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In this thesis we review how general relativity is reformulated to solve initial value

problems and discuss in particular the GBSSN system, a variant of the traditional

BSSN formulation commonly used in numerical relativity. We then construct a dis-

continuous Galerkin scheme for numerically solving the GBSSN system and describe

how to incorporate the turduckening technique for smoothing singularities in initial

data for black holes. We then present numerical simulations of a turduckened black

hole in spherical symmetry that build on the dG scheme used in [23] to simulate black

holes using excision, and we show that the robust stability and spectral convergence

of these simulations is maintained when we incorporate the turduckening technique.

A first order reduction of the GBSSN system is then presented along with the results

of numerical simulations using both excision, found to be stable and spectrally con-

vergent, and turduckening, found to be unstable with our present implementation.

Finally, we present a dG scheme for evolving a massless scalar field coupled to the

GBSSN system and discuss preliminary results showing the scheme allows for stable

simulations of the coupled system, in particular the infall and absorption of a scalar

field pulse by a black hole.
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I. INTRODUCTION

General relativity, Einstein’s theory of gravity in which massive objects distort the geome-
try of spacetime, has proven to be wildly successful at modeling a wide range of astrophysical
phenomena. In the early twentieth century, general relativity (GR) gained prominence by
explaining a well-known discrepancy between observation and Newtonian calculations for
the precession of Mercury’s orbit and famously predicting the correct deflection of starlight
by the sun during a 1919 eclipse. Since then the quantitative accuracy of GR has been tested
with precision (see [47] for a review) and a number of often surprising general phenomena
predicted by the theory have been observed. Perhaps the most notable phenomenon is the
existence of black holes, objects so dense that the paths of all light rays inside a surface
surrounding the black hole called the event horizon are bent so that they must travel in-
wards towards the center of the black hole. Black holes are generically predicted to form
when dense objects collapse under the pull of their own gravity, and there is a great deal
of indirect observational evidence that astrophysical black holes do indeed exist, including
supermassive black holes at the center of the Milky Way and other galaxies. See [7] for a
history of black hole theory and observational evidence.

Direct tests of GR are often extremely difficult due to the weakness of gravity when
compared to the fundamental forces of particle physics; in “natural” units gravity is 1042

times weaker than electromagnetism. One important phenomenon predicted by GR is the
existence of gravitational waves, distortions in the curvature of spacetime and the distance
between nearby points that propagate through space at a finite speed (in fact the speed
of light) and obey the standard wave equation in the limit of weak gravitational coupling.
By comparison Newtonian gravity couples all points in space at a fixed time–indeed the
impossibility of reconciling this fact with the fundamental postulate of special relativity
that information cannot travel faster then the speed of light already shows the need for a
very different relativistic theory of gravity–and so Newtonian gravity does not allow for such
gravitational disturbances propagating at finite speed. Indirect evidence for gravitational
waves has been provided by observations of binary pulsar systems, and measurements of
a decay in the orbital period of the Hulse Taylor Binary in agreement with the predicted
energy loss from gravitational wave emissions led to a 1993 Nobel prize [33].

Direct detection and measurements of gravitational waves would constitute important
evidence for this prediction and allow for precise tests of GR in the strongly coupled regime
where detectable waves would be formed. Furthermore, because gravitational waves interact
with matter so weakly, waves formed in the early universe may look very similar today
to when they were emitted and the direct observation of gravitational waves may open
useful new avenues for early-universe astronomy. Experiments have been designed to detect
gravitational waves through interferometry, and a new generation of upgraded detectors,
most notably Advanced LIGO and Advanced Virgo, will be operational by 2015 and should
be sensitive enough to detect the gravitational waves emitted from the strongest predicted
sources. Such sources should be very massive, not overly symmetric (in particular not
axisymmetric) systems whose gravitational profile varies significantly in time. The prime
example of such a source is a binary black hole system in which two nearby black holes collide
through a process of three phases called inspiral, merger, and ringdown. The resulting black
hole will have less energy then the original dynamic binary black hole system with the
difference radiated away as gravitational waves. Highly accurate models of the gravitational
waveforms that should be emitted by binary black hole systems and other strong sources
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of gravitational waves are critical to successful experimental detection, as detectors rely on
a process of matched filtering to separate potential signals from background noise. The
current state of LIGO and Virgo and the quest for direct detection of gravitational waves is
reviewed in [36].

Unfortunately there is no way to analytically calculate the details of a binary black hole
collision. Apart from perturbative expansions useful only for weakly coupled systems, there
are no straightforward techniques for solving the equations of general relativity for a generic
system. To get highly accurate predictions of gravitational waveforms, we are therefore
led to consider numerical simulations of binary black holes and other systems in general
relativity. Such precise numerical simulations inevitably require costly computation, and
gravitational wave detectors should ideally have a wide catalog of possible waveforms that
can be compared to observed signals. It is therefore important to find a computationally
efficient numerical scheme whose accuracy increases quickly with increased computational
resolution.

Stable numerical simulations of binary black hole collisions have been successfully con-
structed; the current state-of-the-art is reviewed in [42]. There are two main formulations
of GR that have been used in stable simulations: the generalized harmonic formulation and
the much more commonly used Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation.
Stable simulations for solving the BSSN system of partial differential equations (PDEs) have
by and large relied on finite difference schemes. Finite difference schemes provide a simple
means of numerically approximating solutions to PDEs, but the numerical error in such a
scheme only decreases with increasing spatial resolution as some power of the resolution.
Recent work by Field, Hesthaven, Lau, and Mroue in [23] has proposed an alternative ap-
proach for solving the BSSN system with a discontinuous Galerkin (dG) scheme in which
the solution is approximated by local interpolating polynomials defined on subdomains that
cover the whole computational domain. A significant advantage of dG schemes is a property
known as spectral accuracy; the numerical error in the simulation decreases exponentially
with increasing resolution. This high order accuracy, as well as robust stability in the pres-
ence of shocks, make a dG scheme a competitive choice for performing binary black hole
simulations.

The simulations in [23] and those presented here are both limited to the model problem of
evolving a single black hole in spherical symmetry for simplicity and relative computational
ease. In the simulations in [23], the interior of the black hole’s event horizon is removed
from the computational domain in order to avoid the singularity present at the center of
the black hole using a technique called excision. Performing excision relies on knowing the
precise location of the event horizon of each black hole at all times. This means that binary
block hole simulations with excision must include a computationally intensive process of
horizon tracking, and state-of-the-art finite difference codes for solving the BSSN system
avoid using excision [42]. In this thesis we will describe a modification to the dG BSSN
simulations of Field et. al. in which the singularity is left in the computational domain but
smoothed out through a process known as turduckening [14, 15] and present results from
numerical simulations with dG BSSN solver that use both excision and turduckening.

The structure of the thesis is as follows: Chapter II describes the basic ingredients of
GR, derives the ADM equations for formulating initial value problems in GR, and presents
a BSSN-type formulation called the Generalized BSSN (GBSSN) system that will be solved
in our numerical simulations. Chapter III provides a detailed description of dG methods and
describes the construction of a scheme for solving the GBSSN system. Chapter IV describes
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the construction of black hole initial data and the turduckening technique, the final elements
necessary for building our simulations. The remaining chapters describe the results of our
numerical simulations. Chapter V describes numerical simulations of a static black hole
using a second order dG scheme and turduckening. Chapter VI describes simulations of a
first order reduction of the scheme using both excision and turduckening that have been
recently published in [11]. Finally, chapter VII derives the equations for evolving a massless
scalar field coupled to the GBSSN system and describes some preliminary dG simulations
of a localized scalar field pulse falling into a black hole.

II. GENERAL RELATIVITY AND THE GBSSN EQUATIONS

This chapter begins with a brief overview of general relativity and the aspects of differen-
tial geometry essential for understanding the Einstein field equations. The remainder of the
chapter is devoted to reformulating the field equations in order to solve initial value prob-
lems in GR. Section B introduces new variables that allow us to define a decomposition of
spacetime into a foliation of space-like hypersurfaces, Section C derives the ADM equations
that reformulate the field equations in accordance with this decomposition, and Section D
describes the GBSSN system, a further reformulation of the ADM system better suited for
numerical evolution. The GBSSN system presented in Eq. (44) and Eq. (45) provides the
constraint and evolution equations used in the numerical simulations to follow.

A. General Relativity and Spacetime Covariance

In classical Newtonian physics, particles live in Euclidean 3-space with a single time
parameter agreed on by all observers throughout space. The combined spacetime is therefore
described by R3×R. Gravity is modeled as a force between massive objects that causes their
paths to deviate from straight lines, the inertial trajectory of all particles. The situation is
very different in GR. Gravity distorts the structure of spacetime itself. Massive particles still
travel along their inertial paths under the influence of gravity, but these paths themselves
curve in response to gravity.

To make this all precise, GR is described in the language of differential geometry. Space-
time is only assumed to be an arbitrary 4-dimensional manifold M , a topological space
that looks locally like flat space (more precisely, every point is contained in a neighborhood
diffeomorphic to a neighborhood of R4) but that may have a very different topological and
geometric character from that of Euclidean space R4. This manifold is equipped with a
symmetric, non-degenerate inner product g(·, ·) called the metric1 that provides a way to
measure the lengths and angles of vectors. M is called a pseudo-Riemannian manifold when
equipped with such a metric. The metric can by thought of as a generalization of the reg-

1 Important note on notation: the metric on M will be denoted by g and sometimes called the physical

metric to differentiate it from a metric γ defined on spatial slices of spacetime and a related metric g.

This final metric is the one that is actually taken as an evolved variable in the simulations that follow,

so we give it the simpler notation g. This makes the notation in this section a bit more cumbersome,

but will greatly streamline the notation in the remainder of the thesis. We adopt a (−,+,+,+) metric

convention throughout and will use geometrized units in which c = G = 1.
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ular dot product in Euclidean space. Generalizing the idea of geometric tangent vectors to
curves and surfaces in R3, vectors are defined as elements of a vector space TpM called the
tangent space that is constructed at every point p ∈ M . This tangent space can in fact be
rigorously defined as the collection of tangent vectors to all possible smooth curves passing
through p ∈ M , that is directional derivative operators acting in all directions [38]. Linear
maps ω : TpM → R from vectors to the real numbers are called covectors and are described
as elements of the dual space T ∗pM . The metric g is a linear map TpM ⊗ TpM → R, that
is a bilinear map taking two vectors to the reals. It is called a rank (0,2) tensor, and we
can define tensors of arbitrary rank (p,q) as maps from p covectors and q vectors to the
real numbers. According to the principle of general covariance, all objects and equations in
general relativity are constructed using tensors to provide them with a geometric meaning
that does not depend on a particular observer’s choice of coordinate frame.

Choose coordinates (x0, x1, x2, x3) on some neighborhood of p ∈M , and define a coordi-
nate basis for TpM by taking the directional derivative along each coordinate axis as a basis
vector. For simplicity of notation we write ∂0 ≡ ∂

∂x0 , and so this coordinate basis is written
{∂0, ∂1, ∂2, ∂3}. We will use index notation to describe vectors and covectors by their compo-
nents in such a coordinate basis; for example we describe a vector v by vµ = (v0, v1, v2, v3)T

and a covector ω by ωµ = (ω0, ω1, ω2, ω3).2 We further adopt the Einstein summation con-
vention in which all contractions, defined as repeated upper-lower index pairs, are summed
over, for example vµωµ ≡

∑3
µ=0 v

µωµ. A general tensor of rank (p, q) can be described by its

components T
µ1µ2...,µp
ν1ν2...,νq . Though the actual components of a tensor depend on the particular

choice of coordinates, equations relating tensors are covariant, that is they are independent
of a particular choice of coordinates. The physical metric g is described by it’s components
gµν . We further define an inverse metric gµν by gµνg

µρ = δρν where δνµ is the Kronecker delta,
defined to be 1 if µ = ν and 0 otherwise. We can raise and lower indices using the metric
and inverse metric, defining for example vµ ≡ gµνv

ν .
Since derivatives like ∂µ obviously depend on the choice of coordinates, we look to define a

coordinate independent tensorial analog of the partial derivative called a covariant derivative.
This covariant derivative is denoted by ∇µ and defined in the cases of vectors and covectors
by

∇µv
ν ≡ ∂µv

ν + Γ
ν

µσv
σ (1a)

∇µων ≡ ∂µων − Γ
σ

µνωσ, (1b)

where the connection Γ
µ

νλ is a (non-tensorial) set of functions defined by

Γ
µ

νλ ≡
1

2
gµσ(∂λgνσ + ∂νgλσ − ∂σgνλ). (2)

The covariant derivatives for tensors of higher rank are defined simply by adding another
contraction of the connection with each raised index and subtracting a contraction of the
connection with each lower index. For a full discussion of manifolds, tensors, covariant
derivatives, etc in the language of general relativity see [20, 45]; for a mathematical treatment
in the language of differential geometry see [21, 37, 38, 44].

2 Another important note on notation: Greek indices like µ and ν represent the four-dimensional spacetime

coordinates and will be assumed to run from 0 to 3, while Latin indices like i, j, k represent the three-

dimensional spatial coordinates only and will be assumed to run from 1 to 3.
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The notion of curvature can be precisely defined on a (pseudo-Riemannian) manifold by
constructing the Riemann curvature tensor R

µ

νλρ as

R
µ

νλρ ≡ ∂λΓ
µ

νρ − ∂ρΓ
µ

νλ + Γ
µ

σλΓ
σ

νρ − Γ
µ

σρΓ
σ

νρ. (3)

Geometrically, R
µ

νλρ represents the change in the components of the coordinate vector ∂ρ
when it is parallel transported around an infinitesimal closed loop along in the plane of ∂ν
and ∂λ. We further define two contractions of the Riemann tensor called the Ricci tensor
Rµν and Ricci scalar R by

Rµν ≡ R
λ

µλν (4)

R ≡ R
µ

µ = gµνRµν . (5)

A manifold is called flat if and only if the Riemann tensor vanishes everywhere. Euclidean
space and the Minkowski space of special relativity are both flat since the metric in both
spaces is constant, diag(1, 1, 1, 1) for R4 and diag(−1, 1, 1, 1) for Minkowski space. In curved
spacetime it is no longer reasonable to postulate that the inertial path taken by particles
in the absence of an external force is a straight line defined by ∂2

t q(t, x) = 0, as can be
seen by imagining a particle constrained to move along a sphere. Instead we postulate that
particles travel along geodesics, paths that minimize the spacetime distance ds, defined by
ds2 ≡ gµνdx

µdxν , integrated along the path. Geodesics are equivalently paths that satisfy

the covariant generalization of straight-line paths ∇µ
dq
dxν

= 0. Furthermore, light (and other
massless fields) travel along null geodesics, paths for which ds2 = 0. No causal information
can travel faster than this, so the speed at which particles propagate along null geodesics
defines the maximum speed of causal information flow.

The physical content of GR is given by the postulate that massive particles travel along
time-like geodesics (geodesics where propagation is slower than light) and a description of
how these geodesics are modified by the presence of other massive particles. Since the
geodesic equation can be written in terms of the components of the metric, this is equivalent
to a statement of how the metric responds to the presence of mass. Such as statement is
given by the Einstein field equations

Gµν ≡ Rµν −
1

2
Rgµν = 8πTµν , (6)

where Tµν is called the stress-energy tensor and characterizes the energy and momentum of
matter throughout spacetime. It is defined and computed for a simple scalar field in Chapter
VII. Note that in this equation and throughout this thesis we work in geometrized units
where G = c = 1.

The Einstein field equations above provide a system of 10 PDEs (the metric is symmetric,
gµν = gνµ, and so areRµν and Tµν) for the physical metric components gµν in which each PDE
involves non-linear products of the metric and its derivatives. While solving complicated
non-linear PDEs is not an easy task in general, there is an even more troubling feature of
this system: spatial and time derivatives are mixed together in non-trivial combinations.
This is a natural feature of GR since there is to be no distinction between space and time
apart from the sign of the metric and so any covariant equations must combine space and
time components equally. It contrasts sharply, however, with the notion of solving an initial
value problem in which a system is described by a “snapshot” of its state at one point in
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time and then evolved to determine its state at future times. This is exactly the kind of
problem that numerical simulations are equipped to solve, and indeed the type of problem
that must be defined in order to model the gravitational waves emitted by a system starting
in a specified binary black hole configuration.

