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A POSITIVITY-PRESERVING, ENERGY STABLE AND
CONVERGENT NUMERICAL SCHEME FOR THE CAHN-HILLIARD

EQUATION WITH A FLORY-HUGGINS-DEGENNES ENERGY∗

LIXIU DONG† , CHENG WANG‡ , HUI ZHANG§ , AND ZHENGRU ZHANG¶

Abstract. This article is focused on the bound estimate and convergence analysis of an un-
conditionally energy-stable scheme for the MMC-TDGL equation, a Cahn-Hilliard equation with a
Flory-Huggins-deGennes energy. The numerical scheme, a finite difference algorithm based on a con-
vex splitting technique of the energy functional, was proposed in [Sci. China Math., 59:1815, 2016].
We provide a theoretical justification of the unique solvability for the proposed numerical scheme, in
which a well-known difficulty associated with the singular nature of the logarithmic energy poten-
tial has to be handled. Meanwhile, a careful analysis reveals that, such a singular nature prevents
the numerical solution of the phase variable reaching the limit singular values, so that the positivity-
preserving property could be proved at a theoretical level. In particular, the natural structure of
the deGennes diffusive coefficient also ensures the desired positivity-preserving property. In turn, the
unconditional energy stability becomes an outcome of the unique solvability and the convex-concave
decomposition for the energy functional. Moreover, an optimal rate convergence analysis is presented
in the `∞(0,T ;H−1

h )∩`2(0,T ;H1
h) norm, in which the the convexity of nonlinear energy potential has

played an essential role. In addition, a rewritten form of the surface diffusion term has facilitated the
convergence analysis, in which we have made use of the special structure of concentration-dependent
deGennes type coefficient. Some numerical results are presented as well.

Keywords. Cahn-Hilliard equation; Flory-Huggins energy; deGennes diffusive coefficient; energy
stability; positivity-preserving; convergence analysis.
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1. Introduction
Composite hydrogel is an important material in the polymeric field, such as topolog-

ical gels (TP), nanocomposite hydrogels (NC), macromolecular microspheres (MMSs),
and so on [35]. Phase transition is the foundational phenomena of these materials. It is
urgently expected to understand the progress of phase transition and find the important
microscopic factors to determine the microstructure and property of hydrogels. Here
we present a numerical approximation of the phase transition of the macromolecular
microsphere composite (MMC) hydrogel, which has a well-defined reticular structure
and high mechanical strength [22]. Zhai and Zhang [43] have developed a reticular free
energy according to the structures of the MMC hydrogel, based on Boltzmann entropy
theory. Then they presented a mathematical model to state the phase transition of the
MMC hydrogels, so-called MMC-TDGL equation and also similar to the Cahn-Hilliard
equation. However, it possesses the reticular Flory-Huggins-deGennes free energy and
variable diffusive coefficient, called deGennes diffusion coefficient. Zhang et al. [24, 26]
present some numerical approximations to perfectly simulate this MMC-TDGL equa-
tion.
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Allen-Cahn and Cahn-Hilliard equations are traditional phase field models with
Ginzburg-Landau or Flory-Huggins energy density [19]. In some cases, certain stochastic
force term has been added in the model, such as Cahn-Hilliard-Cook model, and these
models can be used to describe the structural evolution of mixtures with polymers
and block copolymers [19]. Concerning the computation and analysis of these models,
Du et al. had a series of works [9, 10, 16]. Yang et al. presented invariant energy
quadratization(IEQ) approximation [41, 42, 45–47]. Chen et al. used the phase field
method to investigate composite materials and presented some numerical methods [15].
Shen et al. designed a few high-order energy-stable numerical schemes and provided the
corresponding error estimates [29–34]. These works investigated the nucleation by using
string method in virtue of stochastic Allen-Cahn and Cahn-Hilliard equations [44].

Since the pioneering work by Elliott [17] and Eyre [18], the convex splitting approx-
imation has been a popular numerical approach to solve gradient flows with energy sta-
bility. The fundamental observation is that the energy E admits a splitting into purely
convex and concave parts, that is, E=Ec−Ee, where Ec and Ee are both convex. Such
an idea has also been applied to a wide class of gradient flows in recent years. Both
first and second order accurate in time algorithms have been developed. See the related
works for the PFC equation and the modified PFC (MPFC) equation [14, 37, 38, 40];
the epitaxial thin film growth models [1, 4, 7, 23, 28, 36], the Cahn-Hilliard flow and its
coupling with fluid motion [2, 3, 6, 12,13,21,27,39], etc.

For the MMC-TDGL equation, a convex splitting of the discrete energy in tempo-
ral approximation, combined with the centered difference discretization in space, was
proposed and studied in [25]. This scheme was proved to be unconditionally energy-
stable, provided that the positivity-preserving property is valid for the numerical solu-
tion of the phase variable. On the other hand, although this property was extensively
demonstrated in the numerical experiments [25], a theoretical justification has not been
available. One well-known challenge for the numerical scheme with the Flory-Huggins
energy density has always been associated with the singularity of the numerical solution
as the phase variable approaches limit values. In an earlier work [8], the authors ana-
lyzed a fully discrete finite element scheme based on the backward Euler approximation
for the Cahn-Hilliard equation with a logarithmic free energy; some theoretical results
about the positivity property of the numerical solution were obtained. On the other
hand, as stated in a remark in [8]: our analysis requires the condition k<4γ/θ2

c . This
is a consequence of the non-convexity of the free energy. Even though it is independent
of the spatial mesh, this condition is restrictive because γ�1. In addition, an energy
stability analysis has not been justified for the fully discrete scheme in [8], either, due
to the implicit treatment of the concave expansive term. In a more recent work [5], the
authors presented a finite difference scheme based on the convex-concave decomposition
of the free energy with logarithmic potential and established a theoretical justification of
the positivity property, regardless of time step size. This improvement has been based
on the following fact: the singular nature of the logarithmic term around the boundary
values prevents the numerical solution from reaching these singular values, so that the
numerical scheme is always well-defined as long as the numerical solution stays similarly
bounded at the previous time step.

