Theory of Relativity – Quiz July 3, 2013

Names of group:_____

Below are short questions and problems. Answer to the best of your ability. Each question is worth 1 point.

1. Inertial observers in Newton's theory are related by what type of coordinate transformation? Either the name or equations are valid answers.

Answer: Galilean transformation. t' = t, x' = x - wt

2. What type of motion is possible for an object experiencing no force (no pushes or pulls)?

Answer: Straight line or at rest

3. True or false? (a) In an inertial reference frame it's possible to have acceleration in the absence of a force. (b) In a non-inertial reference frame it's possible to have acceleration in the absence of a force.

Answer: (a) False (b) True

4. Suppose two inertial observers (moving at a speed 10 meters per second relative to each other) measure an object's position, length, velocity, and acceleration. Which measurements will they agree on? Which measurements will they disagree on?

Answer: Agree on length and acceleration. Disagree on position and velocity.

- 5 Devise an experiment to show you are in a non-inertial frame.Answer: Look for objects which appear to spontaneously move.
- 6. Suppose you are in an enclosed spacecraft drifting in outer space. Can you devise an experiment to show you are moving with a constant speed? If not, why not.

Answer: NO! This would violate the principle of relativity (laws of physics would be different).

7. Background information: Yesterday we discussed that the "laws of physics" are the same for all inertial observers, for which we mean they can use F = ma to describe the motion of an object of mass m when a force F is applied. Recall that the acceleration is defined as $a = \frac{V_f - V_i}{T_f - T_i}$, and that velocity is defined by $V = \frac{x_f - x_i}{T_f - T_i}$, and x is the location of the object as measured by an observer using a particular coordinate system.

Suppose a boat has a hockey rink inside of it and in the middle of the rink there is a hockey puck at rest. The boat turns on its engine and accelerates at a rate $10m/s^2$ in the positive x-direction. Can you write down the "modified" form of Newton's equation appropriate for describing experiments in the boat? Describe with words or an equation the motion of the hockey puck.

Answer: The puck will start moving backwards at $a = -10m/s^2$. The modified Newton's law will be $F = Ma + M(10m/s^2)$. You might be able to convince yourself of this by considering some special cases:

- Suppose there are no external forces applied to the puck and so, accoording to someone in the ship, F = 0. Our modified Newton's law then gives $a = -10m/s^2$, and the puck's motion is $x_f = x_i + (1/2)(-10m/s^2)t^2$. This is the motion you intuitively expect (its moving backwards).
- Suppose you wish to keep the puck at a fixed location. How to do this? You will need to push the puck in the positive x direction with a force of $F = M(10m/s^2)$. Our modified Newton's law becomes $F = M(10m/s^2) = Ma + M(10m/s^2)$, which implies a = 0.

Finally, consider if we rearranged terms so that $F - M(10m/s^2) = Ma$. Lets defined the ficticious force to be $F_{\text{fake}} = -M(10m/s^2)$. Then the interpretation becomes $F + F_{\text{fake}} = Ma$. The *physics*, that is to say our description of how the puck moves, is exactly the same as before.