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Why are waves so important in science?

I Wave equations arise in many areas of physics
I Sound propagation (SONAR, echolocation of bats), seismic waves

(earthquake warning system), electromagnetism (astronomy, cellphones)
I Propagate information over long distances to provide clues about...

I Initial data, scatters, local sources, curvature and/or dimension of space

I Typically one records a time-dependent signal at some detector(s)

signal ⇐⇒ information
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Example: Scattering off an airplane

I Maxwell’s equations

I Incoming plane wave

I Scattered electric field
shown with arrows

I In the far-field is an
enemy observer

Figure courtesy of Andreas klockner
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Example: Scattering off a black hole

   Blackhole 

curvature 

horizon H

computational  
outer boundary B
(not physical) 

I Einstein equation

I Gaussian perturbation

I Scattering and
outgoing wave

I Far-field observations
complicated by
spacetime curvature
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Obtaining the far-field signal

From data recorded in the extreme near-field we want:

I The far-field signal at arbitrarily large values of r

I Data → simple operation → far-field signal

I Should be equivalent to solving the PDE (free lunch?)

In the black hole case...

I Observations are far from sources/scatters
I Binary black hole systems are in other galaxies

I Perhaps many frequencies needed
I Inspiral orbits will have a continuous frequency spectrum

I Accurate signal needed for scientific purposes
I Searching data, parameter estimation, model building + verification
I Systematic errors should be quantified and minimized
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Existing techniques for the far-field

Geometric approaches

I Compactification of spatial infinity, hyperboloidal formulations, super-grids

I Intrusive to code, still solving the PDE, accuracy/efficiency

Extrapolation

I Record data at multiple values of r

I Fit for far-field ≈∑N
k=0 r

−k f(k)(t − r) and then r →∞
I Multiple data recordings, ansatz for far-field, fit accuracy

“Green’s function” (this talk)

I With a Green’s function you know everything

I Only for linear PDEs, hard to compute, could be hard to use
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An almost Green’s function

If we only care about outgoing solutions we can identify a function which,
when convolved with data at a fixed r, exactly gives the far-field solution

I Similar in spirit to Green’s function, for specific usage

I Built from outgoing solutions

Examples:

I Computational relativity: Gravitational multipoles for general relativity
linearized about Minkowski (Abrahams and Evans matching)

I Computational electromagnetics: “Near-field to far-field transformation”
for single frequency-domain signals on Minkowski

Scott Field Fast asymptotic waveforms from gravitational perturbations



Introduction
Theoretical motivation of kernels

Implementation and results

Wave propagation on a curved spacetime with time-domain signals?

I Teleportation: From metric perturbations
(i.e. signal) recorded at any radial location we
seek to teleport this information to another
location

I Its cheap – equivalent to solving the PDE but
without solving it

I “The safest way to travel” – No accumulation
of errors from numerical PDE simulation

I Asymptotic waveform evaluation: special case of teleportation, recover
signal reaching future null infinity
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Goal of talk...

I Theoretical construction of teleportation/AWE kernels

I Numerical approximation of these kernels
I How to handle backscattering due to spacetime curvature

I The kernel, like the Green’s function, has a branch cut

Scott Field Fast asymptotic waveforms from gravitational perturbations



Introduction
Theoretical motivation of kernels

Implementation and results

1D wave equation
3D wave equation
Gravitational perturbation equations
Rational approximation techniques

Outline

Introduction

Theoretical motivation of kernels

Implementation and results

Scott Field Fast asymptotic waveforms from gravitational perturbations



Introduction
Theoretical motivation of kernels

Implementation and results

1D wave equation
3D wave equation
Gravitational perturbation equations
Rational approximation techniques

A simple wave equation

1+1 wave equation...

(−∂2
t + ∂2

x )ψ = 0
ψ(0, x) = g(x), ∂tψ(0, x) = 0

d’Alembert’s solution (1747)...

ψ(t, x) = G (x − t) + F (x + t)

=
1

2
g(x − t) +

1

2
g(x + t)
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From ψ(t, x) = G (x − t) + F (x + t) we know

I “Outgoing” (right moving) piece is G (x − t)

I G is constant (∂tG + ∂xG = 0) along null coordinate u = t − x

To recover the asymptotic waveform at x∞ � x0...

