
Introduction
First-order BSSN
Numerical results

First order BSSN formulation of Einstein’s field equations

David Brown1 Peter Diener2 Scott Field3 Jan Hesthaven4
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Binary black hole evolution codes

Formulations and numerical methods comprised of

◮ Generalized Harmonic with finite differences

◮ Generalized Harmonic with spectral methods

◮ Baumgarte-Shapiro-Shibata-Nakamura (BSSN) with finite differences
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Binary black hole evolution codes

Formulations and numerical methods comprised of

◮ Generalized Harmonic with finite differences

◮ Generalized Harmonic with spectral methods

◮ Baumgarte-Shapiro-Shibata-Nakamura (BSSN) with finite differences

◮ GH: Uses black hole excision, and thus requires horizon tracking.
Significant effort for stable evolution through merger

◮ BSSN: “Easier” to use. With standard 1+log and gamma-driver shift very
robust. No need for horizon tracking or special tricks at merger

Scott Field First order BSSN formulation of Einstein’s field equations



Introduction
First-order BSSN
Numerical results

Motivation

Binary black hole evolution codes

Formulations and numerical methods comprised of

◮ Generalized Harmonic with finite differences

◮ Generalized Harmonic with spectral methods

◮ Baumgarte-Shapiro-Shibata-Nakamura (BSSN) with finite differences

Due to their exponential convergence, spectral methods achieve higher
accuracy than finite difference methods for the same computational cost
(degrees of freedom count).
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Best of both worlds: (FO)BSSN + spectral

◮ Can we combine the best of both worlds? A spectral BSSN solver.

◮ Spectral methods, and discontinuous Galerkin methods which we will
consider here, are well developed for fully first order PDE systems
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Best of both worlds: (FO)BSSN + spectral

◮ Can we combine the best of both worlds? A spectral BSSN solver.

◮ Spectral methods, and discontinuous Galerkin methods which we will
consider here, are well developed for fully first order PDE systems

Outline of the talk’s remainder

◮ Rewrite BSSN as a fully first order BSSN (FOBSSN) system

◮ Discretize with discontinuous Galerkin and finite difference methods
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Notable differences

Our second order BSSN system differs slightly from conventional choices

◮ The evolution equations are spatially-covariant

◮ All system variable will be true (weightless) tensors
◮ Different in choice of evolution variables
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Metric in ADM form

We may write the full spacetime metric metric as

ds2 = gαβdx
αdxβ = −(α2

− γijβ
iβj)dt2 + 2γijβ

jdtdx i + γijdx
idx j ,

Lapse α, shift βi , and spatial metric γij

◮ Conformal spatial metric (e−4φ weight to be specified)

γ̃ij ≡ e−4φγij
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A choice for e−4φ

Conventional BSSN requires γ̃ = 1, thus φ = 1
12 lnγ and e−4φ is of weight

−2/3

◮ Thus the conformal metric is of weight −2/3
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A choice for e−4φ

Conventional BSSN requires γ̃ = 1, thus φ = 1
12 lnγ and e−4φ is of weight

−2/3

◮ Thus the conformal metric is of weight −2/3

Instead introduce the scalar φ = 1
12 ln(γ/γ)

◮ γ is a scalar density of weight 2 (remains to be specified)

◮ The conformal metric is a usual tensor

◮ Not necessarily unit determinant

We will shortly return to γ
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The conformal connection functions

Conventional BSSN introduces conformal connection functions Γ̃i = γ̃jk Γ̃ijk
◮ This variable is not a tensor!
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The conformal connection functions

Conventional BSSN introduces conformal connection functions Γ̃i = γ̃jk Γ̃ijk
◮ This variable is not a tensor!

For our BSSN system we instead introduce the “conformal connection
function”

Λ̃i = γ̃jk
(

Γ̃i jk − Γ
i
jk

)

which is a tensor of no weight.

◮ We assume Γ
i
jk to be constructed from a “fiducial metric” γij whose

determinant is γ
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The fiducial metric γ ij

The role of Γ
i
jk and γ, and hence γij , is to restore spatial covariance to the

BSSN system. It is our job to specify what γij is...

◮ Assume γij is time-independent

◮ Note: traditional BSSN recovered when γij = diag(1, 1, 1) → γ = 1 and

Γ
i
jk = 0

◮ Covariant BSSN permits direct reduction to spherical symmetry
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A few of the evolution equations

Usual time derivative operator ∂⊥ ≡ ∂t − Lβ

∂⊥Ãij = −
2

3
ÃijDkβ

k + α
(

KÃij − 2Ãik Ã
k
j

)

+e−4φ [αRij − DiDjα]
TF , (1a)

∂⊥Λ̃
i = γ̃kℓDkDℓβ

i +
2

3
γ̃jk

(

Γ̃i jk − Γ
i
jk

)

Dℓβ
ℓ

+
1

3
D̃ i(Dkβ

k)− 2ÃikDkα+ 2αÃkℓ
(

Γ̃i kℓ − Γ
i
kℓ

)

+12αÃikDkφ−
4

3
αD̃ iK , (1b)

◮ Gauge conditions: Bona-Masso slicing with Gamma-driver shift
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First order reduction

To write the system in fully first order form introduce new (covariant) variables
such as

γ̃kij = Dk γ̃ij → Dkij ≡ γ̃kij − Dk γ̃ij = 0

leading to equations such as (∂0 ≡ ∂t − βjD j)

∂0γ̃kij = −2αDk Ãij + 2(Dkβ(i
ℓ)γ̃j)ℓ −

2

3
γ̃ijDkβℓ

ℓ

−2αk Ãij + βk
ℓγ̃ℓij + 2γ̃kℓ(iβj)

ℓ
−

2

3
γ̃kijβℓ

ℓ
− κγDkij , (2a)

