
−2
〈
e−q

lψn

∇h(č
l,n+1(eq

lψ̌n

−eq
lψn

)),∇hc̃
l,n+1

〉
+2⟨τ l,n+1, c̃l,n+1⟩. (4.41)

The bound for the local truncation error term is straightforward:

2⟨τ l,n+1, c̃l,n+1⟩≤∥τ l,n+1∥22+∥c̃l,n+1∥22. (4.42)

For the nonlinear term on the left-hand side, we examine a single numerical mesh cell,
from (i,j,k) to (i+1,j,k), and observe the following expansion identity:

Dx(fg)i,j,k=(Axf)i,j,k(Dxg)i,j,k+(Axg)i,j,k(Dxf)i,j,k, (Axf)i,j,k=
1

2
(fi,j,k+fi+1,j,k).

(4.43)
Thus, we get

Dx(c̃
l,n+1eq

lψn

)=Axc̃
l,n+1 ·Dxe

qlψn

+Axe
qlψn

·Dxc̃
l,n+1, (4.44)

e−q
lψn

Dx(c̃
l,n+1eq

lψn

)=Axc̃
l,n+1 ·Dxe

qlψn

·e−q
lψn

+Dxc̃
l,n+1, (4.45)
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in which the following point-wise identity has been applied in the derivation:

e
−qlψn

i+1
2
,j,k ·(Axeq

lψn

)i+ 1
2 ,j,k

=
(eqlψn

i+1,j,k +eq
lψn

i,j,k

2

)−1

· e
qlψn

i+1,j,k +eq
lψn

i,j,k

2
=1, (by (2.6)). (4.46)

Then we arrive at〈
e−q

lψn

Dx(c̃
l,n+1eq

lψn

),Dxc̃
l,n+1

〉
=∥Dxc̃

l,n+1∥22+
〈
Axc̃

l,n+1(Dxe
qlψn

)e−q
lψn

,Dxc̃
l,n+1

〉
≥∥Dxc̃

l,n+1∥22−∥Axc̃l,n+1∥2 ·∥Dxe
qlψn

∥∞ ·∥e−q
lψn

∥∞ ·∥Dxc̃
l,n+1∥2

≥∥Dxc̃
l,n+1∥22− C̃2

4∥c̃l,n+1∥2 ·∥Dxc̃
l,n+1∥2, (4.47)

in which the preliminary ∥·∥∞ bound (4.17) (in Proposition 4.1) has been applied in the
last step. Similar inequalities could be derived in the y and z directions, respectively:〈

e−q
lψn

Dy(c̃
l,n+1eq

lψn

),Dy c̃
l,n+1

〉
≥∥Dy c̃

l,n+1∥22− C̃2
4∥c̃l,n+1∥2 ·∥Dy c̃

l,n+1∥2, (4.48)〈
e−q

lψn

Dz(c̃
l,n+1eq

lψn

),Dz c̃
l,n+1

〉
≥∥Dz c̃

l,n+1∥22− C̃2
4∥c̃l,n+1∥2 ·∥Dz c̃

l,n+1∥2. (4.49)

As a result, the following estimate becomes available for the nonlinear inner product on
the left-hand side:〈

e−q
lψn

∇h(c̃
l,n+1eq

lψn

),∇hc̃
l,n+1

〉
≥∥∇hc̃

l,n+1∥22− C̃2
4∥c̃l,n+1∥2 ·(∥Dxc̃

l,n+1∥2+∥Dy c̃
l,n+1∥2+∥Dz c̃

l,n+1∥2)

≥∥∇hc̃
l,n+1∥22−

√
3C̃2

4∥c̃l,n+1∥2 ·∥∇hc̃
l,n+1∥2

≥∥∇hc̃
l,n+1∥22−

1

4
∥∇hc̃

l,n+1∥22−3C̃4
4∥c̃l,n+1∥22=

3

4
∥∇hc̃

l,n+1∥22−3C̃4
4∥c̃l,n+1∥22. (4.50)

The first nonlinear inner product term on the right-hand side could be analyzed
with the help of the W 1,∞

h regularity Assumption (4.12):