Before we can begin describing a numerical scheme for solving Einstein’s equations, we
will need to re-formulate them as a system that describes the time evolution of the evolved
fields (gµν above) in terms of only the current state of the system at that point in time. This
necessarily requires that we distinguish between space and time, so we will now describe
how to reformulate GR in a way that breaks spacetime covariance by singling out a time
direction but still maintains the physical content and the coordinate independence of the
theory.

B. Basic Elements of a Spacetime Decomposition

1. Lapse, Shift, and Spatial Metric

A fundamental assumption in GR is that spacetime is locally flat, as reflected in the idea
that we can choose local coordinates xµ mapping a neighborhood around any point to a
neighborhood of R4. gµν is assumed to have signature +2, and so by purely linear algebraic
considerations (see for example [35]) we can find coordinates in which it has a simple diagonal
form at any given point. In particular we can choose coordinates so that at any given point
gµν = ηµν ≡ diag(−1, 1, 1, 1), the Minkowski metric of special relativity. In these coordinates
we can clearly distinguish the time coordinate x0. We can therefore foliate this local path of
spacetime by hypersurfaces Σt defined as level sets of the time coordinate t ≡ x0. As level
sets of a smooth function, these hypersurfaces will be 3-dimensional embedded submanifolds
of spacetime [38] and can be endowed with a spatial metric γij that acts on three-dimensional
vectors tangent to the hypersurface and describes the intrinsic geometry of the slice. This
construction is non-covariant and can only be prescribed locally, but we follow [40] in using
it to build an intuition for the (tensorial) objects used to define a geometric decomposition
of spacetime into space and time.

In order to describe the time evolution of the system we must relate the coordinate system
xi(t) on Σt with the coordinate system xi(t+ dt) on a surface Σt+dt an infinitesimal time dt
in the future. To be precise, we look to choose xi(t + dt) so that a Eulerian observer [25],
an observer whose worldline is orthogonal to Σt and so views events on the hypersurface as
simultaneous, at a point pt ∈ Σt is described by the coordinates xi(d + dt) after moving in
time to the point pt+dt ∈ Σt+dt. In flat spacetime this is simple. The Eulerian observer will
always move in the x0 direction, and so defining a time vector tµ = (1, 0, 0, 0), we may set
this vector equal to the unit normal vector for the hypersurface, nµ. Proper time will be
equal to coordinate time, and the proper distance between the point pt ∈ Σt and an arbitrary
point qt+dt ∈ Σt+dt will be ds2 = ηµνdx

µdxν = −dt2 + dxidxi. To begin generalizing this, we
can define a scalar function α(t, xi) called the “lapse” that specifies a general relationship
between proper time and coordinate time by dτ ≡ αdt. In this case the time evolution
vector connecting the points pt and pt+dt is given by tµ = (1, 0, 0, 0) = αnµ. Fig. 1 shows
this construction along with the general case in which the time evolution vector may not be
parallel to the normal vector.

In this case we describe the motion parallel to the hypersurface during time evolution by
a spacelike vector βµ = (0, βi) called the “shift” and defined by tµ = αnµ + βµ. The spatial
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FIG. 1. Diagrams describing the relations between the lapse α, shift β, normal vector nµ and

time vector tµ (note this time vector just gives the components of ∂t). The left diagram represents

flat space with coordinates chosen so that a Eulerian observer will measure zero spatial distance

between xi(t) and xi(t + dt), and the right diagram describes a curved spatial slice where the

Eulerian observer will measure a spatial shift between coordinates on the two slices.

distance between pt and an arbitrary qt+dt is then given by dxi +βidt. In terms of α, βi and
the spatial metric γij defined on Σt, the proper distance between arbitrary points on Σt and
Σt+dt is given by

ds2 = gµνdx
µdxµ = (−α2 + γijβ

iβj)dt2 + 2γijβ
idtdxj + γijdx

idxj. (7)

The components of the physical metric can immediately be read off from this equation, and
inverting this 4x4 matrix gives the components of the inverse metric gµν . The metric and
inverse metric are then given in block matrix form by

gµν =

(
−α2 + γijβ

iβj γijβ
i

γijβ
j γij

)
, gµν =

(
−1/α2 βj/α2

βi/α2 γij + βiβj/α2

)
. (8)

Since the physical metric gµν is fundamental to the spacetime manifold and defined inde-
pendently of the choice of foliation, Eq. (7) may be viewed as a definition of α, β, and
γij in terms of gµν . Furthermore, note that a choice of the fields α(t, xi) and βi(t, xi) just
defines a relation between coordinate distance and proper distance. The lapse and shift
are really gauge variables, and specifying a lapse and shift describes a particular choice of
coordinates rather than specifying any physical information about the system. Also note
that the expression tµ = (1, 0, 0, 0) = αnµ + βµ for the time vector provides an expression
for the normal vector in these coordinates given by

nµ =

(
1

α
,− 1

α
βi
)
. (9)

Finally, a bit more must be said about the spatial metric γ. In Eq. (7) only the spatial
components γij appear, but it will prove useful to extend the spatial metric to a tensor
γµν that provides a map TpM ⊗ TpM → R rather than just TpΣt ⊗ TpΣt → R. This four-
dimensional spatial metric should still only describe spatial distances and should obviously
agree with γij for its spatial components. This can be accomplished by removing the lapse
terms in gµν that represent the time distance between slices but keeping the shift terms that
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represent the spatial distance traveled as time progresses, and so we define

γµν ≡ gµν + nµnν =

(
γijβ

iβj γijβ
i

γijβ
j γij

)
. (10)

This tensor γµν also provides us with a operator that projects 4-dimensional vectors onto
the tangent space of each hypersurface TpΣt, as may be verified in the case of an arbitrary
vector uν :

γνµu
µ =


0

u1 + u0β1

u2 + u0β2

u3 + u0β3

 . (11)

2. Intrinsic and Extrinsic Curvature

To finish describing our decomposition, we must be able to relate the curvature of Σt to
the spacetime curvature described by R

µ

νλρ. We can define a notion of intrinsic curvature

on Σt by building a connection Γ̃ijk and a Riemann curvature tensor R̃i
jk` out of the spatial

metric γij since the hypersurface itself is a pseudo-Riemannian manifold. We can extend
these to be four-dimensional tensors by constructing them from γµν . In analogy to Eqs. (2)
and (3), we define

Γ̃µνλ ≡
1

2
γµσ(γνσ,λ + γλσ,ν − γνλ,σ) (12a)

R̃µ
νλρ ≡ ∂λΓ̃

µ
νρ − ∂ρΓ̃

µ
νλ + Γ̃µσλΓ̃

σ
νρ − Γ̃µσρΓ̃

σ
νρ. (12b)

We can also build a covariant derivative operator Dµ using this connection in analogy to Eq.
(1). This derivative operator can be verified to be the spatial projection of the spacetime
covariant derivative, that is Dµ = γνµ∇ν . It can also be directly verified that any component

of R̃µ
νλρ with a 0 index will vanish, and so the spatial components of this tensor contain all

the relevant information for the intrinsic curvature [40].
There is another notion of curvature called the “extrinsic curvature” of the submanifold.

To get some geometric intuition, consider a 2-dimensional cylinder embedded in R3. Since
a cylinder can be built by rolling up a flat piece of paper, it ought to have no intrinsic
curvature. This is indeed the case; since constructing such a cylindrical space is equivalent
to taking cylindrical coordinates for flat Euclidean space the Riemann tensor defined on the
cylinder will vanish. Still, a cylinder in some sense “looks curved” when viewed in R3. It is
this sense of curvature that is made precise by defining an extrinsic curvature tensor Kµν .

Consider an infinitesimal displacement dxi along a hypersurface Σt. The normal vector
nµ(xi + dxi) will not in general be parallel to the normal vector nµ(xi), as is shown in Fig.
2, and the one-form dnµ describing the difference between the two should be given by some
linear function of dxν . These two one forms will naturally then be related by a rank (1,1)
tensor Kµ

ν . We therefore define
Kij ≡ −∇inj. (13)

The extrinsic curvature tensor is symmetric, as will be verified shortly, and so we can replace
∇inj with ∇(inj) ≡ 1

2
(∇inj +∇jni) in the above definition. We wish the extrinsic curvature
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FIG. 2. The normal vector nµ at points xν and xν +dxν on a curved hypersurface Σt. By historical

convention this surface is defined to have positive curvature. Since dnµ points opposite to dxν in

the diagram, we define Kµν to have a negative sign in its definition to respect this convention.

to be purely spatial, so we can define a four-dimensional tensor Kµν by taking a spatial
projection of the four-dimensional analog of this definition,

Kµν ≡ −γλµγρν∇(λ nρ). (14)

An equivalent and more computationally useful definition can be given in terms of a Lie
derivative of the spatial metric. The Lie derivative is a derivative operator that has an
elegant definition for an arbitrary manifold without reference to a metric in terms of the
theory of flows along vector fields. For our purposes it can just be taken as a convenient
shorthand for the combination of derivatives shown below, but it should be noted that all
the connection terms in its definition cancel and so any of ∂µ, ∇µ, or Dµ could equally well
be used to take the Lie derivative. The definition of Kµν as a Lie derivative is seen to be

−1

2
Lnγµν ≡ −

1

2

(
nλDλγµν + γµλDνn

λ + γλνDµn
λ
)

(15)

= −1

2

(
0 + γµλγ

σ
νg

λρ∇σnρ + γνλγ
σ
µg

λρ∇σnρ
)

= −1

2
γρµγ

σ
ν

(
∇σnρ +∇ρnσ

)
= Kµν .

C. The ADM Formalism

The first reformulation of the Einstein field equations suitable for solving general initial
value problems was provided by Arnowitt, Deser, and Misner in 1959 by deriving what are
now called the ADM equations [4]. These provide evolution equations for the spatial metric
and extrinsic curvature as well as two constraint equations, purely spatial equations that
must be satisfied on each hypersurface in the foliation. The structure of the equations is
such that so long as the constraint equations are satisfied by the initial data specified on a
spatial surface at the initial time t = 0 they will be preserved by the evolution equations
and automatically satisfied at later times. We present a derivation of the ADM equations
very different from the original and initially follow the approach of [40] before adopting the
more abstract and fully covariant techniques of [9].
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The ADM equations can be derived by combining the Einstein field equations with three
equations that relate the the extrinsic and intrinsic curvature of the hypersurfaces to the
spacetime curvature: the Gauss, Codazzi, and Ricci equations. The spatial pieces of the
Gauss and Codazzi equations can be most easily derived by taking an orthogonal basis for
our tangent space rather then the usual coordinate basis, so we will very briefly slip out of
index notation and view for example the extrinsic curvature tensor K(·, ·) as an operator
taking two vectors as inputs.

Let fi be an orthonormal frame providing a basis for TpΣt, and let ei = (0, fi). Our normal
vector n is orthogonal to the ei, so take {n, ei} as an orthogonal frame providing a basis
for TpM . Note that nµ is normalized so that g(n,n) = −1. We mentioned upon defining

the Riemann curvature tensor R
µ

νλρ that it could be interpreted as measuring the change
resulting from parallel transporting a vector around an infinitesimal closed loop. This is
made precise in an equivalent definition of the Riemann curvature tensor as

R (ei, ej, ek) = ∇ej∇ekei −∇ek∇ejei ≡ ∇j∇kei −∇k∇jei. (16)

The components of this resultant vector will give R
µ

ijk in terms of objects defined on the

hypersurface as we desire, so we look to resolve the components of ∇kei in the {n, ei} basis.
To calculate the spatial components, note that by the orthogonality of ei and ej we have

∂jei = 0, and so ∇kei = Γ`ike`. This allows us to calculate the spatial components as

g(ej,∇kei) = Γ`jkg (e`, ei) = Γ`jkg`i = Γijk. (17)

The 0 (normal) component is given by

g(n,∇kei) = −g(ei,∇kn) = g(ei, ej)K
j
k = gijK

j
k = Kik, (18)

where the first equality follows from the orthogonality of ei and n and the important property
∇λgµν = 0 called metric compatibility, as 0 = ∇kg (ei,n) = g

(
∇kei,n

)
+ g

(
∇kn, ei

)
. At

this point we can easily verify that Kij is symmetric as was asserted before:

Kji = g(n,∇jei) = g(n, eµ)Γµij = g(n, eµ)Γµji = g(n,∇iej) = Kij. (19)

We can now express ∇kei in terms of the (n, ei) basis by

∇kei = g
(
n,∇kei

) n

g(n · n)
+ g

(
ej,∇kei

) ej
g(ej, ej)

(20)

= −Kikn + Γ`ike`.

Applying a second covariant derivative operator gives

∇j∇kei = ∇j

(
−Kikn + Γ`ike`

)
= −∇jKikn +

(
−KikK

`
j +∇jΓ

`
ik + ΓmikΓ

`
mj

)
e`. (21)

The second term of Eq. (16) is identical under an interchange of j and k, so we can now
express the spacetime Riemann curvature tensor in terms of the extrinsic curvature and the
intrinsic Riemann curvature tensor on the hypersurface as

R (ei, ej, ek) =
(
∇kKij −∇jKik

)
n +

(
KijK

`
k −KikK

`
j + R̃`

ijk

)
e`. (22)
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The spatial piece of this equation decomposes the spatial curvature of the hypersurface into
intrinsic and extrinsic parts and is known as Gauss’s equation,

R
`

ijk = R̃`
ijk +KikK

`
j −KijK

`
k , (23)

while the normal component describes how the extrinsic curvature changes throughout the
foliation and is known as Codazzi’s equation,

R
0

ijk = ∇kKij −∇jKik. (24)

Rather than expressing these as spatial and normal components of the spacetime Riemann
curvature tensor, we can write them as projections of the full tensor onto the spatial and
normal directions. Gauss’s equation is equivalent to

γλµγ
δ
νγ

η
σγ

ξ
ρRλδηξ = R̃µνσρ +KνρKµσ −KνσKµρ, (25)

and Codazzi’s equation can be expressed as

γηνγ
ρ
σγ

ξ
µn

λRηρξλ = DσKµν −DνKµσ. (26)

The geometric structure of these equations as different projections of the Riemann curvature
tensor is clear. The symmetries of the Riemann tensor dictate that projecting all four
components onto the normal direction will trivially vanish, but there is one further non-trivial
relation that can be found by projecting two components of Rµνλσ onto the hypersurface
and two onto the normal direction. This relation is known as the Ricci equation, and is
given by [9]

γδµγ
η
νn

σnλRησδλ =
1

α
DµDνα +Kρ

νKµρ + LnKµν . (27)

The ADM constraint equations can be immediately derived from the Gauss and Codazzi
equations as they are expressed above. Contracting the left side of Gauss’s equation with
γµσγνρ and performing a series of index manipulations gives 2nµnνGµν . This can be related to
the stress-energy tensor by the Einstein field equations. To express the constraint concisely
we define an energy density ρ by

ρ ≡ nµnνTµν . (28)

This has the physical interpretation of the energy density on the hypersurface as measured by
a Eulerian observer. Combining the contracted form of Gauss’s equation with the Einstein
field equations provides the Hamiltonian constraint

H ≡ R̃ +K2 −KijK
ij = 16πρ. (29)

Contracting the left side of Codazzi’s equation with the spatial metric γνσ can be shown to
give −γδµnλRδλ. Observing γδµn

λgδλ = nµ−nµ = 0, we can trivially add a term proportional

to gδλ and in particular can add 1
2
Rγδµn

λgδλ so that this becomes a contraction of the Einstein

tensor Gδλ. For convenience we define this same contraction of the stress-energy tensor by

jµ ≡ −γδµnλTδλ. (30)

jµ can be interpreted as the momentum density measured by a Eulerian observer. Combining
the Einstein field equations and the contracted Codazzi equation provides the momentum
constraint

Mi ≡ DjK
j
i −DiK = 8πji. (31)
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The remaining ADM equations are evolution equations for the spatial metric γij and extrinsic
curvature Kij. Recall the definition of the time vector tµ = αnµ + βµ that has components
tµ = (1, 0, 0, 0) in our coordinate basis. Since any x0 components of the spatial connection
Γ̃µνρ will vanish, the Lie derivative along tµ reduces to simply the partial derivative ∂t in our
chosen coordinates. The Lie derivative can itself be thought of a linear operator taking a
vector and a tensor as input, and so Lt = αLn − Lβ [38].