In this article, we perform a theoretical investigation of the numerical scheme pro-
posed and studied in [25]. In fact, this scheme is equivalent to a minimization of a
strictly convex discrete energy functional at each time step. Then we can transform the
positivity-preserving analysis of the numerical solution into the minimization problem
of this functional, via a rigorous proof by contradiction. Because of the implicit treat-
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ment for the logarithmic terms, which comes from the convex splitting approach, we can
make use of the following subtle fact: the singular feature of the logarithmic function
guarantees that such a minimizer could not occur on a limit value at all. In fact, such
an estimate could not pass through if the logarithmic term is explicitly updated. More-
over, the term associated with the deGennes diffusive coefficient κ(φ) = 1/[36φ(1−φ)]
is very challenging, due to its singularity. With the help of the following inequality:
1
2κ
′(φ1)(φ2−φ1)≤κ(φ2),∀φ1,φ2∈ (0,1), for the deGennes coefficient, which plays an

essential role in the analysis, we can establish the positivity-preserving property for the
numerical solution.

In addition to the existence, uniqueness, positivity-preserving property and un-
conditional energy stability of the numerical scheme, we also provide an optimal rate
convergence analysis, which has not been reported for the MMC-TDGL equation in
the existing literature. The key difficulty in the convergence analysis has always been
associated with the logarithmic potential term. In general, if the nonlinear term is a
polynomial approximation, an estimate of the `∞ bound for the numerical solution en-
ables one to justify the convergence analysis. However, such an `∞ bound turns out to
be not sufficient to derive the convergence analysis with the logarithmic potential, due
to the singular nature as the numerical solution approaches the limit values. Here we
treat the three nonlinear logarithmic terms as a whole, and make full use of the convex-
ity of the associated nonlinear terms, which indicates that the corresponding nonlinear
error of the inner product is always non-negative. Moreover, a control of the linear
expansive term is not available using a standard convexity analysis. To overcome this
subtle difficulty, we divide the surface diffusion term into two convex parts: one term
can be analyzed in a manner similar to the logarithmic term, with the help of its con-
vexity property, and the other term can be used to control the explicit error estimate
associated with the Huggins interaction. In turn, the convergence analysis could go
through at a theoretical level.

The rest of the paper is organized as follows. In Section 2, we present the mathe-
matical model of the phase transition of the MMC hydrogel. In Section 3, we review
the unconditional energy-stable numerical scheme proposed in [25], and state the main
theoretical results. The detailed proof for the positivity-preserving property of the nu-
merical solution is provided in Section 4, and the detailed convergence analysis is given
by Section 5. The numerical simulation results are presented in Section 6. Finally, some
concluding remarks are given in Section 7.

2. The model equation: MMC-TDGL equation

We consider a bounded domain Ω⊂R2. For any φ∈H1(Ω), with a point-wise
bound, φ∈ (0,1/ρ)⊂ (0,1), the energy functional is given by

E(φ) =

∫
Ω

(
S(φ)+H(φ)+κ(φ)|∇φ|2

)
dx, (2.1)

where S(φ)+H(φ) is the reticular free energy density for the MMC hydrogels

S(φ) =
φ

τ
ln
αφ

τ
+

φ

N1
ln
βφ

τ
+(1−ρφ)ln(1−ρφ), H(φ) =χφ(1−ρφ), (2.2)

and κ(φ) is the deGennes coefficient

κ(φ) =
1

36φ(1−φ)
. (2.3)
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In this model, we denote by χ the Huggins interaction parameter, by N1 the degree
of polymerization of the polymer chains, and by N2, which does not appear explicitly
in (2.1), the relative volume of one macromolecular microsphere. The other numbers
α,β,τ and ρ depend on N2 and N1, as given by

α=π

(√
N2

π
+
N1

2

)2

, β=
α√
πN2

, τ =
√
πN2N1, ρ= 1+

N2

τ
.

Note that all these parameters are positive. Besides, ρ is a little greater than one. The
modeling detail can be referred to [43].

In turn, the MMC-TDGL equation for the MMC hydrogels becomes the following
H−1 gradient flow associated with the given energy functional:

∂tφ= ∆µ, µ := δφE=S′(φ)+H ′(φ)+κ′(φ)|∇φ|2−2∇·(κ(φ)∇φ)

= (
1

τ
+

1

N1
)lnφ−ρ ln(1−ρφ)−2χρφ

+
2φ−1

36φ2(1−φ)2
|∇φ|2−∇·

(
∇φ

18φ(1−φ)

)
. (2.4)

Also notice that we have discarded the constant terms in the representation for the
chemical potential µ, since these terms will not play any role in the H−1 gradient flow.

3. The numerical scheme
In the spatial discretization, the centered finite difference approximation is applied.

We recall some basic notations of this methodology.

3.1. Discretization of space and a few preliminary estimates. We use the
notation and results for some discrete functions and operators from [20, 39, 40]. Let
Ω = (0,Lx)×(0,Ly), where for simplicity, we assume Lx=Ly =:L>0. Let N ∈N be
given, and define the grid spacing h :=L/N . We also assume-but only for simplicity of
notation, ultimately-that the mesh spacing in the x and y-directions are the same. The
following two uniform, infinite grids with grid spacing h>0, are introduced

E :={pi+1/2 | i∈Z}, C :={pi | i∈Z},

where pi=p(i) := (i−1/2) ·h. Consider the following 2-D discrete N2-periodic function
spaces:

Cper :={ν :C×C→R | νi,j =νi+αN,j+βN , ∀i,j,α,β∈Z} ,

Ex
per :=

{
ν :E×C→R

∣∣∣ νi+ 1
2 ,j

=νi+ 1
2 +αN,j+βN , ∀i,j,α,β∈Z

}
.

Here we are using the identification νi,j =ν(pi,pj), et cetera. The space Ey
per is analo-

gously defined. The functions of Cper are called cell centered functions. The functions
of Ex

per and Ey
per, are called edge-centered functions. We also define the mean-zero space

C̊per :=

ν ∈Cper

∣∣∣∣∣∣0 =ν :=
h2

|Ω|

N∑
i,j=1

νi,j

.
In addition, ~Eper is defined as ~Eper :=Ex

per×Ey
per.
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We now introduce the difference and average operators on the spaces:

Axνi+1/2,j :=
1

2
(νi+1,j+νi,j) , Dxνi+1/2,j :=

1

h
(νi+1,j−νi,j),

Ayνi,j+1/2 :=
1

2
(νi,j+1 +νi,j), Dyνi,j+1/2 :=

1

h
(νi,j+1−νi,j) ,

with Ax, Dx :Cper→Ex
per, Ay, Dy :Cper→Ey

per. Likewise,

axνi,j :=
1

2

(
νi+1/2,j+νi−1/2,j

)
, dxνi,j :=

1

h

(
νi+1/2,j−νi−1/2,j

)
,

ayνi,j :=
1

2

(
νi,j+1/2 +νi,j−1/2

)
, dyνi,j :=

1

h

(
νi,j+1/2−νi,j−1/2

)
,

with ax, dx :Ex
per→Cper, ay, dy :Ey

per→Cper. The discrete gradient gradient ∇h :Cper→
~Eper is given by

∇hνi,j =
(
Dxνi+1/2,j ,Dyνi,j+1/2

)
,

and the discrete divergence ∇h· : ~Eper→Cper is defined via

∇h · ~fi,j =dxf
x
i,j+dyf

y
i,j ,

where ~f = (fx,fy)∈ ~Eper. The standard 2-D discrete Laplacian, ∆h :Cper→Cper, be-
comes

∆hνi,j :=dx(Dxν)i,j+dy(Dyν)i,j

=
1

h2
(νi+1,j+νi−1,j+νi,j+1 +νi,j−1−4νi,j) .

More generally, if D is a periodic scalar function that is defined at all of the edge center
points and ~f ∈ ~Eper, then D ~f ∈ ~Eper, assuming point-wise multiplication, and we may
define

∇h ·
(
D ~f
)
i,j

=dx (Dfx)i,j+dy (Dfy)i,j .

Specifically, if ν ∈Cper, then ∇h ·(D∇h ) :Cper→Cper is defined point-wise via

∇h ·
(
D∇hν

)
i,j

=dx (DDxν)i,j+dy (DDyν)i,j .

Now we are ready to define the following grid inner products:

〈ν,ξ〉Ω :=h2
N∑

i,j=1

νi,j ξi,j , ν, ξ∈Cper, [ν,ξ]x := 〈ax(νξ),1〉Ω , ν, ξ∈Ex
per,

[ν,ξ]y := 〈ay(νξ),1〉Ω , ν, ξ∈Ey
per.

[
~f1, ~f2

]
Ω

:= [fx1 ,f
x
2 ]x +[fy1 ,f

y
2 ]y ,

~fi= (fxi ,f
y
i )∈ ~Eper, i= 1,2.

In turn, the following norms could be appropriately introduced for cell-centered
functions. If ν ∈Cper, then ‖ν‖22 := 〈ν,ν〉Ω; ‖ν‖pp := 〈|ν|p,1〉Ω, for 1≤p<∞, and ‖ν‖∞ :=
max1≤i,j≤N |νi,j |. We define norms of the gradient as follows: for ν ∈Cper,

‖∇hν‖22 := [∇hν,∇hν]Ω = [Dxν,Dxν]x +[Dyν,Dyν]y ,
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and, more generally, for 1≤p<∞,

‖∇hν‖p :=
(

[|Dxν|p,1]x +[|Dyν|p,1]y

) 1
p

. (3.1)

Higher order norms can be similarly formulated. For example,

‖ν‖2H1
h

:=‖ν‖22 +‖∇hν‖22 , ‖ν‖
2
H2

h
:=‖ν‖2H1

h
+‖∆hν‖22 .

Lemma 3.1. Let D be an arbitrary periodic, scalar function defined on all of the edge
center points. For any ψ,ν ∈Cper and any ~f ∈ ~Eper, the following summation by parts
formulas are valid:〈

ψ,∇h · ~f
〉

Ω
=−

[
∇hψ, ~f

]
Ω
, 〈ψ,∇h ·(D∇hν)〉Ω =−[∇hψ,D∇hν]Ω . (3.2)

To facilitate the convergence analysis, we need to introduce a discrete analogue of
the space H−1

per (Ω), as outlined in [38]. Suppose that D is a positive, periodic scalar
function defined at all of face center points. For any φ∈Cper, there exists a unique

ψ∈C̊per that solves

LD(ψ) :=−∇h ·(D∇hψ) =φ−φ, (3.3)

where φ := |Ω|−1 〈φ,1〉Ω. We equip this space with a bilinear form: for any φ1, φ2∈C̊per,
define

〈φ1,φ2〉L−1
D

:= [D∇hψ1,∇hψ2]Ω , (3.4)

where ψi∈C̊per is the unique solution to

LD(ψi) :=−∇h ·(D∇hψi) =φi, i= 1,2. (3.5)

The following identity [38] is easy to prove via summation-by-parts:

〈φ1,φ2〉L−1
D

=
〈
φ1,L−1

D (φ2)
〉

Ω
=
〈
L−1
D (φ1),φ2

〉
Ω
, (3.6)

and since LD is symmetric positive definite, 〈 · , · 〉L−1
D

is an inner product on C̊per [38].

When D≡1, we drop the subscript and write L1 =L, and in this case we usually
write 〈 · , · 〉L−1

D
=: 〈 · , · 〉−1,h. In the gerneral setting, the norm associated to this

inner product is denoted ‖φ‖L−1
D

:=
√
〈φ,φ〉L−1

D
, for all φ∈C̊per, but, if D≡1, we write

‖·‖L−1
D

=:‖·‖−1,h.

The following preliminary results are associated with the existence of a convex
splitting.

Proposition 3.1.
(1) S and -H are both convex in (0,1/ρ), where S and H are defined by (2.2);

(2) K(u,v) :=κ(u)v2 is convex in (0,1/ρ)×R, where κ is defined by (2.3);

(3) K1(u,v) :=
(
κ(u)− 1

36

)
v2 and K2(v) := 1

36v
2 are both convex in (0,1/ρ)×R and R,

respectively.

Proof. For S,H,K2, differentiating S,H,K2 twice, we obtain

S′′(φ) =

(
1

τ
+

1

N1

)
1

φ
+

ρ2

1−ρφ
, H ′′(φ) =−2χρ, K ′′2 (v) =

1

18
>0.
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When φ∈ (0,1/ρ), we have S′′(φ)>0 and H ′′(φ)<0.

For K(u,v) :=κ(u)v2, by some careful calculations, we obtain the Hessian matrix
of K:

∇2K=

(
(3u2−3u+1)v2

18u3(1−u)3
(2u−1)v

18u2(1−u)2

(2u−1)v
18u2(1−u)2

1
18u(1−u)

)
.

The first-order principal minors of the matrix ∇2K are

D1 =
(3u2−3u+1)v2

18u3(1−u)3
, D2 =

1

18u(1−u)
.