−
〈
(e−q

lψ̌n

−e−q
lψn

)∇h(č
l,n+1eq

lψ̌n

),∇hc̃
l,n+1

〉
≤∥∇h(č

l,n+1eq
lψ̌n

)∥∞ ·∥e−q
lψ̌n

−e−q
lψn

∥2 ·∥∇hc̃
l,n+1∥2

≤C∗
0 · C̃5∥ψ̃n∥2 ·∥∇hc̃

l,n+1∥2≤
1

4
∥∇hc̃

l,n+1∥22+(C∗
0 )

2C̃2
5∥ψ̃n∥22, (4.51)

in which the preliminary ∥·∥2 estimate (4.18) (in Proposition 4.1) has been recalled.
To analyze the second nonlinear inner product term on the right-hand side, we make

use of the expansion identity (4.43) and observe that

Dx(č
l,n+1(eq

lψ̌n

−eq
lψn

))=Axč
l,n+1 ·Dx(e

qlψ̌n

−eq
lψn

)+Ax(e
qlψ̌n

−eq
lψn

) ·Dxč
l,n+1.
(4.52)

This in turn implies that

−
〈
e−q

lψn

Dx(č
l,n+1(eq

lψ̌n

−eq
lψn

)),Dxc̃
l,n+1

〉
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=
〈
e−q

lψn
(
Axč

l,n+1 ·Dx(e
qlψ̌n

−eq
lψn

)+Ax(e
qlψ̌n

−eq
lψn

) ·Dxč
l,n+1

)
,Dxc̃

l,n+1
〉

≤∥e−q
lψn

∥∞ ·∥čl,n+1∥∞ ·∥Dx(e
qlψ̌n

−eq
lψn

)∥2 ·∥Dxc̃
l,n+1∥2

+∥e−q
lψn

∥∞ ·∥Dxč
l,n+1∥∞ ·∥eq

lψ̌n

−eq
lψn

∥2 ·∥Dxc̃
l,n+1∥2

≤C̃4C
∗
0

(
C̃6∥ψ̃n∥2+ C̃7(∥ψ̃n∥2+∥∇hψ̃

n∥2)
)
∥Dxc̃

l,n+1∥2

≤1

4
∥Dxc̃

l,n+1∥22+2C̃2
4 (C

∗
0 )

2
(
(C̃6+ C̃7)

2∥ψ̃n∥22+ C̃2
7∥∇hψ̃

n∥22
)
, (4.53)

in which the preliminary estimates (4.17), (4.19) (in Proposition 4.1), as well as the
regularity Assumption (4.9), have been extensively used. The inequalities in the y and
z directions could be derived in a similar manner. Then we are able to obtain

−
〈
e−q

lψn

∇h(č
l,n+1(eq

lψ̌n

−eq
lψn

)),∇hc̃
l,n+1

〉
≤1

4
∥∇hc̃

l,n+1∥22+6C̃2
4 (C

∗
0 )

2
(
(C̃6+ C̃7)

2∥ψ̃n∥22+ C̃2
7∥∇hψ̃

n∥22
)
. (4.54)

Finally, a substitution of (4.42), (4.50), (4.51) and (4.54) into (4.41) leads to

1

∆t
(∥c̃l,n+1∥22−∥c̃l,n∥22)+

1

2
∥∇hc̃

l,n+1∥22

≤∥τ l,n+1∥22+(6C̃4
4 +1)∥c̃l,n+1∥22+ C̃8∥ψ̃n∥22+ C̃9∥∇hψ̃

n∥22, (4.55)

with C̃8=(C∗
0 )

2
(
2C̃2

5 +12C̃2
4 (C̃6+ C̃7)

2
)
, C̃9=12(C∗

0 )
2C̃2

4 C̃
2
7 . Meanwhile, the discrete

elliptic regularity inequality (2.2) (in Lemma 2.1) indicates that

C̃8∥ψ̃n∥22+ C̃9∥∇hψ̃
n∥22≤C(C̃8+ C̃9)∥∆hψ̃

n∥22≤C(C̃8+ C̃9)
( M∑
l=1

ql∥c̃l,n∥2
)2

≤CM(C̃8+ C̃9)

M∑
l=1

(ql)2∥c̃l,n∥22. (4.56)

Its substitution into (4.55) yields

1

∆t
(∥c̃l,n+1∥22−∥c̃l,n∥22)+

1

2
∥∇hc̃

l,n+1∥22

≤∥τ l,n+1∥22+(6C̃4
4 +1)∥c̃l,n+1∥22+CM(C̃8+ C̃9)