The evolution equation for γij can therefore be found immediately by rearranging Eq.
(15) to give

∂tγij = −2αKij − Lβγij. (32)

The evolution equation for Kµν can be found by rearranging the Ricci equation to solve for
LnKµν and decomposing this Lie derivative as above to give [9]

∂tKij = −DiDjα− α
(
R̃ij − 2KikK

k
j +KKij

)
− 8πα

(
Sij −

1

2
γij(S − ρ)

)
+ LβKij, (33)

where we have introduced a spatial projection of the stress energy tensor

Sµν ≡ γλµγ
ρ
νTλρ, (34)

as well as the trace of this projection

S ≡ γµνSµν = γijSij. (35)

We finally define the trace-free part of this tensor by

STF
ij ≡ Sij −

1

3
γijS. (36)

This will be featured in the next section.

D. The GBSSN System

The ADM evolution equations turn out to be poorly suited for numerical evolution3.
Since the development of the ADM formalism, there have been numerous new formulations
proposed in an effort to find a system more suitable for numerical evolution. The most
popular in modern numerical relativity simulations are the generalized harmonic system and
the BSSN system. There is even a range of systems described as BSSN-type formulations,
see for example [8, 10, 12]. Our particular choice is commonly called the generalized BSSN
or GBSSN formulation, and differs from the traditional BSSN formulation by defining all of
the evolved fields to be tensors (except for one non-tensorial field related to the connection)
rather than having some be objects known as tensor densities whose components pick up
a weighted Jacobian factor when transformed to new coordinates. This is accomplished by
removing the restriction present in traditional BSSN that the evolved metric to has unit
determinant, consequently making the reduction to spherical symmetry, where in flat space

3 More precisely they are only weakly hyperbolic when written in first order form [22], a condition that

causes many numerical schemes to become unstable or lose convergence [17].
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the spatial metric has determinant r2, much simpler with GBSSN than with traditional
BSSN.

We begin by defining a conformal spatial metric gij and a conformal factor χ by

gij ≡ χγij, gij ≡ γij

χ
(37)

The conformal factor χ is a scalar that effectively rescales the spatial metric and is useful
at least in spherical symmetry in isolating the divergences in the physical metric found at
the central singularity of a black hole from the evolved conformal metric. When the spatial
metric γij diverges, we can allow the conformal metric gij to remain finite so long as the
conformal factor χ approaches zero. It is similarly useful to perform this same conformal
decomposition with the extrinsic curvature. Define the trace K and trace-free part Aij of
the conformal extrinsic curvature by

Kij =
1

χ

(
Aij +

1

3
gijK

)
. (38)

The trace K and trace-free part Aij are evolved separately as independent fields. Also define
a connection built from conformal spatial metric gij by

Γijk ≡
1

2
gim(∂kgmj + ∂jgmk − ∂mgjk). (39)

Finally define conformal connection functions by contracting the conformal connection with
the spatial metric,

Γi ≡ gjkΓijk = − 1
√
g
∂j
(√

ggij
)
. (40)

These conformal connection functions provide the final evolved variables for the GBSSN
system. The full set of evolved variables in GBSSN are then the gauge variables α, βi, and
Bi, a vector to be introduced shortly in the evolution equations that introduces damping to
the shift vector, and the physical fields gij, Aij, K, Γi, and χ.

Evolution equations for the gauge variables may be chosen freely, but the numerical
stability of the resulting scheme depends greatly on this choice. We use the “1+log” and
“Γ-driver” conditions [1] common to nearly all stable binary black hole evolutions using
BSSN [42]. As can be seen from Eq. (37), there is also some ambiguity in determining the
evolution equations for both the conformal factor and the conformal metric from the ADM
evolution equation for the spatial metric. This ambiguity and a similar ambiguity resulting
from conformal decomposition of the extrinsic curvature are resolved by explicitly specifying
the evolution of the conformal metric determinant g. This provides the major distinction
between traditional BSSN formulations alluded to earlier: in traditional BSSN g = 1 for all
times, while we specify a “Lagrangian condition” ∂t(ln g) = 0 [12].

All of the numerical simulations presented in this thesis are limited to spherically sym-
metric spacetimes, so we will immediately specialize to this case. The spherically symmetric
line element is given in terms of the evolved GBSSN variables by

ds2 =

(
−α2 +

βr2grr
χ

)
dt2 +

2βrgrr
χ

dtdr +
grr
χ
dr2 +

gθθ
χ

(dθ2 + sin2 θdφ2). (41)
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Note that in these coordinates radially incoming and outgoing null geodesics, defined as
paths satisfying ds2 = 0, have coordinate velocity

dr

dt
= −βr ± α

√
χ

grr
. (42)

Subject to spherical symmetry, the conformal connection and trace-free conformal extrinsic
curvature reduce to [23]

Γi =

 Γr

− cos θ
gθθ sin θ

0

 , Aij = Arr

1 0 0
0 − gθθ

2grr
0

0 0 −gθθ sin2 θ
2grr

 . (43)

This means that in spherical symmetry our evolved fields are just α, βr, Br, grr, gθθ, Arr,
K, Γr, and χ.

A full derivation of the spherically symmetric GBSSN evolution and constraint equations
from the ADM equations is presented in Appendix A of [22] using the choices described
above for the evolution of the gauge variables and conformal metric determinant in notation
identical to that of this thesis except that conformal variables have bars instead of physical
variables, so we will not repeat the calculation here. Using the ADM evolution equations
and the choices described above, the GBSSN evolution equations in spherical symmetry are
given by

∂tα = βrα′ − 2αK − (∂tα)0 (44a)

∂tβ
r = βrβr′ +

3

4
Br − (∂tβ

r)0 (44b)

∂tB
r = βrBr′ + λ(∂tΓ

r − βrΓr′)− ηBr − (∂tB
r)0 (44c)

∂tχ = βrχ′ +
2

3
Kαχ− βrg′rrχ

3grr
− 2βrg′θθχ

3gθθ
− 2

3
βr′χ (44d)

∂tgrr =
2

3
βrg′rr +

4

3
grrβ

r′ − 2Arrα−
2grrβ

rg′θθ
3gθθ

(44e)

∂tgθθ =
1

3
βrg′θθ +

Arrgθθα

grr
− gθθβ

rg′rr
3grr

− 2

3
gθθβ

r′ (44f)

∂tArr = βrA′rr +
4

3
Arrβ

r′ − βrg′rrArr
3grr

− 2βrg′θθArr
3gθθ

+
2αχ(g′rr)

2

3g2
rr

− αχ(g′θθ)
2

3g2
θθ

(44g)

− α(χ′)2

6χ
+

2

3
grrαχΓr′ − αχg′rrg

′
θθ

2grrgθθ
+
χg′rrα

′

3grr
+
χg′θθα

′

3gθθ
− αg′rrχ

′

6grr
− αg′θθχ

′

6gθθ

− 2

3
α′χ′ +

αχ′′

3
− 2

3
χα′′ − αχg′′rr

3grr
+
αχg′′θθ
3gθθ

− 2αA2
rr

grr
+KαArr −

2grrαχ

3gθθ
− 8παχSTF

rr

∂tK = βrK ′ +
χg′rrα

′

2g2
rr

− χg′θθα
′

grrgθθ
+
α′χ′

2grr
− χα′′

grr
+

3αA2
rr

2g2
rr

+
1

3
αK2 + 4πα(S + ρ) (44h)

∂tΓ
r = βrΓr′ +

Arrαg
′
θθ

g2
rrgθθ

+
2βr′g′θθ
3grrgθθ

+
Arrαg

′
rr

g3
rr

− 4αK ′

3grr
− 2Arrα

′

g2
rr

− 3Arrαχ
′

g2
rrχ

(44i)

+
4βr′′

3grr
− βr(g′θθ)

2

grrg2
θθ

+
βrg′′rr
6g2

rr

+
βrg′′θθ

3gθθgrr
− 16παjr

χ
,
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where primes denote spatial derivatives and a few new parameters have been introduced
that need to be defined. η is a constant that damps the field Br featured in the evolution of
the shift βr and is chosen for numerical stability. λ is another constant chosen for numerical
stability. It affects the speed at which information propagates in the gauge sector and
the coordinate location past which no information about the evolved fields can escape a
black hole, as will be discussed in the next chapter. Finally (∂tα)0, (∂tβ

r)0 and (∂tB
r)0 are

modifications to the usual 1+log and Γ-driver conditions. They are defined to be the values
of ∂tα, ∂tβ, and ∂tB

r at t = 0 respectively and force the gauge variables to be static at the
initial time.

There is one new set of constraint equations introduced in BSSN formulations by the
definition of the conformal connection functions: Gi ≡ Γi − gjkΓijk = 0. The full set of
GBSSN constraint equations in spherical symmetry is given by

H = 16πρ = −3A2
rr

2g2
rr

+
2K2

3
− 5(χ′)2

2χgrr
+

2χ′′

grr
+

2χ

gθθ
(45a)

− 2χg′′θθ
grrgθθ

+
2χ′g′θθ
grrgθθ

+
χg′rrg

′
θθ

g2
rrgθθ

− χ′g′rr
g2
rr

+
χ(g′θθ)

2

2grrg2
θθ

Mr = 8πjr =
A′rr
grr
− 2K ′

3
− 3Arrχ

′

2χgrr
+

3Arrχ
′

2χgrr
+

3Arrg
′
θθ

2grrgθθ
− Arrg

′
rr

g2
rr

(45b)

Gr = 0 = − g′rr
2g2

rr

+
g′θθ
grrgθθ

+ Γr. (45c)

After specifying initial data for a particular system in terms of the evolved GBSSN variables,
our numerical simulations are carried out by evolving the GBSSN variables according to a
discrete approximation of the PDE system in Eq. (44). We can verify the accuracy of these
simulations by monitoring the value of the constraint system in Eq. (45) at later times.

III. THE DISCONTINUOUS GALERKIN SCHEME

The chapter constructs a dG scheme for discretizing the GBSSN system and numeri-
cally solving the evolution equations. The first two sections consider a model PDE and
describe general considerations for discretizing a PDE and dG methods in the context of
this model system. The construction of a dG scheme for the GBSSN system is presented
as a generalization of this construction at the end of Section B. Section C then describes
the details of implementing this approach for solving the GBSSN system and presents both
analytic details on the characteristics and hyperbolicity of the system and numerical details
on the boundary conditions, filtering, and functions called numerical fluxes essential for the
construction of a stable dG scheme.

A. Overview and Notation

The problem of simulating systems in general relativity has been reduced to evolving
some initial data according to the GBSSN system. Our next task is to specify a scheme
for performing this time evolution numerically on a computational grid with only a finite
number of spatial points. In specifying such a scheme, we are in effect making two choices:
1-how to represent a solution u(t, x) to the system by an approximate solution uh(t, x),
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and 2-in what sense this approximate solution uh(t, x) will be made to satisfy the evolution
system. To discuss this concretely but without the complexity of the GBSSN system we will
consider a simple model system

∂u

∂t
+
∂f(u)

∂x
= g(x) (46)

throughout this section and the next. In this equation u(t, x) is the solution to be determined,
f(u) represents a spatial flux and g(x) acts as a (time-independent) source for the field u.
An initial value problem is determined by specifying a spatial domain Ω on which we wish
to solve the system, initial data u0 ≡ u(t = 0, x) defined for all x ∈ Ω, and some type of
boundary conditions for u on the boundary ∂Ω. Assume that Ω can be well-approximated
by a discrete computational domain Ωh. By specifying how to spatially discretize the system
as an equation for uh on x ∈ Ωh we will obtain a semi-discrete scheme for solving Eq. (46).
We will then be left with an ordinary differential equation for the time evolution of the
system at each of the finitely many spatial points in Ωh that can be discretized and solved
by well-known and understood methods.

The oldest and simplest approach for spatial discretization is the finite difference scheme.
In a finite difference scheme Ωh is defined as a set of equally spaced grid points, Ωh ≡
{x1, x2..., xK}. Denote the grid spacing by h ≡ xk+1 − xk. We construct the numerical
solution uh(t, x) by building local polynomials interpolating u(t, x) at the grid points. For
x ∈

[
xk−1, xk+1

]
, define uh by

uh(t, x) ≡
2∑
i=0

ai(t)(x− xk)i. (47)

Discretized fluxes fh and source terms gh are defined analogously. To describe the manner
in which uh is chosen to satisfy the PDE, define the residual Rh by

Rh ≡
∂uh
∂t

+
∂fh
∂x
− gh(x). (48)

The residual in effect measures the difference between the approximate and exact solution
and will in general be nonzero since uh(t, x) 6= u(t, x). The natural statement to enforce
for this scheme is that the residual vanish at each grid point x1, ..., xK . To define a (second
order) finite difference scheme, we approximate the action of the spatial derivative operator
at a grid point by the difference quotient of the function at two the surrounding grid points.
The time evolution of uh is then determined by enforcing that the residual vanish at each
grid point to give

∂uh(x
k, t)

∂t
+
fh(x

k+1, t)− fh(xk−1, t)

2h
− gh(xk) = 0. (49)

While appealingly simple, there are drawbacks to the finite difference scheme, most no-
tably a lack of geometric flexibility when constructing multidimensional grids and poor
scaling of accuracy with resolution, as compared to dG and other methods in [32]. Tay-

lor expanding fh(x
k+1) = fh(x

k + h) = fh(x) + hf ′(x) + h2

2
f ′′(x) + O(h3) and fh(x

k−1) =

fh(x
k − h) = fh(x

k) + hf ′(xk) + h2

2
f ′′ + O(h3) and substituting these expressions into the

above equation shows that the error in making our finite difference approximation is O(h2);



18

that is the approximate solution converges to the exact solution quadratically when we in-
crease the spatial resolution by increasing the number of grid points. It is possible to improve
this scaling by approximating uh as a polynomial of higher order N , but this will require
information from N grid points to solve for the N coefficients at each timestep. This will
further restrict the geometry of the computational domain, and the error will still be on the
order of some finite power of h. The scheme will therefore converge to the exact solution
according to a power law.

One approach for improving the flexibility of the scheme is to divide the domain Ω into
several smaller subdomains on which uh is approximated by a higher order local polynomial
that is disconnected from the polynomials in the adjacent subdomains. The discontinuous
Galerkin (dG) scheme provides a method for this in which the residual on each subdomain
is made to satisfy an integral condition known as a Galerkin condition that allows the
approximate solution to converge toward the exact solution exponentially, a property known
as spectral convergence. For a sufficiently smooth solution we can recover a meaningful global
solution by integrating by parts to introduce boundary terms that can be used to couple
adjacent subdomains. To describe this scheme precisely some notation additional is needed.

We follow the construction detailed in [32] and summarized in [23]. Given a one-
dimensional physical domain Ω = [a, b] ⊂ R, we define a collection of K non-overlapping
elements Dk = [ak, bk] with a1 = a, bK = b, and bk−1 = ak for k = 2, ..., K that cover the
domain. This splitting defines the computational domain Ωh by

Ω ' Ωh =
K⋃
k=1

Dk. (50)

Define the local inner product and L2 norm by

(u, v)Dk =

∫
Dk
uv dx, ||u||2Dk = (u, u)Dk . (51)

Further define a global (broken) inner product and norm by

(u, v)Ωh =
∑
k=1

K

∫
Dk
uv dx, ||u||2Ωh = (u, u)Ωh . (52)

These definitions hold for both scalar functions and vector valued functions so long as uv is
then interpreted as u · v = uTv for vectors.