The second-order principal minor is

D12 =det(∇2K) =
v2

182u3(1−u)3
.

These principal minors are all non-negative when u∈ (0,1/ρ) and v∈R. The Hessian
matrix ∇2K is positive semi-definite and thus K is convex in (0,1/ρ)×R.

For K1(u,v) :=
(
κ(u)− 1

36

)
v2, by some careful calculations, we obtain the Hessian

matrix of K1:

∇2K1 =

(
(3u2−3u+1)v2

18u3(1−u)3
(2u−1)v

18u2(1−u)2

(2u−1)v
18u2(1−u)2

u2−u+1
18u(1−u)

)
.

The first-order principal minors of the matrix ∇2K1 are

D1 =
(3u2−3u+1)v2

18u3(1−u)3
, D2 =

u2−u+1

18u(1−u)
.

The second-order principal minor is

D12 =det(∇2K1) =
3

182u2(1−u)2
.

These principal minors are all non-negative when u∈ (0,1/ρ) and v∈R. The Hessian
matrix ∇2K1 is positive semi-definite and thus K1 is convex in (0,1/ρ)×R.

Define the discrete energy F :Cper→R as

F (φ) =h2
N∑

i,j=1

(
S(φi,j)+H(φi,j)+κ(φi,j)(ax((Dxφ)2)i,j+ay((Dyφ)2)i,j)

)
=h2

N∑
i,j=1

(
S(φi,j)+H(φi,j)+(κ(φi,j)−

1

36
)(ax((Dxφ)2)i,j+ay((Dyφ)2)i,j)

)
+

1

36
‖∇hφ‖22 . (3.7)

Lemma 3.2 (Existence of a convex splitting). Assume that φ∈Cper. Defining

FS(φ) =h2
N∑

i,j=1

S(φi,j), Fe(φ) =FH(φ) =−h2
N∑

i,j=1

H(φi,j),
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FK1
(φ) =h2

N∑
i,j=1

(κ(φi,j)−
1

36
)(ax((Dxφ)2)i,j+ay((Dyφ)2)i,j),

FK2(φ) =h2
N∑

i,j=1

1

36
(ax((Dxφ)2)i,j+ay((Dyφ)2)i,j) =

1

36
‖∇hφ‖22 ,

Fc(φ) =FS(φ)+FK1(φ)+FK2(φ).

We have

F (φ) =Fc(φ)−Fe(φ) =FS(φ)+FK1(φ)+FK2(φ)−FH(φ),

where Fc(φ),Fe(φ),FS(φ),FK1(φ),FK2(φ) and FH(φ) are convex.

3.2. The fully discrete numerical scheme and the main theoretical results
We follow the idea of convexity splitting and consider the following semi-implicit, fully

discrete schemes: given φn∈Cper, find φn+1,µn+1∈Cper, such that

φn+1−φn= ∆t∆hµ
n+1, (3.8)

µn+1 = δφFc(φ
n+1)−δφFe(φn)

= δφFS(φn+1)+δφFK1(φn+1)+δφFK2(φn+1)−δφFH(φn)

= S′(φn+1)+κ′(φn+1)
(
ax((Dxφ

n+1)2)+ay((Dyφ
n+1)2)

)
−2dx(Axκ(φn+1)Dxφ

n+1)−2dy(Ayκ(φn+1)Dyφ
n+1)

+H ′(φn), (3.9)

where

S′(φ) = (
1

τ
+

1

N1
)lnφ−ρ ln(1−ρφ), H ′(φ) =−2χρφ, κ′(φ) =

2φ−1

36φ2(1−φ)2
.

Since µ follows the Laplacian ∆h, we omit the constants in the expressions S′(φ) and
H ′(φ) above.

If solutions to the scheme (3.8)-(3.9) exist, it is clear that, for any n∈N,

φ0 := |Ω|−1
〈
φ0,1

〉
Ω

= |Ω|−1
〈
φ1,1

〉
Ω

= ·· ·= |Ω|−1 〈φn,1〉Ω =φn,

with |φn|<1. Thus we get 〈φn−φ0,1〉Ω = 0.

The following result concerning the unconditional energy stability was similar to
the work by Li, Qiao and Zhang [25].

Theorem 3.1. The scheme (3.8)-(3.9) is unconditionally energy-stable, i.e., for any
time step ∆t>0, we always have

F (φk+1)+∆t
∥∥∇hµk+1

∥∥2

2
≤F (φk),

in other words,

F (φk+1)+∆t

∥∥∥∥φk+1−φk

∆t

∥∥∥∥2

−1,h

≤F (φk).
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Proof. The following estimate is always valid:

F (φk+1)−F (φk) =Fc(φ
k+1)−Fe(φk+1)−Fc(φk)+Fe(φ

k)

=Fc(φ
k+1)−Fc(φk)−(Fe(φ

k+1)−Fe(φk))

≤
〈
δφFc(φ

k+1),φk+1−φk
〉

Ω
−
〈
δφFe(φ

k),φk+1−φk
〉

Ω

=
〈
δφFc(φ

k+1)−δφFe(φk),φk+1−φk
〉

Ω

=
〈
µk+1,φk+1−φk

〉
Ω

= ∆t
〈
µk+1,∆hµ

k+1
〉

Ω
=− 1

∆t

〈
(−∆h)−1(φk+1−φk),φk+1−φk

〉
Ω

=−∆t
∥∥∇hµk+1

∥∥2

2
=−∆t

∥∥∥∥φk+1−φk

∆t

∥∥∥∥2

−1,h

≤0. (3.10)

The proof of the following lemma could be found in [5].

Lemma 3.3. Suppose that φ1, φ2∈Cper, with 〈φ1−φ2,1〉Ω = 0, that is, φ1−φ2∈C̊per,
and assume that ‖φ1‖∞<1, ‖φ2‖∞≤M . Then, we have the following estimate:∥∥L−1(φ1−φ2)

∥∥
∞≤C1, (3.11)

where C1>0 depends only upon M and Ω. In particular, C1 is independent of the mesh
spacing h.

The proof for the following lemma and theorem will be provided in the next section.

Lemma 3.4. Assume that φ1, φ2∈ (0,1), and κ is defined by (2.3). Then

1

2
κ′(φ1)(φ2−φ1)≤κ(φ2). (3.12)

Theorem 3.2. Let φn∈Cper, with 0<φn<M , for some M>0, and φn< 1/ρ, there is

a unique solution φn+1∈Cper to the scheme (3.8)-(3.9), with φn+1 =φn and 0<φn+1<
1/ρ.