M∑
l=1

(ql)2∥c̃l,n∥22. (4.57)

Subsequently, a summation over all ionic species gives

M∑
l=1

( 1

∆t
(∥c̃l,n+1∥22−∥c̃l,n∥22)+

1

2
∥∇hc̃

l,n+1∥22
)

≤
M∑
l=1

(
∥τ l,n+1∥22+(6C̃4

4 +1)∥c̃l,n+1∥22
)
+CM2(C̃8+ C̃9)

M∑
l=1

(ql)2∥c̃l,n∥22. (4.58)

An application of discrete Gronwall inequality leads to

M∑
l=1

∥c̃l,n+1∥2+
(
∆t

M∑
l=1

n+1∑
k=1

∥∇hc̃
l,k∥22

) 1
2 ≤ Ĉ(∆t2+h2), (4.59)
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based on the higher order truncation error accuracy, ∥τ l,n+1∥2≤C(∆t2+h2), l=
1, ·· · ,M .

With this higher order error estimate, we notice that the a-priori Assumption (4.13)
is satisfied at the next time step tn+1:

∥c̃l,n+1∥2≤ Ĉ(∆t2+h2)≤∆t
15
8 +h

15
8 , 1≤ l≤M,

provided that ∆t and h are sufficiently small. Therefore, an induction analysis could be
applied. This finishes the higher order convergence analysis.

As a result, the convergence estimate (4.3) for the variable (c1,·· · ,cM ) is a direct
consequence of (4.59), combined with the definition (4.4) of the constructed approximate
solution (clN ,c

2
N ,·· · ,cMN ), as well as the projection estimate (4.2).

In terms of the convergence estimate for the electric potential ψ, we recall the
definition for ψ̃n+1 and observe that

∥∥ψ̃n+1
∥∥
H2

h

≤C∥∆hψ̃
n+1∥2≤

C

κ

M∑
l=1

|ql|
∥∥c̃l,n+1

∥∥
2
≤ Ĉ2(∆t

2+h2),

in which the discrete elliptic regularity estimate (2.2) (in Lemma 2.1) has been applied
in the first step. Meanwhile, the following inequality is available:

∥ψ̃n+1−en+1
ψ ∥H2

h
≤C∥∆h(ψ̃

n+1−en+1
ψ )∥2≤ Ĉ3∆t,

since (−∆h)(ψ̃
n+1−en+1

ψ )=

M∑
l=1

ql(čl,n+1−cl,n+1
N )=

M∑
l=1

ql(∆tPNcl,n+1
∆t ).

Finally, we arrive at∥∥en+1
ψ

∥∥
H2

h

≤
∥∥ψ̃n+1

∥∥
H2

h

+
∥∥ψ̃n+1−en+1

ψ

∥∥
H2

h

≤ Ĉ4(∆t+h
2). (4.60)

This completes the proof of Theorem 4.1.

4.3. Theoretical justification of energy dissipation. By the estimate (4.59),
the ∥·∥∞ error bound for the concentration variable at the next time step is available:

∥c̃l,n+1∥∞≤ C∥c̃l,n+1∥2
h

3
2

≤ C(∆t
15
8 +h

15
8 )

h
3
2

≤C(∆t
3
8 +h

3
8 )≤ 1

4
, l=1,2, ·· · ,M.

(4.61)

Again, with the help of the regularity Assumption (4.9), an ℓ∞ bound for the numerical
solution can be derived at the next time step:

∥cl,n+1∥∞≤∥čl,n+1∥∞+∥c̃l,n+1∥∞≤ C̃3, l=1,2,·· · ,M. (4.62)

Therefore, with the ∥·∥∞ bounds (4.62) and (4.16) for the numerical solutions,
cl,n+1 (evaluated at the next time step) and ∇hψ

n (evaluated at the previous time
step), a lower bound of τ∗ in (3.3) can be established:

τ∗≥ τ∗min :=
κ

C̃3

∑M
l=1 |ql|2

e−|ql|hC̃3 .