Functions specified on the boundary between Dk and Dk−1 or Dk+1 will prove essential for
constructing our scheme. In reference to a specific subdomain Dk, let u− denote the interior
solution on the boundary of Dk and let u+ denote the exterior solution on the corresponding
boundary of either Dk−1 or Dk+1. Define the average across the boundary by

{{u}} =
u− + u+

2
, (53)

and define a term describing the “jump” across the boundary by

[[u]] = n̂−u− + n̂+u+, (54)

where n̂− and n̂+ are inward and outward pointing unit normal vectors respectively. Again
the product should be interpreted as a scalar product for vector-valued solutions.
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B. Constructing a Nodal dG Scheme

On each subdomain Dk we construct our approximate solution ukh as a local interpolating
polynomial of specified order N

x ∈ Dk : ukh(t, x) ≡
N∑
i=0

ukh(t, x
k
i )`

k
i (x), (55)

where `kj is the jth Lagrange interpolating polynomial, defined in Dk by

`kj (x) ≡
N∏
i=0
i 6=j

x− xki
xkj − xki

. (56)

This polynomial interpolates the exact solution u at the nodes xkj . Within each subdo-

main Dk these are distributed as Legendre-Gauss-Lobotto nodes, defined as the roots of the
polynomial equation

(1− s2)P ′N(s) = 0, (57)

where PN is the Nth Legendre polynomial. To map these nodes to the computational grid,
we define an affine mapping from the interval [−1, 1] to Dk by

xk(s) = ak +
1

2
(1 + s)(bk − ak). (58)

This allows us to define our nodal points as xkj = xk(sj). The global solution uh is formally
defined as

uh(t, x) ≡
K⊕
k=1

ukh(t, x). (59)

For each subdomain Dk, define a residual Rk
h analogous to Eq. (48) by

Rk
h ≡

∂ukh(t, x)

∂t
+
∂fkh (u)

∂x
− gkh(x). (60)

This specifies a discrete approximate of the solution and brings us to the second choice
of how this approximate solution will be made to satisfy the PDE. The condition we will
enforce is that the residual on each subdomain is orthogonal to a space of test functions on
the subdomain. Choosing these test functions to be the Lagrange interpolating polynomials
taken previously as our basis for ukh specifies what is called the kth Galerkin condition:

(
Rk
h, `

k
j

)
Dk

=

∫ bk

ak

(
∂ukh(t, x)

∂t
+
∂fkh (u)

∂x
− gkh(x)

)
`j(x) dx = 0 ∀j. (61)

Apart from the analytically known interpolating polynomials `ki (x), the spatial dependence
of the polynomial approximations ukh, f

k
h , and gkh is completely described by the values at

the N + 1 nodal points in each subdomain, and so these Galerkin conditions provide a set
of K(N + 1) integral equations for the solution at each nodal point. This will become our
semi-discrete scheme, though there is as of yet no coupling between the solutions in each
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subdomain. To provide this coupling we look to incorporate information from the boundary
of the subdomain into these integral conditions, and so we integrate the flux term by parts
to give ∫ bk

ak

[
∂ukh(t, x)

∂t
`kj (x)− fkh (u)

∂`kj (x)

∂x
− gkh(x)`kj (x)

]
dx+

[
fkh (u)`kj (x)

∣∣bk
ak

= 0. (62)

Rather than enforce this precise condition, we define a numerical flux f ∗h(u) that will incor-
porate information from the subdomains adjacent to Dk and enforce∫ bk

ak

[
∂ukh(t, x)

∂t
`kj (x)− fkh (u)

∂`kj (x)

∂x
− gkh(x)`kj (x)

]
dx+

[
f ∗h(u)`kj (x)

∣∣bk
ak

= 0. (63)

The numerical flux f ∗h is only featured in the boundary term of this expression and is therefore
only defined on the boundaries of Dk. To provide the desired coupling between subdomains
it is defined to be a function of the interior and exterior solutions at each boundary, that is
f ∗h = f ∗h(u+, u−). The stability of a dG scheme depends upon the choice of f ∗h , and we will
delay discussing the numerical fluxes chosen for solving the GBSSN system until the next
section. Employing a second integration by parts provides the integral equations∫ bk

ak

(
∂ukh(t, x)

∂t
+
∂fh(u)

∂x
− gkh(x)

)
`kj (x)dx+

[
(f ∗h(u)− fh(u)) `kj (x)

∣∣bk
ak

= 0. (64)

This defines the form of the Galerkin conditions that we enforce.
Note that solution u is approximated in Dk as an N -degree polynomial ukh and the source

g(x) can naturally be approximated as an N -degree polynomial gkh by defining a straightfor-
ward analog of Eq. (55). If the flux f(u) contains any products of the form a(x)b(x), as the
nonlinear GBSSN system certainly does, it would naturally be expressed as a polynomial of
degree 2N or higher. In order to keep fh(x) in the span of our basis of degree N Lagrange
polynomials, we must replace any products of interpolated polynomials with interpolations
of the product function like

(a(t, x)b(t, x))kh = akh(t, x)bkh(t, x)→
N∑
i=0

ah(t, x
k
i )bh(t, x

k
i )`

k
i (x). (65)

These two expressions are not equivalent and this interpolation of products results in what
is known as aliasing error. Aliasing error in dG is discussed in [32], and the next section
introduces an exponential filter to prevent any resulting aliasing-driven numerical instabili-
ties. Using the above prescription any flux or source terms in an arbitrary non-linear PDE
can still be approximated by N -degree polynomials interpolated at the nodal points. Fur-
thermore, since the nodal values of product functions are found by multiplying the nodal
values of each factor pointwise, we need only consider the K(N + 1) nodal values for each
evolved variable.

We can therefore represent our solution ukh as a vector of its values at the nodal points
by taking

ukh(t, x) = uk(t)T`k(x), (66)

where the vectors uk(t) and `k(x) are given by

uk(t) =
[
uk(t, xk0), ..., uk(t, xkN)

]T
, `k(x) =

[
`k0(x), ..., `kN(x)

]T
, (67)
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noting that at the nodal points uk(t, xki ) = ukh(t, x
k
i ). In this representation, Eq. (64)

becomes a set of N + 1 ODEs for the coefficients uk(t) in each subdomain. Furthermore,
since there is no spatial dependence in these coefficients themselves we can therefore carry
out the spatial integration in Eq. (64) independently from the time integration. To this
end, define the mass and stiffness matrices Mk and Sk on the k-th subdomain by

Mk
ij =

∫ bk

ak
dx `ki (x)`kj (x), Skij =

∫ bk

ak
dx `ki (x)

∂`kj
∂x

. (68)

Since spatial derivatives will only affect the nodal basis functions `k(x), we can also build
a matrix Dk that acts as a numerical spatial derivative operator. In terms of the above
matrices this derivative matrix is given by

Dkij =
∂`kj
∂x

∣∣∣∣∣
x=xki

=
N+1∑
m=1

(
Mk

)−1

im
Smj. (69)

We can now express the semi-discrete evolution equations in each subdomain as the matrix
equation

∂tu
k = Dkfk(uk) + gk +

(
Mk

)−1
`k
[
fk(uk)− f ∗(u+, u−)

∣∣bk
ak
. (70)

Though throughout this section we have worked with the toy system given by Eq. (46),
the construction of a nodal dG scheme for solving the GBSSN system is a straightforward
generalization. Each evolved variable is approximated by a local interpolating polynomial
defined on each subdomain, and the evolution equation for each evolved variable in Eq.
(44) can be used to define a residual for that variable on each subdomain. By enforcing the
Galerkin condition that the inner product of each residual with the N Lagrange interpolating
polynomials that act as our basis functions and introducing a numerical flux for each field we
can form a discretized evolution equation. These will be close analogs to Eq. (70), though
now the flux and source vector analog of f(u) in each equation will be a functions of all the
evolved fields.

There is one significant complication in constructing a dG scheme for solving the GBSSN
system not present in our model system: the flux is assumed to be an algebraic function of
the evolved system variables, but the GBSSN system includes second order spatial deriva-
tives. This discrepancy is resolved by defining auxiliary variables representing the spatial
derivatives of each field for which second derivatives appear. We define an auxiliary lapse
function for example as Qα ≡ ∂rα. These auxiliary variables are not themselves evolved in
the second order scheme presented in [23] and used in many of the simulations to follow.
They are instead computed from the evolved variables at each step of the time evolution
by defining a residual on the k-th subdomain for each auxiliary variable straight from its
definition. For Qα this residual is defined as

(RQα)kh = − (Qα)kh + ∂rα
k
h. (71)

As with the residuals defined by the evolution equations, we enforce a Galerkin condition(
(RQα)kh, `j

)k
D

= 0 for all j and introduce a numerical flux α∗h(α
+, α−) to solve for the nodal

values like
Qα = Dkα+

(
Mk

)−1
`k [α∗ −α]b

k

ak , (72)
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where we have suppressed the subdomain index k and any functional dependencies. In the
first order scheme presented in Chapter VI, the auxiliary fields like Qα are promoted to
independently evolved system variables with their own discretized evolution equations in
place of the above equation.

The discrete evolution equations for the evolved fields in the GBSSN system can now be
constructed as analogs of Eq. (70) using the techniques of this section. As a representative
example, the evolution equation for K is discretized as

∂tK = βrDkK − χD
kQα

grr
+
χQgrrQα

2grr
− χQgθθQα

grrgθθ

+
QαQχ

2grr
+

3αA2
rr

2g2
rr

+
1

3
αK2 + (Mk)−1`k [fK − f ∗K |

bk

ak . (73)

The index k is again suppressed, and products of vectors in this expression are to be inter-
preted as pointwise products as described in Eq. (65).

We are now just left with an ordinary differential equation for the time evolution of each
evolved GBSSN variable at each grid point. Discretizing the time evolution is schematically
accomplished by calculating the change in each variable over a small but finite timestep
∆t by substituting the field values at time t into the above semi-discrete equation and its
analogs for the other variables, adding this change to find the fields at t+ ∆t, and iterating
this process to find the fields at a desired later time. The simulations presented in this thesis
use a fourth-order Runge-Kutta method to perform the time evolution, a common choice
for performing time integration in computational physics and described in the context of a
dG scheme in [32]. Numerical stability depends upon the choice of timestep.

The last major general property of dG methods to be described is the convergence with
polynomial order N . A proof of the spectral convergence of dG methods is given in [32]; we
will simply sketch out the main points. From the properties of the Legendre polynomial Pj,
it can be shown that any function u can be approximated by a weighted sum of the first N
Legendre polynomials denoted u∗, the “best approximating polynomial of order N”, on the
subdomain Dk with an error bounded like

||u− u∗||Dk ≤ C(t)(hk)
N+1, (74)

where hk is the length of Dk and C(t) is a (time-dependent) constant. An arbitrary nodal
representation unodal of u using the first N Lagrange interpolating polynomials can then be
shown to approximate U with an error bounded like

max
x∈Dk
|u− unodal| ≤ (1 + Λ) max

x∈Dk
|u− u∗|, (75)

where the constant Λ depends only on the nodal points chosen. The Legendre-Gauss-
Lobotto nodal points are defined precisely as the nodal points that minimize Λ, and so our
interpolation error does not differ significantly from the error of the best approximating
polynomial u∗. This allows us to bound the error of our nodal representation ukh like

||u− ukh||Dk ≤ C̃(t)(hk)
N+1, (76)

where C̃(t) is a new time-dependent constant. This verifies that the error between the exact
solution and our numerical approximation decreases exponentially with N and so a nodal dG
scheme possess spectral convergence. The error also depends on the size of the subdomains
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and increasing the number of subdomains will decrease the numerical error as well, though
the convergence in this case may depend on the details of the subdomain construction and
how the numerical error is distributed through the domain.

Finally, this idea of approximating a function using a basis of Legendre polynomials
leads us to discuss an equivalent modal representation of the solution u that will be used in
the next section when we discuss filtering. We can express ukh(t, x) in a basis of Legendre
polynomials Pj(x) like

ukh(t, x) =
N∑
j=0

u(t, xkj )`
k
j (x) =

N∑
j=0

ûkj (t)Pj(x), (77)

where the ûkj are called the modal coefficients of the system and can be calculated from the
above relation to the nodal representation. Modal coefficients for larger k correspond to
the coefficients of higher-order Legendre polynomials and therefore to the higher-frequency
modes of the solution.

C. Details of a dG Scheme for GBSSN

1. Wavespeeds and Characteristics

We first consider a few analytic properties of the GBSSN system relevant to our numerical
simulations, namely the characteristic variables and wavespeeds of the system and strong
hyperbolicity, a necessary condition for the well-posedness of an initial problem. These
are properties of the GBSSN system itself rather than of any particular discretization of
it. To carry out this analysis with a minimum of notational clutter, we define an abstract
representation of the GBSSN system using the column vectors

u =


χ
grr
gθθ
α
βr

 , v =


Br

Arr
K
Γr

 , Q = u′ =


χ′

g′rr
g′θθ
α′

βr′

 , W =

uv
Q

 . (78)

Note that these are vectors of functions of the coordinates (t, r) rather than vectors of points
in the computational domain as were considered previously. In particular W corresponds to
the solution u of the model system in the last section rather than the vector u of its values
at nodal points. While in our second order simulations the auxiliary sector Q is constructed
at each timestep, many theoretical tools for analysis of PDEs are developed only for fully
first order PDEs. In particular the notion of strong hyperbolicity of a second order system
is defined in the context of the strong hyperbolicity of possible first order reductions of the
system. In this section we will therefore consider a first order reduction of GBSSN in which Q
is independently evolved, found by making the replacements u′ → Q, u′′ → Q′ in the GBSSN
system. For a detailed discussion of characteristics, hyperbolicity, boundary conditions, and
associated topics for second order systems in the context of numerical relativity see [27, 28].

In this notation we can write the GBSSN system as a matrix analog of the model system
given by Eq. (46). Since each term in Eq. (44) is linear in terms involving spatial derivatives
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v′ and Q′ and the coefficients of these terms depend only on u, we can define a matrix A(u)
and a source vector S(W ) to express the GBSSN system as

∂tW + A(u)W ′ = S(W ). (79)

In this notation the physical fluxes like fK are given by the corresponding components of
A(u)W . The homogeneous part of this equation, ∂tW + A(u)W ′ = 0 is called the principle
part of the equation.

If the matrix A(u) were diagonal, then the principle part of the system would de-couple
the fields so that each evolved variable would independently satisfy an equation analogous
to the model system. So long as A(u) is diagonalizable, we can transform the solution vector
W into the eigenbasis of A(u) in which the flux has this simple form. The components of W
in the eigenbasis of A(u) are called the characteristic variables of the system and denoted
by Xi. The corresponding eigenvalues of A(u) are called the characteristic speeds, or more
suggestively wavespeeds, and will be denoted by µi with the set of eigenvalues denoted µ(A).
Considering only the principle part of the system, the Xi satisfy ∂tXi = −µi∂rXi and so they
define integral curves in the phase space of the system that a solution will move along with
velocity −µi as it evolves in time. When max |µ(A)| is larger, the area of the computational
domain causally connected to a given point in a fixed length of time will be larger. Since
the spatial resolution of a numerical scheme is fixed independently of the wavespeeds of the
system, this suggests that a smaller timestep may be necessary to maintain stability, and
the choice of timestep in our numerical simulations is therefore guided by max |µ(A)|.

Since all instances of u′ in the GBSSN system have been replaced with Q, the upper-
left 5x5 block of A(u) will be the zero matrix. This makes each field in u a characteristic
variable of the system with wavespeed 0. The remaining 9 characteristic variables and
corresponding wavespeeds are found by diagonalizing the non-degenerate 9x9 block of A(u).
The eigenvalues of this block are given by

µ1 = 0, µ2 = −βr, µ3 = −βr,

µ±4 = −βr ±
√

2αχ
grr
, µ±5 = −βr ± α

√
χ
grr
, µ±6 = −βr ±

√
λ
grr
.