1. Place a “detector” at x0 such that initial data is 0 to the right of x0

2. Record solution ψ(t, x0) at x0

3. Compute

ψ∞(t) = ψ(t + (x∞ − x0), x∞)

= G (x0 − t) = ψ(t, x0)

→ ψ∞(t) = ψ(t, x0)

Generalization of this relationship to other wave equations?
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Wave equation on Minkowski spacetime

We wish to solve...

(−∂2
t + ∂2

x + ∂2
y + ∂2

z )ψ = 0 Problem posed on spatially unbounded
domain.

We actually solve...

I For computational reasons the problem is solved on a spatially finite
domain

I Detector records signal on a sphere defined by r = rb

How do we recover the solution which escapes to (null) infinity??
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Some facts...
I Outgoing solutions are no longer G (r − t)

I Instead a power series in 1/r .

I Sharp Huygen’s principle: source/data at X0 = (t0, x0, y0, z0) only
influences X = (t, x , y , z) if |X0 − X | = 0

3D Gaussian Wave (Frans Pretorius’ webpage)
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A roadmap to the asymptotic (far-field) signal

1. What are the outgoing solutions?

2. What is the asymptotic solution?

3. Derive an equation for ψ∞(t) using data recorded on the sphere ψ(t, r0)

Preview: Wave equations on flat and curved geometry follow similar
approach. However, we may carry these steps analytically for Minkowski, while
relying more heavily on numerical results for the gravitational perturbations of
Schwarzschild.
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Set of spherical harmonics {Y`m} form complete orthonormal basis on unit
sphere. Expand solution as

ψ =
1

r

∞∑
`=0

∑̀
m=−`

Ψ`m(t, r)Y`m(θ, φ)

(−∂2
t + ∂2

x + ∂2
y + ∂2

z )ψ = 0 →
[
∂2

∂t2
− ∂2

∂r2
+
`(`+ 1)

r2

]
Ψ`m = 0

Outgoing solutions...

Ψ`m(t, r) =
∑̀
k=0

1

rk
c`k f

(`−k)(t − r), c`k =
1

2kk!

(`+ k)!

(`− k)!
,

Starting point for derivation
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A scalar Abrahams-Evans procedure

I AE considered gravitational perturbation multipoles linearized about flat
spacetime (1988). Outgoing multipoles of tensorial wave equation.

I Consider the procedure applied to our scalar wave equation
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A scalar Abrahams-Evans procedure

I The sphere defined by r = rb is our recording surface.
I rb large enough such that initial data compactly supported inside

I Consider an ` = 2, any m procedure

1. Outgoing solution is Ψ(t, r) = f ′′(t − r) + 3
r f
′(t − r) + 3

r2 f (t − r)

2. Record data Ψ(t, rb) until T such that Ψ(t > T , rb) ≈ 0

3. f (t − r) is found by solving

y ′′ +
3

rb
y ′ +

3

r2
b

y = Ψ(t, rb), y(0) = 0 = y ′(0)

f ′′(t − r), the signal reaching r =∞, is found from f (t − r) = y
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A need for reformulated Abrahams-Evans procedure

I This will not generalize to wave equations on curved backgrounds
I Will return to difficulties later

I Reformulate their procedure so that generalizations are possible.
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Laplace transformed wave equation

Laplace transformed solution

Ψ̂`m(s, r) =

∫ ∞
0

Ψ`m(t, r)e−stdt

solves the transformed wave equation[
s2 − ∂2

∂r2
+
`(`+ 1)

r2

]
Ψ̂`m =

∂Ψ̂`m

∂t
(0, r) + sΨ̂`m(0, r)
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Outgoing solutions

[
s2 − ∂2

∂r2
+
`(`+ 1)

r2

]
Ψ̂` = 0

I Ordinary differential equation

I A modified Bessel equation –
solutions well studies

I General outgoing solution: Ψ̂`(s, r) = a(s)e−srW`(sr)

I a(s) encodes the initial data

I e−sr is correct exponential dependence for outgoing

I W`(sr) = (sr)−`
∑`

k=0 c`k(sr)k

I Coefficients c`k known (e.g. Classical Electrodynamics by Jackson)