As a result, the proof of Theorem 3.3 can be theoretically justified, as long as the time
step size satisfies 0<∆t≤ τ∗min.
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4.4. Error analysis with other mobility means. The convergence analysis
presented above focuses on the harmonic mean for the mobility average. We remark
that the convergence estimate will still go through for the other options, such as the
geometric mean, arithmetic mean, or entropic mean (formulated in (2.6)).

In fact, the asymptotic expansion (4.4) and the higher order consistency esti-
mate (4.8) take the same form, which in turn give the same error evolutionary equa-
tion (4.11). The a-priori Assumption (4.13) and the a-priori estimates (4.14)-(4.16) are
not affected by the choices of the mobility average. Proposition 4.1 is still valid, in
which the inequalities (4.17) and (4.18) are defined in a similar manner, for different

options of e−q
lψn

at staggered grid points.
The only essential difference will be the corresponding estimate (4.46), in which the

exact identity is not valid any more. Meanwhile, the ∥·∥∞ bound (4.16) for ψn implies
that

e
−qlψn

i+1
2
,j,k ·(Axeq

lψn

)i+ 1
2 ,j,k

≥B0>0, B0 dependent on C̃3. (4.63)

In turn, the corresponding estimates in (4.47) and (4.50) become〈
e−q

lψn

Dx(c̃
l,n+1eq

lψn

),Dxc̃
l,n+1

〉
=B0∥Dxc̃

l,n+1∥22+
〈
Axc̃

l,n+1(Dxe
qlψn

)e−q
lψn

,Dxc̃
l,n+1

〉
≥B0∥Dxc̃

l,n+1∥22−∥Axc̃l,n+1∥2 ·∥Dxe
qlψn

∥∞ ·∥e−q
lψn

∥∞ ·∥Dxc̃
l,n+1∥2

≥B0∥Dxc̃
l,n+1∥22− C̃2

4∥c̃l,n+1∥2 ·∥Dxc̃
l,n+1∥2, (4.64)

〈
e−q

lψn

∇h(c̃
l,n+1eq

lψn

),∇hc̃
l,n+1

〉
≥B0∥∇hc̃

l,n+1∥22− C̃2
4∥c̃l,n+1∥2 ·(∥Dxc̃

l,n+1∥2+∥Dy c̃
l,n+1∥2+∥Dz c̃

l,n+1∥2)

≥B0∥∇hc̃
l,n+1∥22−

√
3C̃2

4∥c̃l,n+1∥2 ·∥∇hc̃
l,n+1∥2

≥B0∥∇hc̃
l,n+1∥22−

1

4
B0∥∇hc̃

l,n+1∥22−3C̃4
4B

−1
0 ∥c̃l,n+1∥22

=
3

4
B0∥∇hc̃

l,n+1∥22−3C̃4
4B

−1
0 ∥c̃l,n+1∥22. (4.65)

Similarly, the estimates in (4.51) and (4.54) could be derived as

−
〈
(e−q

lψ̌n

−e−q
lψn

)∇h(č
l,n+1eq

lψ̌n

),∇hc̃
l,n+1

〉
≤∥∇h(č

l,n+1eq
lψ̌n

)∥∞ ·∥e−q
lψ̌n

−e−q
lψn

∥2 ·∥∇hc̃
l,n+1∥2

≤C∗
0 · C̃5∥ψ̃n∥2 ·∥∇hc̃

l,n+1∥2≤
1

4
B0∥∇hc̃

l,n+1∥22+(C∗
0 )

2C̃2
5B

−1
0 ∥ψ̃n∥22, (4.66)

and

−
〈
e−q

lψn

∇h(č
l,n+1(eq

lψ̌n

−eq
lψn

)),∇hc̃
l,n+1

〉
≤1

4
B0∥∇hc̃

l,n+1∥22+6C̃2
4 (C

∗
0 )

2B−1
0

(
(C̃6+ C̃7)

2∥ψ̃n∥22+ C̃2
7∥∇hψ̃

n∥22
)
, (4.67)

respectively.
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Analogous to (4.55), we arrive at

1

∆t
(∥c̃l,n+1∥22−∥c̃l,n∥22)+

1

2
B0∥∇hc̃

l,n+1∥22

≤∥τ l,n+1∥22+(6C̃4
4B

−1
0 +1)∥c̃l,n+1∥22+ C̃8∥ψ̃n∥22+ C̃9∥∇hψ̃

n∥22, (4.68)

with C̃8=(C∗
0 )

2B−1
0

(
2C̃2

5 +12C̃2
4 (C̃6+ C̃7)

2
)
, C̃9=12(C∗

0 )
2C̃2

4 C̃
2
7B

−1
0 . With similar ar-

guments, we are able to establish the convergence estimate (4.59). The technical details
are left to interested readers.