(80)

The characteristic variables can be calculated by finding the matrix of eigenvalues used to
diagonalize A(u) and then applying this matrix to the state vector W to give4

X1 = gθθQgrr + 2grrQgθθ , (81a)

X2 = grrΓ
r +

2

χ
Qχ −

1

2grrQgrr

− 1

gθθ
Qgθθ , (81b)

X3 =
grr
λ
Br +

2

χ
Qχ −

1

2grr
Qgrr + χ− 1

gθθ
Qgθθ , (81c)

X±4 = ±
√

2αgrr
χ

K +Qα, (81d)

4 This calculation is carried out in some detail in Appendix A of [23]. For a detailed description of the process

of finding the characteristic variables and wavespeeds for a simpler system and using them to construct

Sommerfeld boundary conditions, see our derivation of the characteristic variables for the Klein-Gordon

equation in section VII B 3
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X±5 = ∓ 3
√
grrχ

Arr ± 2

√
grr
χ
K + 2grrΓ

r +
1

χ
Qχ −

1

grr
Qgrr +

1

gθθ
Qgθθ , (81e)

X±6 = −3

4

grr
λ
Br ± α

√
λgrr

2αχ− λ
K − βr

8
(
βrgrr ∓

√
λgrr

)Qgrr (81f)

− βrgrr

4gθθ
(
βrgrr ∓

√
λgrr

)Qgθθ +
αχ

2αχ− λ
Qα ±

√
grr
λ
Qβr .

It will further prove useful to express the evolved fields in v and Q in terms of u and the
characteristic variables. Inverting the above system gives

Br =− 1

6

λ

grrgθθ

[
(βr)2

(βr)2grr − λ

]
X1 +

2λαχ

3grr(2αχ− λ)

(
X+

4 +X−4
)
− 2λ

3grr

(
X+

6 +X−6
)
(82a)

Arr =
1

3

√
grrχ

2α

(
X+

4 −X−4
)
−
√
grrχ

6

(
X+

5 −X−5
)

(82b)

K =

√
χ

8αgrr

(
X+

4 −X−4
)

(82c)

Γr =− 1

6grrgθθ

[
(βr)2

(βr)2grr − λ

]
X1 +

1

grr
(X2 −X3) +

2αχ

3grr(2αχ− λ)

(
X+

4 +X−4
)

(82d)

− 2

3grr

(
X+

6 +X−6
)

Qχ =
χ

12grrgθθ

[
4(βr)2grr − 3λ

(βr)2grr − λ

]
X1 +

χ

2
X3 −

αχ2

3(2αχ− λ)

(
X+

4 +X−4
)

(82e)

+
χ

3

(
X+

6 +X−6
)

Qgrr =
2(βr)2grr − 3λ

6gθθ((βr)2grr − λ)
X1 +

4

3
grrX2 − grrX3 +

2αχgrr
3(2αχ− λ)

(
X+

4 +X−4
)

(82f)

− 1

3
grr
(
X+

5 +X−5
)
− 2

3
grr
(
X+

6 +X−6
)

Qgθθ =

[
1

4grr
+

(βr)2

12((βr)2grr − λ)

]
X1 −

2

3
gθθX2 +

1

2
gθθX3 −

αχgθθ
3(2αχ− λ)

(
X+

4 +X−4
)

(82g)

+
1

6
gθθ
(
X+

5 +X−5
)

+
1

3
gθθ
(
X+

6 +X−6
)

Qα =
1

2

(
X+

4 +X−4
)

(82h)

Qβr =
βrλ

8grrgθθ((βr)2grr − λ)
X1 −

λ

(2αχ− λ)

√
αχ

8grr

(
X+

4 −X−4
)

+
1

2

√
λ

grr

(
X+

6 −X−6
)
.

(82i)

For our purposes the system can be considered strongly hyperbolic so long as the matrix
A(u) is diagonalizable with real eigenvalues and a complete basis of eigenvectors. An in-
depth discussion of the hyperbolicity of the GBSSN system in given in [22]. Maintaining
real eigenvalues and non-singular eigenvectors requires that χ, grr, and gθθ be non-zero and
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additional imposes the following conditions on λ:

λ > 0, (βr)2grr − λ 6= 0, 2αχ− λ 6= 0. (83)

These second two conditions are not explicitly enforced in the scheme and may actually
be violated, but the points of violation in effect form a set of measure zero within the
computational domain and no instabilities have been observed to result from this violation.

We see also that the system admits an inner excision surface, a surface at which all
wavespeeds are nonpositive, provided

βr ≥ max

(√
2αχ

grr
, α

√
χ

grr
,

√
λ

grr

)
. (84)

Choosing λ sufficiently small guarantees the existence of such a surface, and the value of
λ further determines the location of the excision surface. Note in particular that µ+

5 =

−βr +α
√

χ
grr

is the velocity of a radially outward null geodesic as given by Eq. (42), and so

at an excision surface all causal information must have a non-positive coordinate velocity.
More will be said on this in Chapter IV.

2. Numerical Flux

In this section we define the numerical fluxes for both the first and second order schemes.
In both cases we take f ∗u = fu = 0 and take f ∗v to be

f ∗v = {{fv,h}}+
τ

2
[[vh]], (85)

and in the first order reduction we similarly take

1storder : f ∗Q = {{fQ,h}}+
τ

2
[[Qh]]. (86)

This is a common form for numerical fluxes in dG that averages the field v across the
boundary and then adds a term “penalizing” jumps across subdomains. A proper choice of
the penalty term τ(x) provides a negative contribution to the L2 norm of the energy of the
system to damp growth in the solution and ensure numerical stability. Choosing a numerical
flux for a dG scheme is discussed in detail in [32]. For further discussion of the stability of
GBSSN with this flux choice see [23], especially Appendix B in which a proof of stability
is given for a model scheme that employs this flux. More general analysis of this numerical
flux is also given in [3].

A local Lax-Friedrichs flux is defined by choosing τ(x) ≥ max |µ(∇WF (W (x))|, and is
a common choice for fully first order systems [31]. Our flux is given by F (W ) = A(u)W ,
which is linear for v and Q and vanishes for u, and so this consideration becomes τ(x) ≥
max |µ(A(u))|. At the boundary between Dk and Dk+1, we therefore choose

τ(bk) = τ(ak+1) = C ·max |µ(A(u))|, (87)

where C is an O(1) constant chosen for numerical stability. Note that the max in this
expression should be taken over both A(u+) and A(u−). Since the auxiliary variables are
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not evolved independently in the second order scheme, there is no need to incorporate the
additional damping provided by τ in the auxiliary fluxes, and so for these terms we employ
a simple penalized central flux

2ndorder : f ∗Q = {{uh}} −
1

2
[[uh]]. (88)

3. Boundary Conditions

Finding suitable boundary conditions for the (G)BSSN system is highly non-trivial. In
particular finding outer boundary conditions that fix incoming radiation to zero, control
constraint growth, and specify desired gauge choices is an active area of research; for a
review see [41]. Our choices will be strongly guided by considerations of numerical stability,
and the particular choice of boundary conditions made for each simulation will be discussed
in later chapters.

The boundary subdomains D1 and DK are coupled to the exterior of the computational
domain through the numerical flux at those boundaries. Imposing boundary conditions on
a dG scheme is therefore accomplished by specifying the external solution W+ that is used
to calculate the numerical flux at the outer boundary of these subdomains. If a boundary is
contained within an excision surface, then no information from W+ should propagate into
the domain. There will certainly be no flow of causal information into the computational
domain from the boundary, and so on physical grounds we can safely take W+ = W−.

Apart from this (very important) case, we consider two choices for W+. If an analytic
solution Wexact is known, we can impose exact boundary conditions by taking W+ = Wexact.
If the system does not have a known analytic solution, an intuitive condition to enforce is
that no new information should enter the computational domain from the exterior solution,
known as a “no incoming radiation” condition. This cannot be simply enforced in the
presence of non-zero source terms, and so we consider Sommerfeld boundary conditions
that are designed to enforce that there is no incoming radiation in the principle part of the
system. Assuming that we are at the outer boundary of our domain, Sommerfeld boundary
conditions are defined by specifying that the incoming characteristics of the external solution
are 0: X2 = X3 = X−4 = X−5 = X−6 = 0 and the zero speed and outgoing characteristics of
the external solution match those of the numerical solution at the boundary X1 = X1(W−),
X+

4 = X+
4 (W−), X+

5 = X+
5 (W−), X6 = X+

6 (W−). The outgoing characteristic variables
of the numerical solution are calculated using Eq. (81), and we can then construct W+

according to these specifications on the characteristics by using Eq. (82).

4. Filtering

By approximating products of degree N polynomials as degree N polynomials as in Eq.
(65), aliasing error is introduced to the scheme. Since it is higher degree terms that are
effectively ignored, this aliasing error will be concentrated in the higher degree modes of our
approximate solution when using the modal representation defined in Eq. (77) by taking
the Legendre polynomials as basis functions instead of Lagrange interpolating polynomials.
A straightforward way to control aliasing-driven instabilities is therefore to damp the high
degree modal coefficients. To this end let ηj = j/N and define an exponential filter function
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σ by

σ(ηj) =


1 for 0 ≤ ηj ≤ Nc/N

exp

(
−ε
(
ηj−Nc/N
1−Nc/N

)2s
)

for Nc/N ≤ ηj ≤ 1
, (89)

where ε ' − log(εmach) = 36 and εmach is machine accuracy in double precision. This filter
exponentially damps the highest N − Nc modes with the damping strength dependent on
the parameter s. We take Nc and s as problem-dependent numerical parameters chosen for
stability. In our numerical simulations we apply this filter by transforming to the modal
representation, scaling the modal coefficients ûkj by σ(ηj) in each subdomain, and transform-
ing back. This transformation and filtering in dG schemes is described in more detail in
[32]. For our purposes it is enough to note that with proper choices of Nc and s this filter
is sufficient to control aliasing-driven instabilities in the numerical simulations considered
below.

IV. BLACK HOLES AND TURDUCKENING

We are now equipped with a numerical scheme suitable for approximately solving the
GBSSN system. This chapter describes the final considerations necessary for defining initial
value problems involving black holes and constructing our numerical simulations: building
initial data describing a black hole and managing the singularities present in this initial data
through the excision and turduckening techniques.

A. Overview

A central motivation for this work is the development of techniques that can be used to
construct a computationally efficient scheme for modeling binary black hole systems. The
computational difficulties in binary black hole simulations primarily stem from the presence
of singularities in the computational domain resulting from divergences in the physical metric
at the center of a black hole. Since there is no way to do meaningful numerical computations
with infinities, simulations of black holes require some way of either smoothing out this
singularity or removing it from the computational domain. Most techniques for managing
singularities with either approach rely on the fact that the geometry of spacetime near a
black hole will include an event horizon, a surface inside which all causal paths move inwards
towards the central singularity. The exterior of the event horizon is causally disconnected
from the interior. Since the physically interesting information to extract from black hole
simulations is generally the gravitational radiation or other signals as they would appear
to an observer far away from the black hole, the interior solution may be freely modified
with no loss of relevant information as long as these modifications do not affect the exterior
solution.

Our work follows that of Field et. al. in [23], in which a nodal dG scheme is used to carry
out simulations of a black hole in spherical symmetry. This provides a useful model system
for constructing dG black hole simulations since there is a known analytic solution that can
be directly compared to the numerical solution. These simulations manage the black hole
singularity through a technique called excision in which a region surrounding the singularity
is removed from the computational domain entirely. This is simple to implement for a black
hole in spherical symmetry, but in binary black hole simulations the singularities will move
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throughout the computational domain and finding a suitable region to be excised at each
timestep requires a computationally intensive process of horizon tracking. For this reason
state-of-the-art BSSN simulations do not use excision.

We will consider an alternative method of managing singularities called “turduckening”
that has been developed in [14, 15]. The singular initial data for the interior of a black
hole’s event horizon is not evolved, and the black hole is instead “stuffed” with smooth
but constraint violating initial data. Simulating a black hole in spherically symmetry is a
useful model problem for studying how turduckening affects the stability and convergence of
our dG scheme, so to allow for easy comparisons to the excision simulations of [23] we will
follow the construction of black hole initial data in Kerr-Schild coordinates for a spherically
symmetric spacetime detailed in Appendix B of [23].

B. Constructing Initial Data

Consider an uncharged, nonspinning black hole, known as a schwarzschild black hole.
We adopt Kerr-Schild coordinates, directly related to incoming Eddington-Finkelstein null
coordinates, in which the line element for a mass M Schwarzschild black hole centered at
r = 0 is given by

ds2 = −α2dt2 +

(
1 +

2M

R

)(
dR + βRdt

)2
+R2dθ2 +R2 sin2 θdφ2, (90)

where R is the areal radius, α = (1 + 2M/R)−1/2 is the lapse, and βR = 2M/(R + 2M) is
the shift vector in these coordinates. The physical spatial metric ḡij is given by the spatial
part of the line element. schwarzschild black holes are time-independent solutions of the
Einstein field equations, so the GBSSN variables describing this spacetime will provide a
time-independent solution to the GBSSN system.

To construct the GBSSN variables for this spacetime, we first apply the conformal de-
composition gij = χḡij to relate the spatial part of the line element in conformal coordinates
(r, θ, φ) and areal coordinates (R, θ, φ) as

dr2 + r2(dθ2 + sin2 θdφ2) = χ

[(
1 +

2M

R

)
dR2 +R2dθ2 +R2 sin2 θdφ2

]
. (91)

The angular piece of this equation defines the conformal radius r by χR2 = r2, while the
radial piece provides an ordinary differential equation for dR

dr
. We can apply the first relation

to eliminate χ from the radial equation to give(√
1 +

2M

R

)
dR

R
=
dr

r
. (92)

We can integrate this equation to solve for r(R) as

r =
R

4

(
1 +

√
1 +

2M

R

)2

e2−2
√

1+2M/R. (93)
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With this we can then determine χ(R) = r(R)2

R2 . We can then calculate Γr from Eq. (40) and
K and Arr from Eq. (15) and the conformal decomposition in Eq. (38). Choosing Br = 0
then completely specifies the initial data for evolved GBSSN variables as

α =

(
1 +

2M

R

)− 1
2

(94a)

βr = βR
dr

dR
=
√
χ

(
1 +

2M

R

)− 1
2 2M

R
(94b)

grr = 1 (94c)

gθθ = r2 = χR2 (94d)

χ =
1

16

(
1 +

√
1 +

2M

R

)4

e4−4
√

1+2M/R (94e)

Br = 0 (94f)

Arr = −
(

1 +
2M

R

)− 1
2 4M

3R2

(
2R + 3M

R + 2M

)
(94g)

K =

(
1 +

2M

R

)− 3
2
(

1 +
3M

R

)
2M

R2
(94h)

Γr = −2

r
= − 2

R
√
χ
. (94i)

Calculating the exact values of the auxiliary fields, used to impose exact boundary conditions
in the second order scheme and to construct initial data for the first order simulations
presented in Chapter VI, requires us to take derivatives of the above expressions with respect
to the conformal radius r. Re-arranging Eq. (92) gives

dR

dr
= χ−

1
2

(
1 +

2M

R

)− 1
2

. (95)

The necessary r-derivatives can then be calculated by taking derivatives with respect to
R and applying the chain rule. To actually construct this initial data for a specified r-
coordinate domain, we must first invert Eq. (93) in order to find R(r). This cannot be done
analytically, and so we use Newton’s method to numerically invert the equation.

Inspecting the above system for the initial data, the fields K, Arr, and Γr are clearly
divergent as r → 0. χ contains a superficially divergent factor but actually approaches 0
as r → 0, as is expected since the physical metric, inversely related to χ, diverges. βr also
approaches 0 despite containing superficially divergent terms. The auxiliary variables Qα,
Qgrr , and Qgθθ are all finite at r = 0, but Qβr diverges.

C. Excision

Eq. (84) (restated below) shows that given a proper choice of the numerical parameter
λ, the above Kerr-Schild data will always contain an excision surface at small r inside which
all wavespeeds of the system are zero or incoming. If we place an inner boundary of the
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computational domain within this excision surface, Sommerfeld boundary conditions reduce
to taking the exterior solution equal to the interior solution and on physical grounds no
boundary conditions need be imposed. We can therefore freely change our singular domain
Ω = [0, rmax] to the domain [rmin, rmax] with the singularity excised so long as rmin < rexcision,
defined to be the largest r satisfying Eq. (84), restated here:

βr ≥ max

(√
2αχ

grr
, α

√
χ

grr
,

√
λ

grr

)
. (96)

D. Turduckening

The turduckening technique replaces singular black hole data with smooth but constraint
violating data. Many choices for this smooth stuffing data are possible, and since the exterior
solution is causally disconnected from the turduckened solution in the interior of the horizon
the details of the stuffing are unimportant so long as the resulting simulations are stable
and robust. Our choices are therefore strongly guided by numerical considerations.