I Example W2(sr) = (sr)−2
[
(sr)2 + 3sr + 3

]
I Recall Ψ`=2(t, r) = f ′′(t − r) + 3

r f
′(t − r) + 3

r2 f (t − r)
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Asymptotic waveform evaluation/teleportation kernel

Starting with Ψ̂`(s, r) = a(s)e−srW`(sr)

es(r2−r1)Ψ̂`(s, r2) =

[
W`(sr2)

W`(sr1)
− 1

]
Ψ̂`(s, r1) + Ψ̂`(s, r1)

≡ Φ̂`(s, r1, r2)Ψ̂`(s, r1) + Ψ̂`(s, r1)

Kernel defined with “minus 1” so Φ̂`(s, r1, r2)→ 0 as s →∞

Case r2 <<∞: Φ̂`(s, r1, r2) teleports a signal of frequency s from r1 to r2

Case r2 ≈ ∞: Φ̂`(s, r1, r2) recovers the asymptotic signal for each s
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Case ` = 0

Specializing to

(∂2
t − ∂2

r )Ψ = 0 W0(sr2) = W0(sr1) = 1

This

es(r2−r1)Ψ̂0(s, r2) =

[
W0(sr2)

W0(sr1)
− 1

]
Ψ̂0(s, r1) + Ψ̂0(s, r1)

becomes

es(r2−r1)Ψ̂(s, r2) = Ψ̂(s, r1) → Ψ(t + (r2 − r1), r2) = Ψ(t, r1)

Agrees with previous result obtained via d’Alembert’s solution.
What have we gained?
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Recall the product Φ̂`(s, r1, r2)Ψ̂`(s, r1) becomes a time-domain convolution

∫ t

0
Φ`(t − t ′, r1, r2)Ψ`(t

′, r1)dt ′

where

Φ`(t, r1, r2) =
1

2πi

∫ i∞

−i∞
Φ̂`(s, r1, r2)estds

Allowing the signal/waveform at r2 to be written as

Ψ`(t + (r2 − r1), r2) =

∫ t

0
Φ`(t − t ′, r1, r2)Ψ(t ′, r1)dt ′ + Ψ`(t, r1)

This does generalize to curved geometries if we can invert Φ̂`(s, r1, r2)
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Sum-of-poles representation

One can show

Φ̂`(s, r1, r2) =
W`(sr2)−W`(sr1)

W`(sr1)
=
∑̀
k=1

γ`,k
s − b`,k/r1

where b`,k are zeros of z`W`(z). And so

Ψ`(t + (r2 − r1), r2) =
∑̀
k=1

γ`,k

∫ t

0
e

b`,k
r1

(t−t′)
Ψ`(t

′, r1)dt ′ + Ψ`(t, r1)

Exact expression for Ψ`(t + (r2 − r1), r2) provided we know b`,k and γ`,k .
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Φ`(t, r1, r2) =
∑`

k=1 γ`,k exp
(

b`,k
r1

t
)

Scaled zeros
b`,j

(`+ 1/2)
of z`W`(z).

+ z1W1(z) = z

(
1 +

1

z

)
� z2W2(z) = z2

(
1 +

3

z
+

3

z2

)
◦ z3W3(z) = z3

(
1 +

6

z
+

15

z2
+

15

z3

)
∗ z4W4(z) = z4

(
1 +

10

z
+

45

z2
+

105

z3
+

105

z4

)
−0.6 −0.4 −0.2 0

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Rez

Im
z

Notice zeros in the left half-plane, finite number and no branch cuts.
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A summary for 3D wave equation (Minkowski)

1. Record (`,m) multipoles Ψ`m(t, r1) at a fixed r1

2. Convolve each multipole Ψ`m(t, r1) with time-domain kernel to recover

Ψ`m(t + (r2 − r1), r2) =
∑̀
k=1

γ`,k

∫ t

0
e

b`,k
r1

(t−t′)
Ψ`m(t ′, r1)dt ′ + Ψ`m(t, r1)

I Ψ(t + (r2 − r1), r2) is the exact solution observed at r2 ≤ ∞
I Automatically includes all features of wave propagation

I Picks out correct piece from ` terms with 1/r fall-off
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Perturbation equations (I)

Recall Einstein’s equation Gµν(gαβ) = Tµν

I Assume a background solution
ĝαβdx

αdxβ = −f dt2 + f −1dr2 + r2dΩ2, f = 1− 2M/r .