4.5. Convergence estimate on fluxes. It is of practical significance to accu-
rately approximate the ionic fluxes in many applications. For instance, the accuracy of
ionic fluxes through a transmembrane channel is extremely important to the calculation
of the current-voltage characteristic curves. We here consider the convergence estimate
of the flux vector, defined as J l :=∇cl+qlcl∇ψ, 1≤ l≤M . In more detail, we denote
the following profiles:

J le=∇cle+qlcle∇ψe, (the exact profile),

J lN =∇hc
l
N +qlclN∇hψN , (the approximate profile),

J l=∇hc
l+qlcl∇hψ, (the numerical profile).

(4.69)

By the projection estimate (4.1), combined with the standard truncation error estimate
for the finite-difference spatial discretization, we get

∥J le−J lN∥2≤Ch2. (4.70)

In turn, the error grid function for the flux vector is defined as

enJl :=J
l,n
N −J l,n, l=1,·· · ,M, n∈N∗. (4.71)

An ℓ2(0,T ;ℓ2) error estimate can be established for the flux vector.

Corollary 4.1. Let enJl be the error grid functions defined in (4.71). Then, under
the linear refinement requirement C1h≤∆t≤C2h, the following convergence result is
available as ∆t,h→0:

(
∆t

M∑
l=1

n∑
k=1

∥ekJl∥22
) 1

2 ≤C(∆t+h2), (4.72)

where the constant C>0 is independent of ∆t and h.

Proof. A detailed expansion implies that

enJl =∇he
l,n+ql(cl,n∇he

n
ψ+e

l,n∇hψ
n
N ), l=1, ·· · ,M.

Then

∥enJl∥2≤∥∇he
l,n∥2+ |ql|(∥cl,n∥∞ ·∥∇he

n
ψ∥2+∥el,n∥2 ·∥∇hψ

n
N∥∞)

≤∥∇he
l,n∥2+ C̃3|ql|(∥∇he

n
ψ∥2+∥el,n∥2), (4.73)
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in which the regularity Assumption (4.9), the a-priori ∥·∥W∞
h

estimate (4.16), and an

estimate on cl,n that is derived analogously to (4.62) have been applied. This in turn
leads to (

∆t

M∑
l=1

n∑
k=1

∥ekJl∥22
) 1

2

≤
(
∆t

M∑
l=1

n∑
k=1

∥∇he
l,k∥22

) 1
2

+C|ql|
(
∆t

M∑
l=1

n∑
k=1

(∥∇he
k
ψ∥22+∥el,k∥22)

) 1
2

. (4.74)

Moreover, with an application of the discrete Sobolev inequality (2.2) (in
Lemma 2.1) and (4.3) (in Theorem 4.1), we see that(

∆t

M∑
l=1

n∑
k=1

∥∇he
l,k∥22

) 1
2 ≤C(∆t+h2), (by (4.3)), (4.75)

∥∇he
k
ψ∥2≤C∥∆he

k
ψ∥2≤C∥ekψ∥H2

h
≤C(∆t+h2), (by (2.2)), so that(

∆t

M∑
l=1

n∑
k=1

∥∇he
k
ψ∥22
) 1

2 ≤C(∆t+h2), (4.76)

∥el,k∥2≤C(∆t+h2), (by (4.3)) , so that
(
∆t

M∑
l=1

n∑
k=1

∥el,k∥22
) 1

2 ≤C(∆t+h2). (4.77)

Finally, a substitution of (4.75)-(4.77) into (4.74) yields the desired error estimate (4.72)
for the flux vector. This finishes the proof of Corollary 4.1.

Remark 4.2. Since the gradient operator is involved in the flux vector, an ℓ∞(0,T ;ℓ2)
error estimate for eJl is not directly available. On the other hand, such an optimal rate
error estimate in the ℓ∞(0,T ;ℓ2) norm can be established for the flux vector, if an
even higher order consistency analysis is performed. The details are left to interested
readers.