We choose a region [0, rt] to be turduckened and make the replacement r → r in the
equations for the initial data, where the stuffing transformation function r(r) is constructed
to satisfy the conditions

r(0) = r0, r(rt) = rt, r = r for r > rt. (97)

We will further specify that the stuffing transformation r(r) has Ntur− 1 continuous deriva-
tives at r(rt). If we choose r(r) to be a polynomial in r inside the turduckened region, this
provides a system of Ntur + 1 linear equations that can be solved for the coefficients of the
polynomial.

In effect we are stretching the physically correct (non-singular) data for the region [r0, rt]
over the whole turduckened region [0, rt]. Initial data turduckened in this manner will
naturally be constraint violating on [0, rt]. If the constraints H, M, and G evolve with
wavespeeds that are not superluminal, these violations will not propagate to the outside
of the black hole’s event horizon. While this is not true in general for BSSN-type systems,
evolution equations for the GBSSN constraint system as we have defined it can be calculated
and shown to have no superluminal wavespeeds [13], and so we may safely stuff the black
hole so long as rt lies within the event horizon. Despite this result, which formally holds in
the limit of the continuum and is rigorously discussed in [14], at finite resolution a numerical
scheme may couple the interior and exterior solutions.

As an example of constructing the stuffing transformation r(r), consider Ntur = 4, for
which r is rigged to satisfy r(r0) = r0, r(rt) = rt, r

′(rt) = 1, r′′(rt) = 0, and r′′′(rt) = 0.
This provides a set of linear equations to be solved for the coefficients of the polynomial
C1 + C2r

2 + C3r
3 + C4r

4 + C5r
5. This particular choice reproduces the polynomial used

as turducken stuffing in Eq. (37) of [14]. Note that there is no linear term included in
this polynomial. The turduckening procedure can introduce numerical instabilities if the
gradient of the transformation is too steep. In this case removing the linear term produces a
monotonic polynomial with smaller gradients than the corresponding 4th degree polynomial
with r0 = 0.1, rt = 0.4. The polynomials used in the numerical simulations described in
Section V use r5 as the lowest order (non-constant) term to provide a transformation with
shallow gradients for Ntur ≤ 8 on the above region.
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V. SECOND ORDER SIMULATIONS

This chapter discusses simulations of a turduckened Schwarzschild black hole in spherical
symmetry performed with a second order nodal dG scheme. Ref. [23] constructed a nodal
dG scheme that led to robustly stable and spectrally convergent black hole simulations with
excision, and we demonstrate here that both this robust stability and spectral convergence
are maintained when employing turduckening in these simulations. We then present ad-
ditional results demonstrating that the constraint violations present in turduckened initial
data quickly dissipate and that the speed of the constraint decay inside the turduckened
region increases with Ntur, the degree of smoothness of the stuffing transformation.

A. Code Description

Adopting the conformal Kerr-Schild radial coordinate r described above, the physical
domain Ω is taken to be r = [0, 100]M . The computational domain Ωh is defined by splitting
this domain into 22 subdomains with the bulk of these subdomains concentrated near r = 0
where the field gradients and numerical errors are largest. The first subdomain is also the
turduckened region, D1 = [0, rt] = [0, 0.4]M . There are then 3 subdomains of equal length
covering [0.4, 1.5M ], 6 subdomains of equal length covering [1.5, 10]M , and 12 subdomains of
equal length covering [10, 100]M . As described in detail in Section III C, we use a local Lax-
Friendrichs flux for the numerical flux coupling the fields between subdomains and choose
C = 2 in Eq. (87). Since the initial data in Eq. (94) describes a static black hole, the
exact solution at all times is given by the (un-turduckened) initial data. This exact solution
is used for the outer boundary condition, W+ = Wexact, and since there will always be an
excision surface located at some small r > 0 we apply no inner boundary conditions and
take W+ = W− at r = 0. This choice of exact outer boundary conditions is unlikely to be
generalizable to more complicated dynamic systems, but simulations enforcing Sommerfeld
outer boundary conditions were found to be unstable for second order dG GBSSN simulations
in [23].

Time integration is performed with a standard fourth order Runge-Kutta method with
a timestep ∆t chosen for stability. The maximum stable timestep is expected and observed
to scale inversely with the maximum wavespeed max|µ(A(u))| of the system and with the
minimum subdomain size. At each timestep we apply an order 2s = 20 exponential filter to
the top two-thirds of the modal coefficients for each field except grr and gθθ. For stability
we observe that grr and gθθ must not be filtered. A detailed understanding of this is still
lacking, though identical behavior is observed in second order excision simulations and in
the first order simulations with both excision and turducken discussed below. λ = 0.1 and
η = 50 are chosen. All simulations are for a unit mass, M = 1, schwarzschild black hole
with initial data described by Eq. (94). None of these choices are significant departures
from the excision scheme presented in [23]. The stability and convergence described below
appear robust to variations in filter strength 2s and η; similar results are obtained using
η = {0, 10, 20, 50} and 2s = {6, 10, 20}.

To turducken this initial data as described in Section IV D, we choose r0 = 0.1M , rt =
0.4M , and Ntur = 8. Qualitatively similar results are found with different choices of these
parameters. Changing the size of the turduckened region does affect the gradient of the
stuffing transformation r(r), and the details of the transformation, particularly the order
of the lowest non-constant term in the stuffing polynomial, may need to be modified to
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account for this and ensure stability for different choices of r0 and rt. Varying Ntur has a
very slight effect on the numerical value of the constraints at late times and a strong effect
on the early-time behavior of the constraint violations, as described in detail below. In the
simulations described here, rt is chosen to lie on the boundary of a subdomain, but there
are no qualitative differences observed in simulations where this is not the case.

B. Long-term Stability and Convergence

FIG. 3. Stability and spectral convergence of the Hamiltonian constraint. The left plot shows the

L2 norm ||H||Ωh as a function of time for simulations with a range of different N . The right plot

shows a log scale of the L2 norm ||H||Ωh as measured at t = 10, 000 in these same six simulations

as a function of polynomial order N . For N=10, 12, 14, 16, 18, 20 the timesteps are respectively

∆t ≈ 0.0043, 0.003, 0.0023, 0.0017, 0.0014, 0.0011.

The first properties we look to verify for the scheme are stability and accuracy. Binary
black hole simulations must run for long times and so the long-term stability of our model
simulations is essential. The turduckened simulations in this section can be run to time
t = 10, 000M with no growth in numerical error appearing. One of the most important
benefits of a dG scheme is its spectral convergence, so it is especially important that we
verify that the numerical error in our simulations does decrease exponentially when we
increase N , the order of the interpolating polynomials used to approximate the evolved
fields. This has been shown to hold for second order GBSSN simulations using excision in
[23], and so our first major result is to show that these turduckened simulations still possess
spectral convergence.

The main tool for monitoring the accuracy of our simulations is checking that the Hamil-
tonian, momentum, and conformal connection constraints given in Eq. (45) hold at all
times. We observe that the Hamiltonian constraint is the first to diverge when numerical
instabilities begin to develop, and so monitoring H provides a measure of the overall accu-
racy of the simulation that is sensitive to numerical instabilities. The errors in the fields
themselves have been observed to share the same convergence properties as those shown for
the Hamiltonian constraint, that is we observe that for example ||(grr)num−(grr)analytic|| → 0
so long as ||H|| → 0. Furthermore, since the constraint violations inside the turduckened
region quickly shrink, as is discussed below, there is no significant difference between the
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FIG. 4. Rapid decay in the Hamiltonian constraint at early times. This plot shows a log-scale of

the L2 norm ||H||Ωh as a function of log-scale time for a range of polynomial degrees N .

L2 norm over the entire domain and the norm taken with the turduckened region excluded,
and so we simply monitor ||H||Ωh .

The long-term stability and spectral convergence of our turduckened dG scheme are shown
in Fig. 3. As with second order excision simulations, there is no observed growth in ||H||Ωh
over long times and the constraint violations measured at late times decrease exponentially
with N . The magnitude of ||H||Ωh for a given value of N shown is orders of magnitude
larger than the corresponding value measured in the excision simulations of [23], but the
rate of convergence appears qualitatively similar to the excision case. At high resolutions
there are no significant differences in the value of ||H||Ωh throughout the domain between
turduckened and excision simulations after very early times. With N = 40 for example, the
L2 norm ||H||Ωh is actually almost 25% lower at t = 10M in turduckened simulations then in
excision simulations with the same timestep and numerical parameters and an r-coordinate
domain of [0.4, 100]M with a subdomain structure identical to that described above for this
region.

C. Further Results on Turduckening

1. Constraint Propagation

Since the turduckened fields in the initial data do not satisfy the constraints, ||H||Ωh is
typically of order 1 at t = 0 and independent of N . This resolution independence is reason-
able, as the constraint violations in the rest of the domain are orders of magnitude smaller
than the violations due to the turduckening at all resolutions considered, and so the overall
L2 norm will depend only on the size of the turduckened region relative to the full domain.
It is observed in turduckened finite difference simulations that these initial constraint vi-
olations quickly dissipate, and by time t = 10M the interior solution has settled into a
non-singular steady-state solution that satisfies the GBSSN constraints up to violations of
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FIG. 5. Early time behavior of the Hamiltonian constraint inside the turduckened region with

various choices of Ntur. This plot shows the L2 norm ||H||D1 for the Hamiltonian constraint in

the turduckened region 0 ≤ r ≤ rt = 0.4M for times up to t = 5M . Each line corresponds to a

different degree of smoothness Ntur of the turduckened data at rt, where Ntur = 1 corresponds to

continuous data, Ntur = 2 corresponds to a continuous first derivative r′(r), etc. All simulations

shown in this plot are for N = 12.

the same order of magnitude as the exterior solution [14]. The mechanism proposed for this
in [14] is that the constraint violations propagate causally but the radial coordinate itself has
a superluminal velocity and so the coordinate region of constraint violation rapidly shrinks.
Similar dissipation is observed in our simulations, and at high resolution the value of the
constraint violations even at the r = 0 grid point drops to the same order of magnitude as
the constraint violations throughout the rest of the domain by t = 4M . Fig. 4 demonstrates
this rapid decay in ||H|| averaged throughout the whole domain at early times as well as
late-time stability and convergence.

2. Dependence on Smoothness of Initial Data

The early-time decay of ||H||D1 , the L2 norm of the Hamiltonian constraint inside the
turduckened region, is observed to depend on Ntur, the degree of smoothness of the stuffing
transformation r(r) at the interface rt. This is demonstrated in Fig. 5, which shows the early
times of simulations with N = 12 and various Ntur. So long as the stuffing transformation
is at least differentiable (Ntur = 2) the constraint violations do quickly decay inside the
turduckened region, with higher values of Ntur corresponding to faster decay. There is a
slight but non-zero difference in the steady-state value of the constraint violations reached
inside the turduckened region, but this effect is not significant and has no clear relationship
to Ntur.

VI. FIRST ORDER SIMULATIONS

In this chapter we present a first order reduction of the GBSSN system we will refer to as
FOBSSN and perform simulations of a black hole in spherical symmetry using the FOBSSN
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system. We find that FOBSSN simulations using excision are stable and spectrally accurate
when using exact boundary conditions, and unlike second order GBSSN simulations are
stable and spectrally accurate with Sommerfeld outer boundary conditions. We have been
unable to achieve robustly stable FOBSSN simulations using turduckening. All simulation
results in this chapter were previously published in [11], but the surrounding discussion has
been heavily modified to follow the notation and scope of this thesis and in particular this is
the first explicit appearance of the evolution equations for the GBSSN auxiliary variables.

A. Auxiliary Variables and Constraints

To perform the first order reduction we promote the auxiliary fields to be evolved variables
rather than local variables calculated at each timestep. The necessary axillary fields for our
simulations in spherical symmetry are

Qα ≡ ∂rα, Qβr ≡ ∂rβ
r, Qχ ≡ ∂rχ, Qgrr ≡ ∂rgrr, Qgθθ ≡ ∂rgθθ. (98)

Note that the number of axillary variables that must be defined is greatly increased when
working in full three-dimensional Cartesian coordinates. The definitions of the axillary fields
introduce new associated constraints for the FOBSSN system:

Ar ≡ Qα − ∂rα = 0 (99a)

Brr ≡ Qβr − βr = 0 (99b)

Cr ≡ Qχ − ∂rχ (99c)

Drrr ≡ Qgrr − ∂rgrr (99d)

Dθθr ≡ Qgθθ − ∂rgθθ. (99e)

The presence of these auxiliary constraints presents a genuine difference between the
GBSSN and FOBSSN systems that is especially relevant to the construction of a tur-
duckened FOBSSN scheme. In particular, recall that in the second order scheme these
constraints define residuals used to enforce Galerkin conditions that define the auxiliary
variables at each timestep. With FOBSSN the auxiliary variables are calculated according
to their own discretized evolution equations (also recall we use a local Lax-Friendrichs flux
for f ∗Q instead of the penalized central flux used in the second order scheme), so these
constraints are no longer explicitly enforced in the numerical scheme.

The GBSSN system is trivially modified to be in the proper form for FOBSSN evolution
and constraint equations by replacing u′ → Q and u′′ → Q′. The evolution equations for
the auxiliary variables can be found simply by taking a spatial derivative of the evolution
equations for the corresponding field and using the commutativity of mixed partials and are
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given by

∂tQα =QβrQα + βrQ′α − 2QαK − 2αK ′ − καAr (100a)

∂tQβr =Q2
βr + βrQ′βr +

3

4
Br′ − κβBrr (100b)

∂tQχ =QβrQχ + βrQ′χ +
2

3
K ′αχ+

2

3
KQαχ+

2

3
KαQχ −

QβrQgrrχ

3grr
−
βrQg′rrχ

3grr
(100c)

− βrQgrrQχ

3grr
+
βrQ2

grrχ

3g2
rr

− 2

3
Q′βrχ−

2

3
QβrQχ − κχCr

∂tQgrr =
2

3
QβrQgrr +

2

3
βrQ′grr +

4

3
QgrrQβr +

4

3
grrQ

′
βr − 2A′rrα− 2ArrQα (100d)

− 2Qgrrβ
rQgθθ

3gθθ
− 2grrQβrQgθθ

3gθθ
−

2grrβ
rQ′gθθ

3gθθ
+

2grrβ
rQ2

gθθ

3g2
θθ

− κgDrrr

∂tQgθθ =
1

3
QβrQgrr +

1

3
βrQ′gθθ +

A′rrgθθα

grr
+
ArrQgθθα

grr
+
ArrgθθQα

grr
− ArrgθθαQgrr

g2
rr

(100e)

− Qgθθβ
rQgrr

3grr
− gθθQβrQgrr

3grr
−
gθθβ

rQ′grr
3grr

+
gθθβ

rQ2
grr

3g2
rr

− 2

3
QgθθQβr

− 2

3
gθθQβr − κgDθθr.

Note that we have also introduced terms proportional to the auxillary constraints in each
evolution equation. These are trivially zero in the continuum limit and so can be added
freely. The parameters κα, κβ, κχ and κg are chosen for numerical stability and allow
for damping of the axillary constraints. Evolution equations for the auxiliary constraints,
found by taking the time derivative of Eq. (99), are given by simply replacing each auxiliary
variable in Eq. (100) with the corresponding constraint. These equations for the evolution of
each constraint therefore feature the corresponding damping parameter κ in each equation,
and so setting these damping parameters to a sufficiently large value will indeed damp the
auxiliary constraints.

B. Excision Results

To isolate the effects of turduckening from those of using the first order scheme more
generally, we first consider dG simulations of the FOBSSN system using excision. The com-
putational domain is taken to be r = [0.4, 50]M and for simplicity is divided into 100 equally
spaced subdomains. We use a local Lax-Friendrichs flux for all evolved fields, including the
auxiliary variables, and as before choose C = 2, λ = 0.1, and η = 50 and take a unit mass,
M = 1, schwarzschild black hole constructed in Kerr-Schild coordinates according to Eq.
(94) as initial data. We apply an exponential filter of strength 2s = 20 to all fields except
grr and gθθ, including the auxiliary variables, and choose the timestep ∆t for stability. The
auxiliary damping parameters are chosen as κα = κβ = κχ = κg = 20.