4. The detailed proof of the positivity-preserving property

4.1. Proof of Lemma 3.4.
Proof. The proof will be divided into two cases:

Case 1: If κ′(φ1)(φ2−φ1)≤0, we see that

1

2
κ′(φ1)(φ2−φ1)≤0≤κ(φ2), (4.1)

due to the fact that κ(φ2)>0, for any 0<φ2<1.

Case 2: If κ′(φ1)(φ2−φ1)≥0, we have

1

2
κ′(φ1)(φ2−φ1)≤κ′(φ1)(φ2−φ1)≤κ(φ2)−κ(φ1)≤κ(φ2), (4.2)

in which the second step is based on the convexity of κ(φ) (in terms of φ), and the last
step comes from the fact that κ(φ1)>0.

A combination of these two cases yields the desired result.
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4.2. Proof of Theorem 3.2.
Proof. The numerical solution of (3.8) is a minimizer of the following discrete

energy functional:

J n(φ) :=
1

2∆t
‖φ−φn‖2−1,h+

1

τ

〈
φ,ln

αφ

τ

〉
Ω

+
1

N1

〈
φ, ln

βφ

τ

〉
Ω

+〈1−ρφ, ln(1−ρφ)〉Ω

+
〈
κ(φ),ax((Dxφ)2)+ay((Dyφ)2)

〉
Ω
−2ρχ〈φ,φn〉Ω , (4.3)

over the admissible set

Ah :=
{
φ∈Cper

∣∣ 0≤φ≤ 1/ρ,
〈
φ−φ0,1

〉
Ω

= 0
}
⊂RN

2

.

It is easy to see that J n is a strictly convex function over this domain.
Equivalently, we consider the following functional

Fn(ϕ) :=J n(ϕ+φ0)

=
1

2∆t

∥∥ϕ+φ0−φn
∥∥2

−1,h
+

1

τ

〈
ϕ+φ0,ln

α(ϕ+φ0)

τ

〉
Ω

(4.4)

+
1

N1

〈
ϕ+φ0,ln

β(ϕ+φ0)

τ

〉
Ω

+
〈
1−ρ(ϕ+φ0),ln(1−ρ(ϕ+φ0))

〉
Ω

(4.5)

+
〈
κ(ϕ+φ0),ax((Dxϕ)2)+ay((Dyϕ)2)

〉
Ω

−2ρχ
〈
ϕ+φ0,φ

n
〉

Ω
, (4.6)

defined on the set

Åh :=
{
ϕ∈C̊per

∣∣∣ −φ0≤ϕ≤ 1/ρ−φ0

}
⊂RN

2

.

If ϕ∈ Åh minimizes Fn, then φ :=ϕ+φ0∈Ah minimizes J n, and vice versa. Next, we
prove that there exists a minimizer of Fn over the domain Åh.We consider the following
closed domain: for δ∈ (0,1/2),

Åh,δ :=
{
ϕ∈C̊per

∣∣∣ δ−φ0≤ϕ≤ 1/ρ−δ−φ0

}
⊂RN

2

. (4.7)

Since Åh,δ is a bounded, compact, and convex set in the subspace C̊per, there exists a (not

necessarily unique) minimizer of Fn over Åh,δ. The key point of the positivity analysis

is that such a minimizer could not occur on the boundary of Åh,δ, if δ is sufficiently
small.

To get a contradiction, suppose that the minimizer of Fn, call it ϕ?, occurs at
a boundary point of Åh,δ and there is at least one grid point ~α0 = (i0,j0) such that
ϕ?~α0

+φ0 = δ. Then the grid function ϕ? has a global minimum at ~α0. Suppose that

~α1 = (i1,j1) is a grid point at which ϕ? achieves its maximum. By the fact that ϕ?= 0,
it is obvious that

1/ρ−δ≥ϕ?~α1
+φ0≥φ0.

Since Fn is smooth over Åh,δ, for all ψ∈C̊per, the directional derivative is

dsFn(ϕ?+sψ)|s=0
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=

〈
1

τ
ln
α(ϕ?+φ0)

τ
+

1

N1
ln
β(ϕ?+φ0)

τ
−ρ ln(1−ρ(ϕ?+φ0)),ψ

〉
Ω

+

〈
1

τ
+

1

N1
−ρ,ψ

〉
Ω

−〈2ρχφn,ψ〉Ω +
1

∆t

〈
L−1

(
ϕ?−φn+φ0

)
,ψ
〉

Ω

+
〈
κ′(ϕ?+φ0)(ax((Dxϕ

?)2)+ay((Dyϕ
?)2)),ψ

〉
Ω
−
〈
κ(ϕ?+φ0)∆hϕ

?,ψ
〉

Ω

+h

N∑
i,j=1

κ(ϕ?i,j+φ0)
(
Dxϕ

?
i+1/2,jψi+1,j−Dxϕ

?
i−1/2,jψi−1,j

)

+h

N∑
i,j=1

κ(ϕ?i,j+φ0)
(
Dyϕ

?
i,j+1/2ψi,j+1−Dyϕ

?
i,j−1/2ψi,j−1

)
.

This time, let us pick the direction ψ∈C̊per, such that

ψi,j = δi,i0δj,j0−δi,i1δj,j1 ,

here δi,j is the Dirac delta function. Then the derivative may be expressed as

1

h2
dsFn(ϕ?+sψ)|s=0

=

(
1

τ
ln
α(ϕ?~α0

+φ0)

τ
+

1

N1
ln
β(ϕ?~α0

+φ0)

τ
−ρ ln(1−ρ(ϕ?~α0

+φ0))

)

−

(
1

τ
ln
α(ϕ?~α1

+φ0)

τ
+

1

N1
ln
β(ϕ?~α1

+φ0)

τ
−ρ ln(1−ρ(ϕ?~α1

+φ0))

)
−2ρχ(φn~α0

−φn~α1
)−
(
κ(ϕ?~α0

+φ0)∆hϕ
?
~α0
−κ(ϕ?~α1

+φ0)∆hϕ
?
~α1

)
+

(
1

∆t
L−1(ϕ?−φn+φ0)~α0

− 1

∆t
L−1(ϕ?−φn+φ0)~α1

)
+κ′(ϕ?~α0

+φ0)(ax((Dxϕ
?
~α0

)2)+ay((Dyϕ
?
~α0

)2))