I Assumption: small metric perturbations, gαβ = ĝαβ + hαβ.

I Decompose perturbation hαβ into (tensorial) multipoles

I Key insight: Introduce a “master function” Ψ`m(h`mαβ)

I [Ψ,Ψ′,Ψ′′, Ψ̇] ⇐⇒ [hαβ] which carry (`,m) multipole labels

(−∂2
t + ∂2

x − V )Ψ = possible source terms

with the tortoise coordinate x = r + 2M log( 1
2 r/M − 1)
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Perturbation equations (II)

(−∂2
t + ∂2

x − V )Ψ = possible source terms

V axial(r) =
f (r)

r2

[
`(`+ 1)− 6M

r

]
V polar(r) =

2f (r)

(nr + 3M)2

[
n2

(
1 + n +

3M

r

)
+

9M2

r2

(
n +

M

r

)]
with n = 1

2 (`− 1)(`+ 2)

Focus on simpler case V axial known as Regge-Wheeler equation.
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Relevant quantities

From Ψ one can calculate...

I Gravitational wave signal

h`m+ + ih`mx =
1

2r

√
(`+ 2)!

(`− 2)!

[
ΨPolar + iΨAxial

]
−2Y

`m

I Energy carried away by waves

Ė`m =
1

64π

(`+ 2)!

(`− 2)!

(∣∣Ψ̇`m

∣∣2), L̇`m =
im

64π

(`+ 2)!

(`− 2)!

(
Ψ̄`mΨ̇`m

)
I For circular orbits self-force quantities are possible too

Ėp = − 1

2ut
uαuβ

∂hαβ
∂t

, L̇p =
1

2ut
uαuβ

∂hαβ
∂φ

,
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The asymptotic waveform Ψ

Problem: We need the gravitational
waveform at large distances (black
holes are in other galaxies)

Goal: From a signal recorded at
rb ≈ 30M, recover the signal at (say)
r ≈ 1015M

Preview: Schematically similar to
previous 3+1 wave equation
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Difficulties

Conceptual

I Backscattered wave seems to have
“incoming” and “outgoing” pieces. How
to separate these?

I Weak Huygen’s principle: source/data at
X0 = (t0, x0, y0, z0) influences ALL points
in future light cone

[Fig from Adam Pound, Capra 15]

Mathematical

I No closed-form expressions for the outgoing solution

I Expect kernels to have a branch cut (similar to the Green’s function)
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As for the Minkowski case (same steps)...

X Laplace transformed equation [say M = 1/2]

(
−s2 + ∂2

x −
f (r)

r2

[
`(`+ 1)− 3

r

])
Ψ̂ = 0

X Outgoing solution has the form

Ψ̂`(s, r) = a(s)e−sxW`(x , s), W`(x , s) ∼
x→∞

1

X Enacting teleportation/asymptotic-waveform evaluation

es(x2−x1)Ψ̂`(s, x2) =

[
W`(x2, s)

W`(x1, s)
− 1

]
Ψ̂`(s, x1) + Ψ̂`(s, x1)

...finding W`(x , s) and time-domain relationship requires something new
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Difficulties in computing “W`(x2,s)
W`(x1,s) − 1” (1 slide only!)

Need to evaluate W`(x , s) along the along path of inversion s ∈ iR

Neither asymptotic expansion nor numerical integration are accurate enough.

Solution: define an auxiliary variable Ω̂` for the logarithmic derivative of W
which i) satisfies a Riccati equation; ii) can be accurately computed; iii) and

W`(x2, s)

W`(x1, s)
= exp

[∫ r2

r1

Ω̂`(s, η)

η
dη

]

Numerics: For each η ∈ [r1, r2] we find Ω̂ then perform above integral
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` = 2, r = 30M → 1015M kernel evaluated along s = iy

Numerically computed Φ̂2(s) = W2(1015M,s)
W2(30M,s) − 1
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I For 3D Minkowski
equation we had a
closed-form expression.

I Inverse Laplace
transform known.