Using exact outer boundary condition allows for long-term stable simulations with spec-
tral convergence of the constraints, as with the second order scheme. In contrast with the
second order scheme, enforcing Sommerfeld outer boundary conditions also allows for stable
FOBSSN simulations. Fig. 6 demonstrates the long-term stability and spectral convergence
of the FOBSSN scheme with Sommerfeld boundary conditions. In an attempt to remove the
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FIG. 6. Stability and convergence of the Hamiltonian constraint with Sommerfeld boundary con-

ditions. The left plot shows the L2 norm ||H||Ωh as a log-scale function of time for simulations

run to t = 3, 000M at varying resolutions. The right plot shows log-scale ||H||Ωh as measured

at t = 3, 000M in these same simulations as a function of N . The highest two resolutions have

essentially reached double precision roundoff errors.

slow growth of the Hamiltonian constraint in time visible in this figure, we varied our nu-
merical setup including the exponential filter parameters (the number of filtered modes, the
dissipation exponent, and which variables to filter), the timestep, the Br damping parame-
ter η, the numerical flux dissipation parameter, and the auxiliary field damping parameters
without significant improvements.

C. Turduckening Results

As described in Chapter V, turduckening was straightforwardly incorporated into the
second order GBSSN scheme and allowed for robustly stable simulations with no need for
fine-tuning the numerical setup. This is not the case with the FOBSSN system. The
definition of the auxiliary fields creates an ambiguity in how to turducken to FOBSSN
initial data, since for example Qα(r) 6= ∂rα(r). This creates two distinct natural choices
for defining turduckened auxiliary variables: 1-take the derivatives of the u sector variables
analytically and compute their values at the turduckened grid points to calculate Qα(r) or
2-apply the numerical derivative operator to the turduckened u sector variables to calculate
∂rα(r). With the first choice the auxiliary constraints are violated in the initial data, while
with the second choice the auxiliary constraints are satisfied but the turduckened initial data
no longer represents the physically correct data for [r0, rt] stretched over the region [0, rt].
We experimented with both choices and found that the region of constraint violations no
longer shrinks when using the first choice of data that violates the auxiliary constraints.
A comparison in the constraint behavior of the system with both choices at early times is
shown in Fig. 7.

We have been unable to achieve long-term stable turduckened simulations using either
choice. A typical evolution with either choice lasts on the order of tens of M to hundreds of
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FIG. 7. Snapshots of the Hamiltonian constraint for turduckened FOBSSN data which satisfies

(black line) and violates (dashed green line) the auxiliary constraints given in Eq. (99). The top

plot shows the L2 norm ||H||Ωh at t = 0 and the bottom plot shows this same norm at t = 1M .

Notice that only in the case where the auxiliary constraints are satisfied by the turduckened fields

does the region of constraint violation shrink during this time. The solid vertical line marks the

location of the event horizon, and the dashed line marks the location of the excision surface. The

large red asterisks on the horizontal axis mark the location of each subdomain boundary. The

turduckened region is specified by r0 = 0.1M and rt = 0.3M , also the boundary of the first

subdomain.

M , though some simulations with finely tuned choices of numerical parameters can last into
the thousands of M at lower resolution. Stability is not observed to increase with increasing
resolution. Though the second choice of turduckened data that satisfies the auxiliary con-
straints uniquely leads to a decay of the Hamiltonian constraint in the turduckened region,
neither choice provides a clear advantage over the other in long-term stability.

VII. SCALAR FIELD SIMULATIONS

The simulations presented so far have all been limited to evolving vacuum spacetimes. In
this chapter we consider coupling a simple and extensively studied matter system, namely
a massless scalar field, to the GBSSN system and perform some basic simulations to verify
that dG methods can be used to straightforwardly construct a stable scheme for solving the
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coupled system. After giving a brief introduction to the problem of simulating strongly grav-
itating matter systems in Section A, we derive the necessary constructions for incorporating
a massless scalar field into our GBSSN simulations: evolution equations for the scalar field
with gravitational contributions written in terms of the GBSSN variables, the GBSSN mat-
ter source terms for the scalar field, characteristics and boundary conditions for the matter
system, and initial data for the scalar field. Section C presents some preliminary simulation
results: the matter system is robustly stable and spectrally accurate when evolved in flat
space and fully coupled simulations of a scalar pulse falling into a Kerr-Schild black hole are
robustly stable and result in radiation scattering off the black hole whose amplitude decays
as a power law in late times.

A. Overview

There are many strongly gravitating systems worth studying other than black holes. Even
within the context of gravitational wave detection, there are efforts underway to study the
gravitational radiation emitted from the merger of two neutron stars through numerical
simulations [42]. In order to perform simulations of neutron stars, core-collapse supernovae,
accretion flows, or other systems interesting to high-energy astrophysics or gravitational
wave astronomy we must solve the equations of GR in the presence of matter described by
a non-zero stress-energy tensor.

Solving BSSN or other GR formulations in the presence of matter is often complicated
by the presence of shocks in the solution. Spectral methods are generally very sensitive to
the presence of shocks, and even state-of-the-art codes for spectral gravity evolution use a
separate finite-difference grid for evolving matter fields in neutron star simulations [34, 42].
DG methods are an exception to this rule and are particularly well-suited to sharply resolving
shocks in solutions while maintaining spectral accuracy in evolving smooth pieces of the
solution. An example of this ability to manage shocks in the context of relativity is given
by [43], in which a dG scheme for general relativistic hydrodynamics is constructed and a
one-dimensional model code is shown to robustly pass several tests of its capabilities for
stably evolving shocks.

To the best of our knowledge, there have been no simulations constructed that evolve a
BSSN-type system in the presence of matter fields using dG methods. In this chapter we
will present simulations of a very simple matter system: a massless scalar field in a spher-
ically symmetric spacetime. With these simulations we look to demonstrate that our dG
scheme can straightforwardly evolve a system with a dynamic matter field coupled to the
GBSSN system without requiring the introduction of any new numerical tricks to achieve
robust stability. Massless scalar fields have been studied extensively in other numerical sim-
ulations, especially in the context of gravitational collapse, see [26] for a review and [24] for
simulations using the GBSSN system, and infall into a black hole. Gravitational collapse is
difficult to model in spherical coordinates since before the collapse there is no inner excision
surface and suitable boundary conditions must be enforced at the inner boundary. Success-
ful gravitational collapse simulations required imposing additional regularity conditions at
the origin [39] and sometimes employ at least one null coordinate instead of the spherical
coordinates used here [16, 19]. Since the difficulty of finding proper conditions for stability
at the origin is not present in three-dimensional Cartesian coordinate simulations and is
a feature of using spherical coordinates rather than a general feature of evolving matter
systems, we will avoid this difficulty and limit ourselves to the study of systems possessing
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an inner excision surface at all times.
A simple scenario possessing such an excision surface is the infall of a localized pulse of

scalar field matter into a black hole. For simplicity we will employ the Kerr-Schild initial
data used in our previous simulations and limit ourselves sufficiently small pulses whose
gravitational effects can be treated as perturbations of this black hole spacetime rather
than undertake the construction of initial data that satisfies the GBSSN constraints for a
black hole in the presence of matter. This simple scenario still possesses interesting physics,
and numerous simulations of black holes perturbed by scalar fields show that in general
circumstances as the black hole relaxes from a perturbed state back to its stationary (“no
hair”) state it emits scalar radiation whose amplitude decays as a power-law at late times
as it scatters off spacetime curvature [2, 5, 6, 30].

B. Scheme for Simulating a Massless Scalar Field

1. First Order Evolution Equations

Throughout this chapter we will consider a scalar field ϕ(t, x) that satisfies the massless
Klein-Gordon equation (the source-free covariant wave equation):

�ϕ ≡ ∇µ∇µϕ = 0 (101)

To find the gravitational coupling of this field in terms of our evolved GBSSN variables, we
can use the fact that

√
−g 5 is a scalar density of weight +1 and an identity ∇µ

√
−g =

0 derived from metric compatibility [20] to derive a useful identity for the Klein-Gordon
equation:

�ϕ = 1√
−g∇µ (

√
−g∂µϕ) = 1√

−g∂µ (
√
−g∂µϕ) (102)

= 1√
−g∂µ (

√
−g gµν∂νϕ) .

Using this form of the Klein-Gordon equation and our definitions for the metric components
in Eq. 7 6, we can express the Klein-Gordon equation for ϕ as√
−g�ϕ = ∂t

(√
−g gtt∂tϕ+

√
−g gtr∂rϕ

)
+ ∂r

(√
−g gtr∂tϕ+

√
−g grr∂rϕ

)
(103)

= ∂t

[
α−2
√
−g (−∂tϕ+ βr∂rϕ)

]
+ ∂r

[
α−2
√
−gβr (∂tϕ− βr∂rϕ) +

√
−g γrr∂rϕ

]
.

The determinant of the physical metric is simply related to the determinant of the spatial
metric by g = −α2γ. This allows us to express

√
−g in terms of our evolved GBSSN variables

as √
−g = α

√
γ = αχ−3/2√g = αχ−3/2√grrgθθ sin θ. (104)

5 Remember that gµν is the physical spacetime metric, γµν is the spatial piece of the physical metric, and

the notation gµν is reserved for the conformal spatial metric defined by gµν ≡ χγµν .
6 In the spherically symmetric reduction we have in particular gtt = −α−2, gtr = α−2βr, and grr =

γrr − α−2(βr)2
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To recast Eq. (103) as a first order PDE, as is commonly done in simulations of scalar fields
in numerical relativity [29], we introduce the following variables:

Φ ≡ ∂rϕ (105a)

Π ≡ α−2
√
−g(∂tϕ− βr∂rϕ)(sin θ)−1 =

√
grrgθθ

αχ3/2
(∂tϕ− βr∂rϕ). (105b)

Remembering that the normal vector for our foliation of spacelike hypersurfaces in Chapter
II is given by nµ = α−1(1,−βi), Π is actually just the derivative normal to the spacelike
hypersurfaces weighted by

√
−g. We will use Φ and Π as the evolved variables for simulations

of the scalar field ϕ. Their evolution equations are found by applying commutativity of mixed
partials (∂tΦ = ∂r∂tϕ) and Eq. (103):

∂tϕ = βrΦ +
αχ3/2

√
grrgθθ

Π (106a)

∂tΦ = ∂r

(
βrΦ +

αχ3/2

√
grrgθθ

Π

)
(106b)

∂tΠ = ∂r

(
αgθθ√
χgrr

Φ + βrΠ

)
. (106c)

2. Stress-Energy Tensor and Source Terms

The above equations allow us to evolve the scalar field in the presence of a curved space-
time background. To fully describe the system we must also determine how coupling the
scalar field ϕ to that spacetime background affects the geometry. The GBSSN system pre-
sented in Eqs. (44), (45) is valid for a spacetime with an arbitrary collection of matter
described by a stress-energy tensor T µν . Describing the response of the GBSSN variables
to the scalar field therefore amounts to determining the stress-energy tensor for ϕ and in
particular the matter variables ρ, S, STFrr , and jr defined at the end of Section II C that are
featured in the GBSSN system.

The Lagrangian for our scalar field is given by LM = −1
2
∇µϕ∇µϕ, as may be verified by

varying the action

SM =

∫
d4x LM =

∫
d4x

[
−1

2
∇µϕ∇µϕ

]
. (107)

After a few integrations by parts where we ignore boundary terms (we assume ϕ(±∞)→ 0)
this variation gives δSM = (∇µ∇µϕ)δϕ = 0, and so the Klein-Gordon equation is recovered
as the equation of motion for ϕ. With the action in general relativity expressed in the form

S =

∫
d4x

[
1

16πG
LG + LM

]√
−g, (108)

the Einstein field equations are recovered by demanding that the variation δS
δgµν

vanish. To

recover the non-vacuum Einstein field equations the stress-energy tensor must be related to
this action by Tµν = −2√

−g
δLM
δgµν

. Carrying out this variation even for the simple scalar field

Lagrangian is still a non-trivial calculation and we will not work it out explicitly. The result
is given by [18]

Tµν ≡
−2√
−g

δLM
δgµν

= ∇µϕ∇νϕ−
1

2
gµνg

ρσ∇ρϕ∇σϕ. (109)
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This can be expressed in terms of the GBSSN variables and the matter variables ϕ, Φ, and
Π as

Tµν = ∂µϕ∂νϕ−
1

2
gµν
[
α−2(−(∂tϕ)2 + 2βr∂tϕ− (βr∂rϕ)2) + γrr(∂rϕ)2

]
(110)

= ∂µϕ∂νϕ+
1

2
gµν

(
− χ

grr
Φ2 +

χ3

grrg2
θθ

Π2

)
.

The matter variables ρ, S, STF
rr , and jr appear as source terms in the GBSSN evolution

equations, and ρ and jr further specify the proper value of the Hamiltonian and momen-
tum constraints are related to the components of the stress-energy tensor and the GBSSN
variables by

ρ ≡ nµnνTµν = α−2
(
Ttt − 2βrTtr + (βr)2Trr

)
(111a)

S ≡ TrSij = TrTij =
χ

grr
Trr +

2χ

gθθ
Tθθ (111b)

STF
rr ≡ Trr −

1

3χ
Sgrr (111c)

jr ≡ (−γrµnνTµν) =
χ

αgrr
(βrTrr − Ttr) (111d)

There is little insight gained from substituting Eq. (110) into Eq. (111) to express these
source terms in terms of the evolved matter variables, and in the simulations to follow we
simply perform this substitution numerically.

3. Boundary Conditions

The evolution equation for ϕ features a zero principle part, and so we can specify f ∗ϕ =
fϕ = 0 just as we specified f ∗u = fu = 0 when considering the abstract GBSSN system. We
therefore do not need to apply any boundary conditions to ϕ. The evolution equations for
Φ and Π feature zero source terms, and so Sommerfeld boundary conditions are a natural
choice. These can be derived by considering the characteristic variables and wavespeeds
of the evolution equations as in the construction sketched in Section III C. Since we are
now working with a far simpler system than the GBSSN equations we will perform the
construction for the first order Klein-Gordon system in detail. We begin by writing the
evolution system for Φ and Π as a matrix equation analogous to the abstract GBSSN system
in Eq. (79) as

∂t

(
Φ
Π

)
+B(u) ∂r

(
Φ
Π

)
≡ ∂t

(
Φ
Π

)
+

(
−βr − αχ3/2

√
grrgθθ

− αgθθ√
χgrr

−βr

)
∂r

(
Φ
Π

)
= 0. (112)

The matrix B(u) is diagonalizable with eigenvalues are given by

µ± = −βr ± α
√

χ

grr
. (113)

These define the wavespeeds of the matter evolution system. Note that they match the
wavespeeds µ±5 of the GBSSN system given in Eq. (80). This simplifies the numerics of
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scalar field simulations since adding the matter evolution equations to the GBSSN system
does not introduce any new distinct wavespeeds that could impact the existence or location
of an excision surface or force a change in our choice of stable timestep.

The corresponding eigenvectors of the matrix B(u) are given by
(
gθθ/χ

1

)
and

( −gθθ/χ
1

)
.