−κ′(ϕ?~α1
+φ0)(ax((Dxϕ

?
~α1

)2)+ay((Dyϕ
?
~α1

)2))

+
1

h

(
κ(ϕ?i0−1,j0 +φ0)Dxϕ

?
i0−1/2,j0

−κ(ϕ?i0+1,j0 +φ0)Dxϕ
?
i0+1/2,j0

)
+

1

h

(
κ(ϕ?i0,j0−1 +φ0)Dyϕ

?
i0,j0−1/2−κ(ϕ?i0,j0+1 +φ0)Dyϕ

?
i0,j0+1/2

)
− 1

h

(
κ(ϕ?i1−1,j1 +φ0)Dxϕ

?
i1−1/2,j1

−κ(ϕ?i1+1,j1 +φ0)Dxϕ
?
i1+1/2,j1

)
− 1

h

(
κ(ϕ?i1,j1−1 +φ0)Dyϕ

?
i1,j1−1/2−κ(ϕ?i1,j1+1 +φ0)Dyϕ

?
i1,j1+1/2

)
. (4.8)

For simplicity, now let us write φ? :=ϕ?+φ0. Since φ?~α0
= δ and φ?~α1

≥φ0, we have

1

τ
ln
αφ?~α0

τ
+

1

N1
ln
βφ?~α0

τ
−ρ ln(1−ρφ?~α0

) =
1

τ
ln
αδ

τ
+

1

N1
ln
βδ

τ
−ρ ln(1−ρδ), (4.9)

1

τ
ln
αφ?~α1

τ
+

1

N1
ln
βφ?~α1

τ
−ρ ln(1−ρφ?~α1

)≥ 1

τ
ln
αφ0

τ
+

1

N1
ln
βφ0

τ
−ρ ln(1−ρφ0). (4.10)

Since φ? takes a minimum at the grid point ~α0, with φ?~α0
= δ≤φ?i,j , for any (i,j), and a

maximum at the grid point ~α1, with φ?~α1
≥φ?i,j , for any (i,j),

∆hφ
?
~α0
≥0, ∆hφ

?
~α1
≤0. (4.11)
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For the numerical solution φn at the previous time step, the a priori assumption
‖φn‖∞≤M indicates that

−2M ≤φn~α0
−φn~α1

≤2M. (4.12)

For the fifth term appearing in (4.8), we apply Lemma 3.3 and obtain

−2C1≤L−1(φ?−φn)~α0
−L−1(φ?−φn)~α1

≤2C1. (4.13)

The sixth, eighth and ninth terms appearing in (4.8) are non-positive:

κ′(ϕ?~α0
+φ0)(ax((Dxϕ

?
~α0

)2)+ay((Dyϕ
?
~α0

)2))≤0, (4.14)

κ(ϕ?i0−1,j0 +φ0)Dxϕ
?
i0−1/2,j0

≤0, κ(ϕ?i0+1,j0 +φ0)Dxϕ
?
i0+1/2,j0

≥0, (4.15)

κ(ϕ?i0,j0−1 +φ0)Dyϕ
?
i0,j0−1/2≤0, κ(ϕ?i0,j0+1 +φ0)Dyϕ

?
i0,j0+1/2≥0. (4.16)

Inequality (4.14) comes from the fact that κ′(ϕ?~α0
+φ0)≤0, since φi0,j0 =ϕ?~α0

+φ0≤ 1
2

takes a minimum at (i0,j0). Similarly, such a fact indicates that

Dxϕ
?
i0−1/2,j0

≤0, Dxϕ
?
i0+1/2,j0

≥0, Dyϕ
?
i0,j0−1/2≤0, Dyϕ

?
i0,j0+1/2≥0, (4.17)

which in turn yields the inequalities (4.15), (4.16). For the seventh and the last two
terms appearing in (4.8), it is observed that

κ′(ϕ?~α1
+φ0) ·ax((Dxϕ

?
~α1

)2)

+
1

h

(
κ(ϕ?i1−1,j1 +φ0)Dxϕ

?
i1−1/2,j1

−κ(ϕ?i1+1,j1 +φ0)Dxϕ
?
i1+1/2,j1

)
=

1

h

(
1

2
κ′(φi1,j1)(φi1,j1−φi1−1,j1)+κ(φi1−1,j1)

)
·Dxφi1−1/2,j1

− 1

h

(
1

2
κ′(φi1,j1)(φi1,j1−φi1+1,j1)+κ(φi1+1,j1)

)
·Dxφi1+1/2,j1 ≥0, (4.18)

in which the last step is based on an application of Lemma 3.4, as well as the fact that
Dxφi1−1/2,j1 ≥0, Dxφi1+1/2,j1 ≤0, since φ takes a global maximum at (i1,j1). A similar
inequality could be derived:

κ′(ϕ?~α1
+φ0) ·ay((Dyϕ

?
~α1

)2)

+
1

h

(
κ(ϕ?i1,j1−1 +φ0)Dyϕ

?
i1,j1−1/2−κ(ϕ?i1,j1+1 +φ0)Dyϕ

?
i1,j1+1/2

)
≥0. (4.19)

Consequently, a substitution of (4.9)-(4.19) into (4.8) yields the following bound on the
directional derivative:

1

h2
dsFn(ϕ?+sψ)|s=0

≤
(

1

τ
ln
αδ

τ
+

1

N1
ln
βδ

τ
−ρ ln(1−ρδ)

)
−
(

1

τ
ln
αφ0

τ
+

1

N1
ln
βφ0

τ
−ρ ln(1−ρφ0)

)
+4Mρχ+2C1∆t−1

=

(
(
1

τ
+

1

N1
)lnδ−ρ ln(1−ρδ)

)
−
(

(
1

τ
+

1

N1
)lnφ0−ρ ln(1−ρφ0)

)
+4Mρχ+2C1∆t−1. (4.20)
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We denote C2 = 4Mρχ+2C1∆t−1. Note that C2 is a constant for a fixed ∆t, though
it becomes singular as ∆t→0. However, for any fixed ∆t, we may choose δ∈ (0,1/2)
sufficiently small so that(

(
1

τ
+

1

N1
)lnδ−ρ ln(1−ρδ)

)
−
(

(
1

τ
+

1

N1
)lnφ0−ρ ln(1−ρφ0)

)
+C2<0. (4.21)

This in turn shows that, provided δ satisfies (4.21),

1

h2
dsFn(ϕ?+sψ)|s=0<0. (4.22)

As before, this contradicts the assumption that Fn has a minimum at ϕ?, since the
directional derivative is negative in a direction pointing into (Åh,δ)

o, the interior of

Åh,δ.
Using similar arguments, we can also prove that the global minimum of Fn over

Åh,δ could not occur at a boundary point ϕ? such that ϕ?~α0
+φ0 = 1/ρ−δ, for some ~α0,

so that the grid function ϕ? has a global maximum at ~α0. The details are left to the
interested readers.