5. Numerical results
Numerical simulations are conducted to demonstrate numerical accuracy of the

developed numerical method and its effectiveness in preserving mass conservation, pos-
itivity, and free-energy dissipation. Unless stated otherwise, we take the characteristic
concentration c0=1M and characteristic length L=1nm.

5.1. Accuracy test. Consider an electrolyte solution with binary symmetric
monovalent ions. Let κ=1. To test the accuracy of the numerical method, we consider
the following problem in 2D:

∂tc
1=∇·(∇c1+c1∇ψ)+f1,

∂tc
2=∇·(∇c2−c2∇ψ)+f2,

−κ∆ψ= c1−c2+ρf ,
(5.1)

where the source terms f1, f2, and ρ
f , as well as the initial and boundary conditions,

are determined by the following exact periodic solution
c1(x,y,t)=e−tcos(2πx)sin(2πy)+2,

c2(x,y,t)=e−tcos(2πx)sin(2πy)+2,

ψ(x,y,t)=e−tcos(2πx)sin(2πy).

(5.2)
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h ℓ∞ error in c1 Order ℓ∞ error in c2 Order ℓ∞ error in ψ Order

Harmonic mean

1
50 2.00e-03 - 1.80e-03 - 1.20e-03 -
1
60 1.40e-03 2.01 1.20e-03 2.01 8.37e-04 2.01
1
70 1.00e-03 1.99 9.19e-04 1.98 6.16e-04 1.99
1
80 7.65e-04 2.01 7.03e-04 2.01 4.71e-04 2.00
1
90 6.05e-04 2.00 5.56e-04 1.99 3.73e-04 1.99

Geometric mean

1
50 2.00e-03 - 1.80e-03 - 1.20e-03 -
1
60 1.40e-03 2.01 1.20e-03 2.01 8.37e-04 2.01
1
70 1.00e-03 1.99 9.19e-04 1.98 6.16e-04 1.99
1
80 7.65e-04 2.01 7.03e-04 2.01 4.71e-04 2.00
1
90 6.05e-04 2.00 5.56e-04 1.99 3.73e-04 1.99

Arithmetic mean

1
50 4.90e-03 - 2.40e-03 - 1.10e-03 -
1
60 3.40e-03 2.01 1.60e-03 2.01 7.84e-04 2.01
1
70 2.50e-03 1.99 1.20e-03 1.99 5.77e-04 1.99
1
80 1.90e-03 2.01 9.24e-04 2.01 4.41e-04 2.00
1
90 1.50e-03 1.99 7.30e-04 1.99 3.49e-04 1.99

Entropic mean

1
50 1.20e-03 - 2.00e-03 - 1.20e-03 -
1
60 8.04e-04 2.02 1.40e-03 2.01 8.37e-04 2.01
1
70 5.93e-04 1.98 1.00e-04 1.99 6.03e-04 1.99
1
80 4.53e-04 2.01 7.77e-04 2.00 4.61e-04 2.00
1
90 3.59e-04 1.99 6.15e-04 1.99 3.65e-04 1.99

Table 5.1. Numerical error and convergence order of numerical solutions at time T =0.1 with a
mesh ratio ∆t=h2.

To probe the discretization error, we apply the proposed numerical method to solve
the problem using various spatial step sizes h with a fixed mesh ratio ∆t=h2. Table
5.1 lists the ℓ∞ errors and convergence orders for ionic concentration and electrostatic
potential at time T =0.1. Obviously, we can observe that the error decreases as the mesh
refines, and the convergence orders for ion concentrations and the electric potential
are both perfectly about 2. This indicates that the semi-implicit scheme (2.10) has
expected convergence rate, i.e., first-order and second-order accurate in time and spatial
discretization, respectively. Notice that the mesh ratio, ∆t=h2, adopted here is for the
purpose of numerical accuracy test, not for the enforcement of the numerical stability
or positivity.