The matter evolution system can therefore be expressed as

∂t

(
Φ
Π

)
+

1

2

(gθθ
χ
−gθθ

χ

1 1

)(
µ− 0
0 µ+

)( χ
gθθ

1

− χ
gθθ

1

)
∂r

(
Φ
Π

)
= 0. (114)

The characteristic fields are given by applying the matrix U ≡
(

χ
gθθ

1

− χ
gθθ

1

)
to our system

vector Y ≡ ( Φ
Π ) in order to transform the system into the eigenbasis of B(u). This provides

us with the incoming and outgoing solutions X− and X+7,(
X−

X+

)
≡ U

(
Φ
Π

)
=

( gθθ
χ

Φ + Π

−gθθ
χ

Φ + Π

)
. (115)

Remember that in a dG scheme coupling between subdomains occurs through the nu-
merical flux and so boundary conditions are imposed by specifying the external solution Y +

to be used in calculated the numerical flux in the boundary subdomain. At the outermost
subdomain DK we wish to enforce a Sommerfeld boundary condition, that is the exter-
nal solution Y +

K should have zero incoming characteristics and should match the outgoing
characteristics of the numerical solution Y −K . The above relation between the characteristic
variables and the matter evolution system variables can be used to express this condition as
a system of linear equations for the external fields Φ+

K and Π+
K in terms of the internal fields

Φ−K and Π−K :

X−(Y +
K ) =

gθθ
χ

Φ+
K + Π+

K = 0 (116a)

X+(Y +
K ) = −gθθ

χ
Φ+
K + Π+

K = X+(Y −K ) = −gθθ
χ

Φ−K + Π−K . (116b)

As a brief aside, note that there is an apparent ambiguity in choosing the values of the
GBSSN variables used to calculate X+(Y +

K ). This ambiguity is resolved by noting that only
the variables in the u sector of the GBSSN system are present. Due to the presence of
the auxiliary sector Q we take fu = f ∗u = 0 and apply no boundary conditions to the u
sector. This is equivalent to u+ = u− at the boundary, and so we can safely use u−, the
GBSSN variables of the numerical solution, when calculating all the characteristic variables
X±(Y ±K ). A similar situation occurs when calculating Sommerfeld boundary conditions for
the GBSSN system since the matrix A(u) depends on this same sector. With this resolved,

7 Due to an unfortunate coincidence of notation it is standard to denote both incoming/outgoing solutions

and the interior/exterior solutions to a subdomain in dG with ±. The characteristic variables X+ and

X− will always denote the outgoing (traveling from small r to large r) and incoming (large to small r)

solution, while we reserve Y +
k and Y −

k to denote the solution vector on the exterior and interior of the

k-the subdomain.
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we can solve the above system for Φ+
K and Π+

K as

Φ+
K = −1

2
Φ−K +

χ

2gθθ
Π−K (117a)

Π+
K =

gθθ
2χ

Φ−K −
1

2
Π−K . (117b)

Though the point r = 0 is not a physical boundary of the domain Ω, it is a boundary
of the computational domain in the sense that boundary conditions must be applied to
the inner boundary of the subdomain D1 in order to construct a stable scheme. Since
it is clearly unphysical for new information to propagate into the computational domain
from this coordinate boundary, we will apply Sommerfeld boundary conditions to this inner
boundary in simulations in which there is not an inner excision surface present. In analogy
to the above construction we construct the external solution Y +

1 by solving the linear system
determined by the constraints X−(Y +

1 ) = X−(Y −1 ) and X+(Y +
1 ) = X+(Y −1 ). This provides

us with a solution Y +
1 that has incoming (traveling from large to small r) characteristics

whose component matter variables are given by

Φ+
1 =

1

2
Φ−1 +

χ

2gθθ
Π−1 (118a)

Π+
1 =

gθθ
2χ

Φ−1 +
1

2
Π−1 . (118b)

4. Constructing Initial Data

Our primary goal is to model a localized wave pulse falling from far away into a black
hole. In spherical symmetry this represents a collapsing spherical shell of scalar matter. To
construct our pulse, note that the Schwarzschild solution is asymptotically flat, that is far
away from the black hole spacetime approach Minkowski space. In this limit the massless
Klein-Gordon equation reduces to the standard wave equation with velocity c = 1, and when
further restricted to spherical symmetry it becomes the equation for a spherical wave

∂2
t (rϕ) = ∂2

r (rϕ). (119)

Let ϕ̃(r, t) ≡ rϕ(r, t). The above spherical wave equation has analytic solutions given by

ϕ(r, t) =
1

r
ϕ̃(r ± t), (120)

as may easily be verified, with the incoming solution is given by ϕ(r, t) = 1
r
ϕ̃(r + t) [46].

It is therefore ϕ̃ = rϕ that propagates in time with a constant amplitude and the analytic
solution for ϕ in this r → ∞ flat space limit should behave like ϕ ∼ 1/r. The decay to
zero amplitude at large r is also physically necessary for the pulse to have a finite energy
as it become a sphere of infinite radius and the asymptotic behavior ϕ(t, r → ∞) = 0 was
assumed when we verified the form of the Lagrangian in Eq. (107). For simplicity we take
ϕ̃0 to be a Gaussian pulse centered at r0 with amplitude A and width ∆. The initial data
for the scalar field ϕ0 ≡ ϕ̃(t = 0, r;A, r0,∆) is therefore given by

ϕ̃0 = Ae−( r−r0∆ )
2

, ϕ0 =
1

r
Ae−( r−r0∆ )

2

. (121)
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From this we can immediately calculate Φ0 ≡ Φ(t = 0, r;A, r0,∆) from the definition Φ =
∂rϕ and take

Φ0 =
1

r
∂rϕ̃0 −

1

r2
ϕ̃0 =

2A(r0 − r)
r∆2

e−( r−r0∆ )
2

− A

r2
e−( r−r0∆ )

2

. (122)

Since Π depends on ∂tϕ, our choice for Π0 ≡ Π(t = 0, r;A, r0,∆) will be used to enforce that
the pulse is incoming. The incoming solution ϕ(r, t) = 1

r
ϕ̃(r + t) satisfies ∂tϕ = 1

r
∂t(rϕ) =

1
r
∂r(rϕ), and so our initial data should satisfy ∂tϕ0 = Φ0 + 1

r
ϕ0. This allows us to specify

Π0 according to its definition, Eq. (105a), as

Π0 =

√
grrgθθ

αχ3/2

(
Φ0(1− βr) +

ϕ0

r

)
(123)

To verify the accuracy of our dG scheme for solving the scalar field evolution equations,
Eq. (106), we will consider simulations in Minkowski space, defined in spherical coordinates
by the metric ds2 = −dt2 + dr2 + r2dΩ2. This specifies initial data for the evolved GBSSN
fields given by

grr = 1, gθθ = r2, χ = 1,

K = 0, Arr = 0, Γr = −2/r,

α = 1, βr = 0, Br = 0.

(124)

In particular we have for this initial geometry Π0 = r2Φ0 + rϕ0.
The remainder of our simulations will use the Kerr-Schild initial data given in Eq. (94)

to model the infall of our scalar field pulse into an un-charged, non-rotating black hole. Note
that this choice of initial data actually violates the Hamiltonian and momentum GBSSN
constraints since the Kerr-Schild data satisfies the vacuum constraints but the presence of
the scalar field pulse dictates ρ, jr 6= 0. We are therefore limited to situations in which the
scalar field pulse can be considered as a perturbation of the black hole spacetime. As long as
the initial amplitude A and width ∆ are sufficiently small compared to the black hole mass
M , the initial constraint violations will likewise be small and there will be no significant loss
of accuracy so long as the violations do not grow in time or lead to numerical instabilities.
Since these are analytic constraint violations in the data rather than numerical artifacts we
do not expect them to shrink with increasing computational resolution and we will therefore
not be able to measure the convergence of the scheme by monitoring the magnitude of the
GBSSN constraints.

C. Simulation Results

1. Accuracy in Minkowski Space

In order to directly verify the accuracy of our scheme for solving the matter evolution
equations, we begin by simulating the propagation of a wave pulse in Minkowski space and
comparing our numerical pulse to the known analytic solution. Since Γr still diverges at
r = 0 (an artifact of using spherical coordinates), we place our inner boundary slightly away
from the origin and take our domain Ω to be r = [0.4, 300]. The computational domain
Ωh is defined by splitting this into 7 subdomains of equal length covering [0.4, 10] and 30
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FIG. 8. Snapshots of the scalar pulse in Minkowski space and convergence. The left plot shows

snapshots of a pulse with A = 1, ∆ = 5, r0 = 200, and resolution N = 10 at various times.

The solid line shows the initial pulse at t = 0, and the dashed lines show the pulse at t =

20, 40, 60, 80, 100. The left plot demonstrates the convergence of the scheme and shows log-scale

||∆ϕ||Ωh ≡ ||ϕ− ϕexact||Ωh
with increasing N . These simulations used A = 1, ∆ = 3, and r0 = 150

and the norm is measured at t = 10.

subdomains of equal length covering [10, 300]. We use a local Lax-Friendrichs flux with
C = 2 for the numerical fluxes f ∗Φ and f ∗Π and as described above take f ∗ϕ = 0. We use
the initial data for a purely incoming wave pulse given by Eqs. (121)-(123) and initialize
the GBSSN variables to the Minkowski space values given in Eq. (124). Only the matter
variables are evolved; the GBSSN variables are left constant with these values. We apply
Sommerfeld boundary conditions at the inner and outer boundaries as given by Eq. (118)
and Eq. (117) respectively. As before we use a fourth-order Runge Kutta method for time
evolution with the timestep ∆t chosen for stability. Since the matter evolution equations
are linear there should be no aliasing error and we do not apply any filter to the system.

Simulations of this incoming wave pulse are robustly stable for all choices of A, ∆, and
r0 we have considered. Since there is no length scale other than the size of the domain there
are no qualitative differences when A is varied over many orders of magnitude from 10−5 to
105. The presence of boundaries is not observed to introduce any complications, and upon
reaching the inner boundary the incoming pulse reflects back in a stable manner. We can
calculate the analytic solution ϕexact at later times according to ϕexact(r, t) = 1

r
ϕ̃0(t + r),

where ϕ̃ = rϕ as described above. Calculating the L2 norm ||ϕ − ϕexact||Ωh provides a
direct measurement of the accuracy of these simulations. Fig. 8 shows that this error
decays exponentially with increasing polynomial order N , so our scheme for solving the
matter evolution equations possesses spectral convergence, as expected. Snapshots of ϕ(x)
at intervals of t = 20 from t = 0 to t = 100 are also shown in Fig. 8 and demonstrate that
the scalar field has the desired qualitative behavior of an incoming Gaussian pulse whose
width stays constant and amplitude grows with decreasing r.
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FIG. 9. Pulse amplitude during infall and power-law decay. The left plot shows max(|ϕ|) over the

domain Ω during the full infall simulation from t = 0 to t = 500. The black hole is unit mass,

M = 1, and the initial pulse has parameters A = 10−2M , ∆ = 3, and r0 = 100. The right plot

shows a log-log plot of max(|ϕ|) over the domain for late times t = 250 to t = 500. The straight

line in the log-log plot demonstrates a power-law decay.

2. Infall with a Kerr-Schild Black Hole

We now consider simulations with non-trivial gravitational coupling in which both the
matter and GBSSN systems are evolved. We use the second order scheme to evolve the
gravity sector and find that so long as the scalar field is small enough to be treated as a
perturbation on the black hole spacetime no changes need to be make to the numerical
setup used in Chapter V: we take C = 2, λ = 0.1, and η = 50 and consider a Schwarzschild
black hole described in Kerr-Schild coordinates as before. To minimize any boundary effects
we use a large computational domain Ω of r = [0.4, 600]M . With this domain choice the
singularity of the black hole is managed through excision. The computational domain Ωh is
defined by splitting the region [0.4, 10]M into 7 subdomains of equal length and the region
[10, 600]M into 60 subdomains of equal length. We use a local Lax-Friendrichs flux for all
evolved fields, including the scalar field variables Φ and Π and take fϕ = 0 since Φ = ∂rϕ
defines an auxiliary variable analogous to the Q sector of the abstract GBSSN system. As
before we apply an exponential filter of strength 2s = 20 to all fields except grr and gθθ,
including the matter variables ϕ, Φ, and Π and choose the timestep ∆t for stability. We
use exact outer boundary conditions for the GBSSN fields and the Sommerfeld boundary
conditions described above for Φ and Π.

Typical choices of initial data for the incoming pulse are A = 10−2M , ∆ = 3, and
r0 = 100. This creates Hamiltonian constraint violations on the order of 10−8 near the
pulse since the Kerr-Schild data satisfies the vacuum constraints. Constraint violations of
this order propagate with the pulse and grow along with the amplitude as it moves inward,
but there is no sign of uncontrolled growth in the constraints or changes in the qualitative
shape of the GBSSN fields. With an initial amplitude of A = 1M this is no longer the case:
deformations of the metric are immediately visible and the constraint violations steadily
grow until an instability develops just after t = 100. For A = 10M an instability develops
almost immediately. This is consistent with the idea that we can only model the scalar field
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as a perturbation of the black hole geometry, and as long as the amplitude is taken to be
sufficiently small relative to the black hole mass there is no sign of constraint growth or
instability in simulations lasting for times in the hundreds of M .

The maximum absolute value (L∞ norm) of the scalar field ϕ is shown as a function of
time in Fig. 9. Qualitatively, the amplitude of the pulse increases as it moves inward, as
in Minkowski space, until it reaches the black hole. The amplitude then falls off rapidly
as it the pulse enters the horizon and travels off the inner boundary. After this initial
infall, scalar matter is observed to radiate outward from the black hole. At late times the
magnitude of this radiation decays as a power-law, as shown in Fig. 9. The precise decay
rate is observed to depend on the details of the initial pulse. Observations of outgoing scalar
radiation with a late-time power law decay are consistent with other numerical and analytic
results, and in particular [30] calculates the precise exponent for the decay of each mode of
a spherical harmonic decomposition of a scalar waveform. A straightforward application of
this simulation code would be to monitor the amplitude of the radiated field at a fixed (areal)
radius and compare the decay rate to the values predicted for different pulses. A further
immediate application would be to consider more general initial pulses and study for example
the absorption rates of different pulses as considered in finite difference simulations in [48].
More generally we hope that dG methods will soon be applied to more complicated and
astrophysically interesting matter systems than the simple scalar field we have considered
here.

VIII. CONCLUSION

Discontinuous Galerkin methods appear to be a promising technique for simulations in
numerical relativity. After presenting a review of reformulating GR for initial value prob-
lems and the GBSSN system and a description of a dG scheme for solving the system and
the turduckening technique for managing singular initial data describing black holes, we
presented a number of new black hole simulations using dG methods that build upon the
scheme constructed by Field et. al. in [23]. This previous work presented robustly stable
and spectrally accurate second order dG simulations of a black hole in spherical symmetry
that removed the singularity from the computational grid via excision, and in this thesis we
showed that robust stability and spectral convergence were maintained when the interior
of the black hole was included in the domain but the singularity was smoothed away using
the turduckening technique. We further found that the initial constraint violations due to
turduckening quickly decayed, as observed in the turduckened finite difference simulations of
[14], and moreover that the rate of this decay increased with the smoothness of the stuffing
transformation at the boundary of the turduckened region. At high resolution simulations
using excision and turduckened were found to have similar levels of constraint violations
once these violations in the initial data decayed.

We then presented a first order reduction of the GBSSN system and the results of dG
simulations of this FOBSSN system recently published in [11]. Unlike the second order simu-
lations that relied on using an analytic solution for outer boundary conditions, dG FOBSSN
simulations were found to be stable and spectrally accurate with Sommerfeld boundary
conditions enforced at the outer boundary. We discovered an ambiguity in turduckening
the auxiliary fields in FOBSSN initial data were unable to construct stable simulations of
FOBSSN using turduckening.

Finally, we considered dG simulations with dynamic matter fields coupled to the gravity
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sector. For simplicity we considered the infall of a massless scalar field into a schwarzschild
black hole. We presented a derivation of evolution equations for this scalar field in terms of
our evolved GBSSN variables and constructed a spectrally accurate dG solver for the Klein-
Gordon equation that we then incorporated into our second order black hole simulations
with the appropriate gravitational coupling. The resulting simulations were found to be
robustly stable so long as the amplitude of the initial incoming Gaussian pulse had an
amplitude sufficiently small relative to the black hole mass that its gravitational effects
could effectively be considered a perturbation on the black hole spacetime. We observed
that after this incoming pulse fell into the black hole outgoing scalar radiation was emitted
that at late times decayed according to a power-law.

It is our hope that this work can be expanded towards the construction of a general three-
dimensional dG BSSN solver capable of efficiently simulating binary black hole collisions as
well as non-vacuum simulations containing dynamic matter fields.
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