I How to invert Φ̂2(s)?
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Motivation

Φ̂2(s) ≈ degree d − 1 polynomial

degree d polynomial
=

d∑
i=1

γi
s − βi

I Rational approximation won’t be accurate for all s ∈ C
I In fact VERY bad in the left half-plane where poles/branch cuts are located

I If rational approximation is accurate for s ∈ iR we can analytically
perform the inversion!

I Theorem: Alpert, Greengard and Hagstrom (2002) showed this
approximation is accurate and convergent for a wide class of kernels

I Our kernel is not obviously part of this class, but we can try and
empirically check the accuracy
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Black box rational approximation

Look for the least squares solution

min
P,Q

∫ b

a

∣∣∣∣P(s)

Q(s)
− Φ̂2(s)

∣∣∣∣2 ds
degree P = d − 1, degree Q = d

I Input: guess for degree d , polynomial Q and evaluations of Φ̂2(s)

I Output: the best d pole locations and strengths

I Typical pointwise relative error 10−12 =⇒ accuracy of teleported signal
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Function Φ̂2(s) from before
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Profiles shown on the left
⇓

Rational approximation
⇓

Poles and strengths
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Output is a table of numbers

Pole # Gamma strengths Beta locations

1 -1.7576263057e-08 + 0i -5.4146529341e-01 + 0i

2 -6.4180514293e-08 + 0i -4.1310954989e-01 + 0i

17 More Entires Here

Equivalently

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0

−0.1

−0.05

0

0.05

Real s

Im
ag

 s

−0.1 −0.05 0

Φ̂2(s) ≈∑19
i=1

γi
s−βi

Φ2(t) ≈∑19
i=1 γi exp (βi t)

I Black crosses: Approximation
to direct propagation

I Red circles: Approximation to
branch cut
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Error control: can check that true kernel and sum-of-poles representation
accurate on s ∈ iR

Same information: table of numbers, pole location/strengths
(frequency-domain), exponential strength/damping rate (time-domain)

Usage: if you have a time-series of RWZ data Ψ(t, x1) for some ` recorded at
x1, teleport it to x2

Ψ(t + (x2 − x1), x2) =
∑̀
k=1

γ`,k

∫ t

0
eβ`,k (t−t′)Ψ(t ′, x1)dt ′ + Ψ(t, x1)

I + waveform: send x2 →∞
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Key features of asymptotic waveform evaluation

I A free lunch if you didn’t pay
I Building a kernel table is costly
I Processing data with a table is free (≈ 1s)

I A post-processing step on existing data (non-intrusive to code)

I Only 1 time-series at a fixed r needed (extrapolation requires many)
I If Ψ not a solution to the RWZ equation (estimated another way) one can

still use kernels
I would capture physics of wave propagation to the far-field
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Kernel tables

I Kernels computed using MPI and quad precision

I Once a table has been generated very easy to use

I All kernels are (or will be) available online

www.dam.brown.edu/people/sfield/KernelsRWZ

www.math.unm.edu/~lau/KernelsRWZ

Scott Field Fast asymptotic waveforms from gravitational perturbations
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Experiment setup

I Consider the ` = 2 Regge-Wheeler equation and Gaussian initial data

Ψ = e−[2−x/(2M)]2
, ∂xΨ =

4M − x

2M2
e−[2−x/(2M)]2

, −∂tΨ = Φ(0, r(x)).

I Ψ recorded at 30M and evaluated at 2M × 1015

Expected late-time Price tails t−7 (fixed small x and t →∞) and t−4 (fixed
large x and t →∞)

Test that method captures known physics unique to large x
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Recorded Ψ(t, 20M)
Evaluated Ψ(t + 2M × 1015, 20M + 2M × 1015)

100 200 300 400 500 600 700

10
−10

10
−5

10
0

t/M

 

 

tp fall-off for p = --4.1856
extracted to r∞ = 2M(1 × 1015)
tp fall-off for p = --6.992
read-off at r = 20M
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Late-time decay of Ψ(t + 2M × 1015, 20M + 2M × 1015)

5000 10000 15000 20000 25000
−4.2

−4.1

−4

p

t/M

The rate p for Ψ∞(t) ∝ tp has been computed using logarithmic difference
quotients based on ∂ln t ln |Ψ∞(t)|

less than 5 seconds to generate (relative accuracy better than 12 digits)
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Setup

I Astrophysical sources where a compact object, mp < 30M�, orbits a
massive black hole M > 105 M�. Require µ = mp/M � 1

I Distributional forcing terms due to the perturbing object

(−∂2
t + ∂2

x − V (x))Ψ = G (x , t)δ(x − xp(t)) + F (x , t)δ′(x − xp(t))

I Expressions for source term known

I Small black hole mp follows geodesic motion providing xp(t)

Code

I RWZ equations solved with a multi-domain discontinuous Galerkin
method, very similar to pseudo-spectral methods.