5.2. Properties test. Consider a closed, neutral system that consists of sym-
metric monovalent ions with κ=1e−3. The fixed charge density

ρf (x,y)=−e−100[(x− 1
4 )

2+(y− 1
4 )

2] +e−100[(x− 1
4 )

2+(y− 3
4 )

2]

+e−100[(x− 3
4 )

2+(y− 1
4 )

2]−e−100[(x− 3
4 )

2+(y− 3
4 )

2]

is prescribed to approximate two positive and two negative point charges located in four
quadrants, using Gaussian functions with small local supports. The initial distributions
are given by

c1(x,y,0)=0.1 and c2(x,y,0)=0.1. (5.3)

In this test, we assess the performance of the Slotboom scheme in preserving physical
properties with four different means: the harmonic mean, geometric mean, arithmetic
mean, and entropic mean. As displayed in Figure 5.1, the Slotboom schemes with four
different means perfectly conserve the total ion concentration. The profiles of discrete



J. DING, C. WANG, AND S. ZHOU 479

-4000

-3000

-2000
Harmonic Mean

0

0.1

0.2

Free Energy

Total Mass

0 0.05 0.1

Time 

0

0.05

0.1

M
in

(c
1
) 

-4000

-3000

-2000
Geometric Mean

0

0.1

0.2

Free Energy

Total Mass

0 0.05 0.1

Time 

0

0.05

0.1

M
in

(c
1
) 

-4000

-3000

-2000
Arithmetic Mean

0

0.1

0.2

Free Energy

Total Mass

0 0.05 0.1

Time 

0

0.05

0.1

M
in

(c
1
) 

-4000

-3000

-2000
Entropic Mean

0

0.1

0.2

Free Energy

Total Mass

0 0.05 0.1

Time 

0

0.05

0.1

M
in

(c
1
) 

Fig. 5.1. The evolution of the discrete energy Fh, mass of cations, and minimum concentration
of cations with N =80 and ∆t=h/10.

free energy (3.2) are shown to decay monotonically and robustly, and numerical solutions
of concentrations remain positive all the time. Such results are consistent with the
theoretical analysis.

6. Conclusions

Structure-preserving numerical methods for the Poisson–Nernst–Planck (PNP)
equations have attracted lots of attention recently. Based on the Slotboom transfor-
mation, a class of numerical methods that can be proved to preserve mass conservation,
ionic concentration positivity, and free-energy dissipation at discrete level have been de-
rived in literature. However, rigorous convergence analysis for such structure-preserving
schemes has been still open. This work has provided optimal rate convergence analysis
for such structure-preserving schemes based on the Slotboom reformulation. Different
options of mobility average at the staggered mesh points have been considered for spatial
finite-difference discretization, such as the harmonic mean, geometric mean, arithmetic
mean, and entropic mean. A semi-implicit temporal discretization has been employed,
therefore only a non-constant coefficient, positive-definite linear system has to be solved
at each time step. A higher order asymptotic expansion has been used in the consistency
analysis, so that the discrete maximum norm of the concentration variables can be con-
trolled. The harmonic mean for the mobility average has been taken in the convergence
estimate for simplicity, while the desired error estimate for other options of mobility
average has been elaborated as well with more technical details. An optimal rate con-
vergence analysis for the ionic concentrations, electric potential, and fluxes has been
established, which is the first such result for the structure-preserving numerical schemes
based on the Slotboom reformulation. With such convergence analysis, the conditional
energy dissipation analysis that relies on the maximum norm bounds of the concentra-
tion and the gradient of the electric potential has been further validated. Numerical
results have also been presented to demonstrate the accuracy and structure-preserving
performance of the numerical schemes.

We now discuss several possible further refinements of our work. The current con-
vergence analysis could be extended to consider the fully implicit schemes that can un-
conditionally preserve energy dissipation. The unconditional energy dissipation would



480 CONVERGENCE ANALYSIS FOR STRUCTURE-PRESERVING PNP SCHEMES

help establish upper bounds that are useful in the error estimate. In addition, it is of
practical interest to consider convergence analysis of structure-preserving schemes for
modified PNP equations based on the Slotboom reformulation. For modified PNP equa-
tions, the corresponding structure-preserving numerical methods can be analogously
proposed based on (1.4) with

Sl= qlψ+µlexcess,

where the excess chemical potential µlexcess can be introduced to consider various effects
that are neglected by the classical PNP models. For instance, the excess chemical
potential can describe ionic steric effects either by hard-sphere repulsion described by
the fundamental measure theory [37,49] or by the incorporation of the entropy of solvent
molecules [20,54].
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Appendix. Proof of Theorem 3.3. For completeness, we present the following
proof which is based on the proof of Theorem 3.4 in the work [24], with modifications
due to the entropic mean under consideration.