◮ Outcome: Resulting system is strongly hyperbolic
◮ Provided certain conditions are satisfied (e.g. sphere of ill-posedness)
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1. For spherically reduced system will consider discontinuous Galerkin
implementation

◮ Spectral convergence with order of polynomial approximation
◮ Robust when matter fields are present (including shocks) 1

2. Finite difference implementation of full equations
◮ Numerics known to work with BSSN
◮ Strong test that enlarged system won’t lead to instabilities due to

constraint violations

1
David Radice and Luciano Rezzolla, arXiv: 1103.2426
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Will develop the dG method in 4 steps, with 1 step per slide
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DG method: space (step 1 of 4)

◮ Approximate physical domain Ω by subdomains Dk such that
Ω ∼ Ωh = ∪K

k=1D
k

◮ In general the grid is unstructured. We choose lines, triangles, and
tetrahedrons for 1D, 2D, and 3D respectively.
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DG method: solution (step 2 of 4)

◮ Local solution expanded in set of basis functions

x ∈ Dk : Ψk
h(x , t) =

N
∑

i=0

Ψk
h(xi , t)l

k
i (x)

◮ Polynomials span the space of polynomials of degree N on Dk .

◮ Global solution is a direct sum of local solutions

Ψh(x , t) =

K
⊕

k=1

Ψk
h(x , t)

◮ Solutions double valued along point, line, surface.
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DG method: residual (step 3 of 4)

◮ Consider a model PDE

LΨ = ∂tΨ+ ∂x f = 0,

where Ψ and f = f (Ψ) are scalars.

◮ Integrate the residual LΨh against all basis functions on Dk

∫

Dk

(LΨh) l
k
i (x)dx = 0 ∀i ∈ [0,N]

◮ We still must couple the subdomains Dk to one another...
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DG method: numerical flux (step 4 of 4)

◮ To couple elements first perform IBPs

∫

Dk

(

lki ∂tΨh − f (Ψh) ∂x l
k
i

)

dx = −

∮

∂Dk

lki n̂ · f ∗ (Ψh)

where the numerical flux is f ∗ (Ψh) = f ∗ (Ψ+,Ψ−)

◮ Ψ+ and Ψ− are the solutions exterior and interior to subdomain Dk ,
restricted to the boundary

◮ Example: Central flux f ∗ = f (Ψ+)+f (Ψ−)
2

◮ Passes information between elements, implements boundary conditions,
and ensures stability of scheme

◮ Choice of f ∗ is, in general, problem dependent
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We have finished

Remark: The term ‘nodal discontinuous Galerkin’ should now be clear. We
seek a global discontinuous solution interpolated at nodal points and demand
this solution satisfy a set of integral (Galerkin) conditions.

◮ Timestep with a classical 4th order Runge-Kutta

◮ Robust for hyperbolic equations as we directly control the scheme’s
stability through a numerical flux choice

◮ For a smooth enough solution, numerical error decays exponentially with
polynomial order N
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FOBSSN with dG code

◮ After each timestep a filter is used to control alias driven instabilities

◮ 1+log slicing and Gamma-driver shift

◮ Analytic values for the incoming characteristic modes

A few observations
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FOBSSN with dG code

◮ After each timestep a filter is used to control alias driven instabilities

◮ 1+log slicing and Gamma-driver shift

◮ Analytic values for the incoming characteristic modes

A few observations

◮ BUT, filtering the metric (or enforcing conformal metric determinant
constraint) is unstable

◮ Must damp constraints which arise from new (auxiliary) variables for
stability
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Schwarzschild in conformal Kerr-Schild with excision

Radial domain [0.4, 50]M covered by 100 equally sized domains

Figure: Long term stability Figure: Exponential convergence
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Results from dG code

◮ Other fields and constraints show similar convergence

◮ A variety of domain sizes and locations

◮ Perturbing all fields leads to a stable scheme

◮ Main result: We conclude that the scheme is stable in 1D
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Overview of FD implementation

The code

◮ Cactus framework employing the Carpet adaptive mesh refinement driver

◮ Mathematica package Kranc to expand the FOBSSN equations to C code

◮ Both the Mathematica notebook and C code is available as part of the
Einstein Toolkit under the name Carlile

The numerics

◮ Fourth order accurate stencils and fifth order Kreiss-Oliger dissipation

◮ Fourth order accurate Runge-Kutta time integrator

◮ Algebraic constraints γ̃ij Ãij = 0 and γ̃ij γ̃kij = 0 are enforced

◮ γ̃ = 1 = γ is not enforced
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Single puncture black hole

◮ M = 1 and a = .7

◮ Eight levels of mesh refinement in
a cubic domain, refinement
boundaries at
x = [1, 2, 4, 8, 16, 64, 128]M,

◮ The resolution on the finest level
which encompasses the horizon at
all times, is h = 0.032M.

◮ Outer boundary at 258.048M.
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Figure: Hamiltonian constraint along x axis
at t=77M
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Binary black hole

◮ Nonspinning and equal mass

◮ Extracted ℓ = m = 2 Weyl scalar

◮ Good agreement between BSSN
and FOBSSN

Scott Field First order BSSN formulation of Einstein’s field equations



Introduction
First-order BSSN
Numerical results

Discontinuous Galerkin
Finite difference

Final remarks

◮ Fully first order spatially covariant BSSN system with constraint damping
terms

◮ Complete hyperbolicity analysis

◮ Discretized with discontinuous Galerkin solver
◮ Stable long time and exponentially convergent runs

◮ Discretized with finite differences using Cactus framework
◮ For cases we considered, BSSN and FOBSSN behave similarly
◮ Enlarged system shows no obvious signs of instability
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QUESTIONS?
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