I Delta function located between domains and exactly handled with
prescribed jump conditions

Scott Field Fast asymptotic waveforms from gravitational perturbations
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Circular Orbits: rp = 10M (outer boundary at 30M)

(`,m) = (2, 2) perturbations. Scale Ψ by mp << 1
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Comparison with frequency domain results

Luminosities computed from Ψ(t, rb = 30M)

m Alg. Ė∞2m L̇∞2m
1 FR 1.93160935116 ×10−7 6.10828509933 ×10−6

AWE 1.93160935114 ×10−7 6.10828509953 ×10−6

2 FR 5.36879547910 ×10−5 1.69776220056 ×10−3

AWE 5.36879547910 ×10−5 1.69776220057 ×10−3

Mode-by-mode ` = 2 luminosities. For a particle of mass mp these values
should be scaled by m2

p. The table compares our asymptotic-waveform
evaluation (AWE) results with frequency domain (FR) results. Thanks to Seth
Hopper for generating these previously unpublished FR luminosity values.
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Junk radiation at I +

Trivial initial data cause “junk” radiation and thus energy luminosity errors

0 1000 2000 3000 4000

10
−14

10
−11

10
−8

10
−5

10
−2

10
1

time t/M

 

 
r∞ = 2M (1× 1015)
rb = 60M

1500 1600 1700 1800 1900 2000

10
−14

10
−12

10
−10

10
−8

time t/M

 

 
r∞ = 2M (1× 1015)
1/t5 fall-off
rb = 60M
1/t8 fall-off

|Ė∞22 (t)− Ė∞22,FR|/Ė∞22,FR (red line, r∞)

|Ėb
22(t)− Ėb

22(6500M)|/Ėb
22(6500M) (black line, rb)
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Eccentric Orbit

(`,m) = (2, 2)
M = 1
eccentricity = 0.76412402
semi-latus rectum = 8.75456059
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Outer boundary at 60M
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Luminosities computed from Ψ(t, rb = 60M)

m Alg. Ė∞2m L̇∞2m
0 FR 1.27486196317 ×10−8 0

AWE 1.27486196187 ×10−8 0
1 FR 1.15338054092 ×10−6 1.44066000650 ×10−5

AWE 1.15338054091 ×10−6 1.44066000619 ×10−5

2 FR 1.55967717209 ×10−4 2.07778922470 ×10−3

AWE 1.55967717211 ×10−4 2.07778922439 ×10−3

Mode-by-mode ` = 2 luminosities. FR results refer to Table III of Hopper and
Evans (2011) and are quoted to a relative error of 10−12.
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Final remarks

I Reformulated Abrahams-Evans method such that generalizations possible
I RWZ case similar to ordinary wave equation but requires more numerics

I Rational approximation allows for a time-domain expression

I Computing a kernel table is hard, using it is easy

I Extremely efficient for time-domain solvers without sacrificing accuracy

Possible future work?

I Kernels/tables will be made available up to high `

I Generalization to other wave equations, spheroidal wave equation,
perturbations of Kerr

I Full numerical GR data
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Rational approximation of kernels

Given an exact kernel Φ`(t, r1, r2) and its rational approximation φ`(t, r1, r2)
we have the following long-time error bound

‖Φ`(·, r1, r2) ∗Ψ`(·, r1)− φ`(·, r1, r2) ∗Ψ`(·, r1)‖L2(0,∞)

≤ sup
s∈iR

|φ̂(s, r1, r2)− Φ̂(s, r1, r2)|
|Φ̂(s, r1, r2)|

‖Φ`(·, r1, r2) ∗Ψ`(·, r1)‖L2(0,∞),

Typical pointwise relative error

sup
s∈iR

|φ̂(s, r1, r2)− Φ̂(s, r1, r2)|
|Φ̂(s, r1, r2)|

≤ 10−12

achieved (computed on a dense s-grid).
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Computing the kernel “W`(x2,s)
W`(x1,s) − 1”

Need to evaluate W`(x , s) along the along path of inversion s ∈ iR

Neither asymptotic expansion nor numerical integration were found to be
suitable.