Proof. Let ρ=
∑M
l=1q

lcl+ρf . By (3.2), we have

Fn+1
h −Fnh =

M∑
l=1

〈
cl,n+1, logcl,n+1

〉
−
〈
cl,n, logcl,n

〉
+

1

2

〈
ρn+1,ψn+1

〉
− 1

2
⟨ρn,ψn⟩

:=−∆tI1+(∆t)2I2, (A.1)

where

I1=− 1

∆t

M∑
l=1

[〈
cl,n+1,logcl,n+1

〉
−
〈
cl,n,logcl,n

〉
+
〈
cl,n+1−cl,n,qlψn

〉]
I2=

1

2(∆t)2
[〈
ρn+1,ψn+1

〉
−⟨ρn,ψn⟩−2

〈
ρn+1−ρn,ψn

〉]
. (A.2)

Thus, the energy dissipation inequality is satisfied if

∆t≤ τ∗≤ I1
2I2

.

By the discretization scheme (2.10) and periodic boundary conditions, we have

I1≥−
M∑
l=1

〈
cl,n+1−cl,n

∆t
,loggl,n+1

〉
≥

M∑
l=1

〈
e−q

lψn

∇hg
l,n+1,∇h logg

l,n+1
〉
≥0,

where gl,n+1= cl,n+1eq
lψn

, the summation by parts, and (logX− logY )(X−Y )>0 for
X,Y >0 have been used. In addition, one can easily verify that〈

ρn+1,ψn
〉
=
〈
ρn,ψn+1

〉
,
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which further implies that

I2=
1

2(∆t)2
〈
ρn+1−ρn,ψn+1−ψn

〉
.

By summation by parts, one can show by the Cauchy inequality that

I2=−
M∑
l=1

ql

2∆t

〈
e−q

lψn

∇hg
l,n+1,∇h(ψ

n+1−ψn)
〉

≤
M∑
l=1

|ql|
2∆t

∥∥e−qlψn

∇hg
l,n+1

∥∥
2

∥∥∇h(ψ
n+1−ψn)

∥∥
2
. (A.3)

On the other hand, it follows from the discrete Poisson’s equation (2.8) that

I2=
κ

2(∆t)2
〈
∆hψ

n−∆hψ
n+1,ψn+1−ψn

〉
=

κ

2(∆t)2
∥∥∇h(ψ

n+1−ψn)
∥∥2
2
. (A.4)

Combination of (A.3) and (A.4) yields

∥∥∇h(ψ
n+1−ψn)

∥∥2
2
≤∆t2

κ2

(
M∑
l=1

|ql|
∥∥e−qlψn

∇hg
l,n+1
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2

)2
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κ2

M∑
l=1

|ql|2
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l=1

∥∥e−qlψn

∇hg
l,n+1

∥∥2
2
.

Thus, we have

I2≤C0

M∑
l=1

∥∥e−qlψn

∇hg
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∥∥2
2
,

where C0=
∑M

l=1(q
l)2

2κ . Therefore,
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where

X−Y
eX−eY

=
1

eθX+(1−θ)Y for θ∈ (0,1)

has been used in the second inequality. Using the entropic mean in the x direction

e
−qlψn

i+1
2
,j,k =

ql(ψni+1,j,k−ψni,j,k)
eq

lψn
i+1,j,k −eqlψ

n
i,j,k

,

we obtain

1
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i,j,k )(1−θ)e
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2
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eq
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eq
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≥ e−|ql(ψn
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M1

≥ e−h|q
l|∥∇hψ

n∥∞

M1
,

where M1= max
1≤l≤M

∥cl,n+1∥∞. Similarly, we have

1

(gl,n+1
i,j+1,k)

θ(gl,n+1
i,j,k )1−θe

−qlψn

i,j+1
2
,k

≥ e−|ql|h∥∇hψ
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M1
,

1

(gl,n+1
i,j,k+1)

θ(gl,n+1
i,j,k )1−θe

−qlψn

i,j,k+1
2

≥ e−|ql|h∥∇hψ
n∥∞

M1
.

(A.5)

Therefore, we obtain

I1
2I2

≥ e−|ql|h∥∇hψ
n∥∞

2C0M1
.

This completes the proof.
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