A combination of these two facts shows that, the global minimum of Fn over Åh,δ
could only possibly occur at interior point ϕ∈ (Åh,δ)

o⊂ (Åh)o. We conclude that there
must be a solution φ=ϕ+φ0∈Ah that minimizes J n over Ah, which is equivalent to the
numerical solution of (3.8)-(3.9). The existence of the numerical solution is established.

In addition, since J n is a strictly convex function over Ah, the uniqueness analysis
for this numerical solution is straightforward. The proof of Theorem 3.2 is complete.

5. Optimal rate convergence analysis in `∞(0,T ;H−1)∩`2(0,T ;H1)
Now we proceed into the convergence analysis. Let Φ be the exact solution for the

Cahn-Hilliard flow (2.4). With sufficiently regular initial data, we could assume that
the exact solution has regularity of class R:

Φ∈R :=H2 (0,T ;Cper(Ω))∩L∞
(
0,T ;C6

per(Ω)
)
. (5.1)

Define ΦN ( ·,t) :=PNΦ( · ,t), the (spatial) Fourier projection of the exact solution into
BK , the space of trigonometric polynomials of degree upto and including K (with N =
2K+1). The following projection approximation is standard: if Φ∈L∞(0,T ;H`

per(Ω)),
for some `∈N,

‖ΦN −Φ‖L∞(0,T ;Hm)≤Ch
`−k ‖Φ‖L∞(0,T ;H`) , ∀ 0≤k≤ `. (5.2)

By ΦmN , Φm we denote ΦN ( ·,tm) and Φ(· ,tm), respectively, with tm=m ·∆t. Since
ΦN ∈BK , the mass conservative property is available at the discrete level:

ΦmN =
1

|Ω|

∫
Ω

ΦN (·,tm)dx=
1

|Ω|

∫
Ω

ΦN (·,tm−1)dx=Φm−1
N , ∀ m∈N. (5.3)

On the other hand, the solution of (3.8)-(3.9) is also mass conservative at the discrete
level:

φm=φm−1, ∀ m∈N. (5.4)

As indicated before, we use the mass conservative projection for the initial data: φ0 =
PhΦN (· ,t= 0), that is

φ0
i,j := ΦN (pi,pj ,t= 0). (5.5)
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The error grid function is defined as

φ̃m :=PhΦmN −φm, ∀ m∈{0,1,2,3,·· ·}. (5.6)

Therefore, it follows that φ̃m= 0, for any m∈{0,1,2,3, ·· ·}, so that the discrete norm
‖·‖−1,h is well defined for the error grid function.

The following theorem is the main result of this section.

Theorem 5.1. Given initial data Φ(· ,t= 0)∈C6
per(Ω), suppose the exact solution for

Cahn-Hilliard Equation (2.4) is of regularity class R. Then, provided ∆t and h are
sufficiently small, for all positive integers n, such that tn=n∆t≤T , we have

∥∥∥φ̃n∥∥∥
−1,h

+

(
1

9
∆t

n∑
m=1

∥∥∥∇hφ̃m∥∥∥2

2

)1/2

≤C(∆t+h2), (5.7)

where C>0 is independent of n, ∆t, and h.

Proof. A careful consistency analysis indicates the following truncation error
estimate:

Φn+1
N −ΦnN

∆t
= ∆h

(
δφFS(Φn+1

N )+δφFK1
(Φn+1

N )+δφFK2
(Φn+1

N )−δφFH(ΦnN )
)

+τn,

(5.8)
with ‖τn‖−1,h≤C(∆t+h2). Observe that in Equation (5.8), and from this point for-
ward, we drop the operator Ph, which should appear in front of ΦN , for simplicity.

Subtracting the numerical scheme (3.8) from (5.8) gives

φ̃n+1− φ̃n

∆t
= ∆h

(
(δφFS(Φn+1

N )−δφFS(φn+1))+(δφFK1
(Φn+1

N )−δφFK1
(φn+1))

+(δφFK2
(Φn+1

N )−δφFK2
(φn+1))−(δφFH(ΦnN )−δφFH(φn))

)
+τn. (5.9)

Since the numerical error function has zero-mean, we see that (−∆h)−1φ̃m is well-
defined, for any m≥0. Taking a discrete inner product with (5.9) by 2(−∆h)−1φ̃n+1

yields ∥∥∥φ̃n+1
∥∥∥2

−1,h
−
∥∥∥φ̃n∥∥∥2

−1,h
+
∥∥∥φ̃n+1− φ̃n

∥∥∥2

−1,h

+2∆t
〈
δφFS(Φn+1

N )−δφFS(φn+1),φ̃n+1
〉

Ω

+2∆t
〈
δφFK1

(Φn+1
N )−δφFK1

(φn+1),φ̃n+1
〉

Ω

+2∆t
〈
δφFK2

(Φn+1
N )−δφFK2

(φn+1),φ̃n+1
〉

Ω

= 4χρ∆t
〈
φ̃n,φ̃n+1

〉
Ω

+2∆t
〈
τn,φ̃n+1

〉
Ω
. (5.10)

For the FK2 term, it is easy to know that

2∆t
〈
δφFK2

(Φn+1
N )−δφFK2

(φn+1),φ̃n+1
〉

Ω
= 2∆t

〈
− 1

18
∆hφ̃

n+1,φ̃n+1

〉
Ω

=
1

9
∆t‖∇hφ̃n+1‖22. (5.11)
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For the FS and FK1 terms, we see that both FS and FK1 are convex, which implies the
following result: 〈

δφFS(Φn+1
N )−δφFS(φn+1),φ̃n+1

〉
Ω
≥0, (5.12)〈

δφFK1
(Φn+1

N )−δφFK1
(φn+1),φ̃n+1

〉
Ω
≥0, (5.13)