Instead

define Ω̂ = (sx)∂xW (x ,s)
W (x ,s) to give

W`(x2, s)

W`(x1, s)
= exp

[∫ r2

r1

Ω̂`(s, η)

η
dη

]

The auxiliary variable Ω̂ solves a non-linear ODE, accurate to high `

Numerically solve for Ω̂ then compute kernel
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` = 2 auxiliary kernel evaluated along s = iy
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We want to compute

exp
[∫∞

30M
Ω̂2(s,η)

η dη
]

1. Ω̂2(s, 30M) shown

2. Compute many
Ω̂2(s, r > 30M)

3. Final one is Ω̂2(s, 1015M)

∫∞
30M

Ω̂2(s,η)
η dη ≈ ∆η

∑N
i=0

Ω̂2(s,ηi )
ηi
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Implementation with tables
Results: Price tails
Results: EMRIs

Pole # Gamma strengths Beta locations

1 -1.7576263057e-08 + 0i -5.4146529341e-01 + 0i

2 -6.4180514293e-08 + 0i -4.1310954989e-01 + 0i

3 -6.2732971050e-06 + 0i -3.1911338482e-01 + 0i

4 -6.9363117988e-05 + 0i -2.4711219871e-01 + 0i

5 -5.7180637750e-04 + 0i -1.9108163722e-01 + 0i

6 -2.7884247577e-03 + 0i -1.4749601558e-01 + 0i

7 -5.8836792033e-03 + 0i -1.1366299945e-01 + 0i

8 -3.6549136132e-03 + 0i -8.6476935381e-02 + 0i

9 -1.0498746767e-03 + 0i -6.4512065175e-02 + 0i

10 -2.4204781878e-04 + 0i -4.7332374442e-02 + 0i

11 -5.5724464176e-05 + 0i -3.4115775484e-02 + 0i

12 -1.2157296793e-05 + 0i -2.4048935704e-02 + 0i

13 -2.6651813247e-06 + 0i -1.6468632919e-02 + 0i

14 -4.8661708981e-07 + 0i -1.0845690423e-02 + 0i

15 -8.6183677612e-08 + 0i -6.7552918597e-03 + 0i

16 -9.3735071189e-09 + 0i -3.8525630196e-03 + 0i

17 -8.7881787023e-10 + 0i -1.8481215040e-03 + 0i

18 -9.1164536027e-02 -5.3953709155e-02i -9.4779490815e-02 +5.9927979877e-02i

19 -9.1164536027e-02 +5.3953709155e-02i 9.4779490815e-02 -5.9927979877e-02i

Φ̂2(s) ≈∑19
i=1

γi
s−βi → Φ2(t) ≈∑19

i=1 γi exp (βi t)
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Introduction
Theoretical motivation of kernels

Implementation and results

Implementation with tables
Results: Price tails
Results: EMRIs

Signal teleportation

Experiment setup

I Finite boundary to finite boundary location (RW potential)

I “bump” function with support −10M < r∗ < 3M

I Record Ψ(t, 480M) as a time-series

I Record Ψ(t, r1) as a time-series at some location r1 < r2
I Find Ψ(t, r2) by convolving Ψ(t, r1) with a teleportation kernel

Clean test of method error

Scott Field Fast asymptotic waveforms from gravitational perturbations



Introduction
Theoretical motivation of kernels

Implementation and results

Implementation with tables
Results: Price tails
Results: EMRIs

Teleportation from r → 480M

Plot shows difference |Ψ(t, 480M)−Ψ(t, r1 → 480M)|490 500 510 520 530 540

10
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0

 

 

490 500 510 520 530 540

10
−18

10
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t/M

 

 

read-off at 30M
read-off at 60M
read-off at 120M
read-off at 240M

teleported 30M → 480M

teleported 60M → 480M

teleported 120M → 480M

teleported 240M → 480M

This is for a high ` = 64 solution.

Scott Field Fast asymptotic waveforms from gravitational perturbations
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