For the concave part, an application of the Cauchy-Swcharz inequality gives

4χρ
〈
φ̃n,φ̃n+1

〉
Ω
≤4χρ

∥∥∥φ̃n∥∥∥
−1,h

∥∥∥∇hφ̃n+1
∥∥∥

2

≤8χ2ρ2ε−2
∥∥∥φ̃n∥∥∥2

−1,h
+
ε2

2

∥∥∥∇hφ̃n+1
∥∥∥

2
. (5.14)

The term associated with the local truncation error can be controlled in a standard way:

2
〈
τn,L−1φ̃n+1

〉
Ω
≤2‖τn‖−1,h

∥∥∥φ̃n+1
∥∥∥
−1,h
≤2ε−2‖τn‖2−1,h+

ε2

2

∥∥∥φ̃n+1
∥∥∥2

−1,h
. (5.15)

Then we get∥∥∥φ̃n+1
∥∥∥2

−1,h
−
∥∥∥φ̃n∥∥∥2

−1,h
+

∆t

9

∥∥∥∇hφ̃n+1
∥∥∥2

2

≤ 8χ2ρ2

ε2
∆t
∥∥∥φ̃n∥∥∥2

−1,h
+
ε2

2
∆t
∥∥∥∇hφ̃n+1

∥∥∥2

2
+

2

ε2
∆t‖τn‖2−1,h+

ε2

2
∆t
∥∥∥φ̃n+1

∥∥∥2

−1,h
.

Let ε2< 2
9 , such as ε2 = 1

9 . A substitution of (5.11)-(5.15) into (5.10) yields∥∥∥φ̃n+1
∥∥∥2

−1,h
−
∥∥∥φ̃n∥∥∥2

−1,h
+

∆t

18

∥∥∥∇hφ̃n+1
∥∥∥2

2

≤18×8χ2ρ2∆t
∥∥∥φ̃n∥∥∥2

−1,h
+18∆t‖τn‖2−1,h+

∆t

18

∥∥∥φ̃n+1
∥∥∥2

−1,h
.

Finally, let 1− ∆t
18 ≥

1
2 , we get the following estimate by using the discrete Grönwall

inequality

∥∥∥φ̃n+1
∥∥∥
−1,h

+

(
1

9
∆t

n+1∑
k=0

∥∥∥∇hφ̃m∥∥∥2

2

)1/2

≤C(∆t+h2). (5.16)

This completes the proof.

Remark 5.1. The Cahn-Hilliard equation with Flory-Huggins energy potential
and constant diffusion coefficient has been studied in a recent work [5]. In this pa-
per, we analyze the Cahn-Hilliard equation with the deGennes diffusive coefficient,
κ(φ) = 1/[36φ(1−φ)], dependent on the phase variable, so-called MMC-TDGL equation.
This diffusion process was proposed by physicist P.G. deGennes [11]. The positivity-
preserving analysis for the MMC-TDGL equation follows a similar framework as in [5].
On the other hand, the estimate for the nonlinear diffusion part is much more compli-
cated and challenging than the constant-diffusion-coefficient case. In more details, for
the deGennes diffusive coefficient κ(φ) = 1/[36φ(1−φ)], we have to find an appropriate
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inequality, 1
2κ
′(φ1)(φ2−φ1)≤κ(φ2),∀φ1,φ2∈ (0,1), which plays an essential role in the

analysis of the positivity-preserving property for the numerical solution.

In addition, the convergence analysis for the MMC-TDGL equation, which has re-
mained an open problem due to the highly complicated diffusion term, is provided in
this paper. In more details, we make use of the convexity of the logarithmic term and
the division of the surface diffusion to estimate the convergent analysis. Furthermore,
we treat the three nonlinear logarithmic terms as a whole, and the convexity of the
associated nonlinear terms indicates that the corresponding nonlinear error of the in-
ner product is always non-negative. Moreover, we divide the surface diffusion term
κ(φ)|∇φ|2 into two convex parts: one term (κ(φ)− 1

36 )|∇φ|2 can be analyzed in a man-
ner similar to the logarithmic term, with the help of its convexity property, and the
other term 1

36 |∇φ|
2 can be used to control the explicit error estimate associated with

the Huggins interaction.

6. Some numerical results

In this part, we provide numerical simulation results for the two-dimensional scheme
(3.8)-(3.9). We use the domain Ω = (0,64)×(0,64) and choose the parameters in the
model as χ= 2.37,N2 = 0.16,N1 = 4.34,T = 25. The space step and time step are given
by h= 0.25 and ∆t= 10−3, respectively. And also, the initial data is taken the same as
the one given by [25]:

φ0(x,y) = 0.6+ri,j , (6.1)

where the ri,j are uniformly distributed random numbers in [−0.15,0.15].

Fig. 6.1. Left: the energy evolution with time; Right: the error development of the total mass.

Fig. 6.2. The maximum and minimum values with time.
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In the left part of the Figure 6.1, we show the energy evolution, and this figure
demonstrates the energy decay with time. The total mass error evolution is displayed
on the right part, in which the mass conservation is numerically observed.

In Figure 6.2, we present the maximum and minimum values of the numerical solu-
tion with time. The positivity-preserving property is clearly observed in the numerical
result.

(a) (b) (c) (d)

Fig. 6.3. The snapshot figure of the phase variable at t= 8,13,19,25.

In Figure 6.3, we present the evolution of φ at different time with the initial
data (6.1). The numerical results are similar to the ones shown in [25].

7. Conclusions

In this paper, we have analyzed an unconditional energy-stable finite difference
scheme based on the convex splitting of the Flory-Huggins-deGennes energy potential
for the MMC-TDGL equation, such as the unique solvability, energy stability, the bound
of the numerical solution and an optimal rate convergence analysis. In particular, we
have presented detailed theoretical analyses about the positivity-preserving property
and the optimal rate of convergence estimate. The positivity-preserving property has
been established at a theoretical level, by constructing a strictly convex discrete energy
functional and using mass conservation, combined with the following two subtle facts
that: first, the singular feature of the logarithmic function guarantees that a minimizer
could not occur on a limit value at all; second, a fundamental inequality about the
deGennes coefficient: 1

2κ
′(φ1)(φ2−φ1)≤κ(φ2),∀φ1,φ2∈ (0,1). We have also presented

a detailed convergence analysis, in which the convexity of the nonlinear potential and
some technique of the surface diffusion term with concentration-dependent deGennes
type coefficient play an essential role. The numerical simulation results have also verified
the positivity-preserving property of the numerical solution.
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