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I. Intro 
 
 
The departure from geodesic motion to order 

m/M has two parts:  

Dissipative part associated with the loss of 
energy to gravitational waves, 
  
 
Conservative part  
 
 
 
 
 

odd under ingoing outgoing

even under ingoing outgoing



     The dissipative part of self force plays the dominant role and is 
much easier to handle:  
   
The part of the field odd under ingoing                   outgoing  is 
                        ½( hretarded – hadvanced) . 
 
Because hretarded  and hadvanced have the same source, the odd 
combination is sourcefree and regular at the particle.  
 
 

The conservative part of the force, is computed from   
                             ½( hretarded + hadvanced)  
a field singular at the particle.   One must renormalize the field.  



II. Summary of EMRI results in a Kerr spacetime 
 

A.  Dissipative (“adiabatic”) approximation:  
only dissipative part of self-force used 
 
Method and discussion:  
Mino ’05,         
Drasco, Flanagan, Hughes ’05,  
Pound, Poisson, Nickel ’05  
Hinderer, Flanagan ’08  
 
Point-mass computations with only dissipative part of self force are 
well in hand:  

     Kennefick, Ori ‘06 
Drasco, Flanagan, Hughes, Franklin  05, 06  
Ganz, Hikida, Nakano, Sago, Tanaka 06, 07 
Burko, Khanna 07 
Mino 08…  
 
Review: T. Tanaka, Prog. Theor. Phys. Suppl. 163, 120 (2006) [arXiv:gr-
qc/0508114]. 



Drasco movie:  orbit with a/M = 0.9,         initial eccentricity = 0.7,   
                            inclined at 60o to equatorial plane       

Sundararajan, Khanna, Hughes, Drasco ’08 
Orbit constructed as set of short geodesics:  
Using black hole perturbation theory compute the evolution of three constants of 
geodesic motion, E(t), Lz (t), and Q(t).  
Choose initial conditions and find the inspiral trajectory [r(t), θ(t), φ(t)] . 
From this trajectory, find EMRI waveform.  

http://gmunu.mit.edu/viz/emri_viz/emri_viz.html 



Drasco movie:  orbit with a/M = 0.9,         initial eccentricity = 0.7,   
                            inclined at 60o to equatorial plane       

Sundararajan, Khanna, Hughes, Drasco ’08 
Orbit constructed as set of short geodesics:  
Using black hole perturbation theory compute the evolution of three constants of 
geodesic motion, E(t), Lz (t), and Q(t).  
Choose initial conditions and find the inspiral trajectory [r(t), θ(t), φ(t)] . 
From this trajectory, find EMRI waveform.  

http://gmunu.mit.edu/viz/emri_viz/emri_viz.html 



      
B. Full self-force for scalar particles  

 
Computations in Kerr background that include 
conservative part of self-force for a particle with scalar 
charge:  
 
Static                   Ottewill, Taylor ’12 
 
Circular orbits     Warburton, Barack ’10 
                              (frequency-domain) 

                                   Dolan, Barack, Wardell ’11  
           (time-domain)  
 
    Eccentric orbits  Warburton, Barack ’11 
         (frequency-domain)   

      



C. Massive particles in circular orbit 
 
Perturbed metric renormalized, quantities ∆Ω and ∆ut,  
invariant under helically symmetric gauge transformations 
computed.        Shah, JF, Keidl 
       Dolan 
  
Self-force in progress .  .  .    



III. Review of method computing self-force for Kerr  
in a radiation gauge 

 
A single complex Weyl scalar, either ψ0 or ψ4 , determines gravitational 
perturbations of a Kerr geometry (outside perturbative matter sources) 
up to changes in mass, angular momentum, and change in the center of 
mass.    
 
ψ0 and ψ4 are each a component of the perturbed Weyl tensor along a 
tetrad associated with the two principal null directions of the spacetime. 
Each satisfies a separable wave equation, the Teukolsky equation for 
that component. 
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Teukolsky equation:    Os ψ = S separable 
operator  
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Solution:   
 
ψ0 is a sum over angular and time harmonics of the 
form   

spin-weighted 
spheroidal harmonic 



ψ0 involves 2 derivatives of the metric perturbation hαβ  
 
To recover the metric from ψ0 involves 2 net integrations.  
 The method is due to Chrzanowski and Cohen & Kegeles, 
with a clear and concise derivation by Wald.   
 
First integrate 4 times to obtain a potential Ψ, the Hertz 
potential. 
 
Then take two derivatives of  Ψ  to find  hαβ  
 
The resulting metric is in a radiation gauge. 
 
 



• Outgoing Radiation Gauge (ORG) 

5 constraints,  similar to those for ingoing  waves in flat space 
with a transverse-tracefree gauge.  The metric perturbation 
satisfying these conditions is  given by  
                             
 
 
where Lαβ is a 2nd-order differential operator involving 
only     (angular derivative operator) and    
 
  

0 0β
αβ = =h n h

ð t∂

αβ αβΨ=h L



Weyl scalar ψ0 

Hertz potential Ψ 

 
metric perturbation hαβ and  
expression for self-force aα 

 
 

renormalization coefficients 

renormalized  aα (radiative part) 



      Compute       from the Teukolsky 
equation as a mode sum over 
l,m,ω.  

ret
0Weyl scalar ψ0 



      For vacuum:  
Find the Hertz potential         from      or          

     either algebraically from angular equation  
or as a 4 radial integrals from the radial equation. 
 
The angular harmonics of        and      are defined  
for r>r0 or r<r0,  with r0 the radial coordinate of 
the particle.  
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Algebraic solution for vacuum, valid for circular orbit:  
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Equivalent alternative involves radial 
derivatives along principal null geodesics: 
 
 
For each angular harmonic of ψ0, this gives 
a unique solution satisfying the Teukolsky 
equation:  e.g., for r>r0 , 
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When the orbit is not circular, one cannot use the 
algebraic method to find Ψ   near the particle.   Inside 
the spherical shell between rmin and rmax  , ψ0lmω  has a 
nonzero source and the vacuum algebraic relation fails:    
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Radial integration commutes with decomposition into 
spherical harmonics: Can use Ψlmω   near the particle if 
computed by radial integration: 
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      Find, in a radiation gauge, the components of      
and its derivatives that occur in the expression 
for  aα  by taking derivatives of        .  
e.g.:   

reth

ret

Weyl scalar ψ0 

Hertz potential Ψ 

 
metric perturbation hαβ and  
expression for self-force aα 

 
 

( · )( · )h m m n n 
     



Weyl scalar ψ0 

Hertz potential Ψ 

 
metric perturbation hαβ and  
expression for self-force aα 

 
 

renormalization coefficients 



Compute         from the perturbed geodesic equation 
as a mode sum truncated at       .  Compute the 
renormalization vectors Aa  and Ba  (and Ca ?), 
numerically matching a power series in  
to the values of       . (Shah et al) 

renormalization coefficients 
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Weyl scalar ψ0 

Hertz potential Ψ 

 
metric perturbation hαβ and  
expression for self-force aα 

 
 

renormalization coefficients 

renormalized  aα (radiative part) 



Subtract singular part of expression mode-by-mode 
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The missing pieces 

ψ0 and ψ4 do not determine the full perturbation:  
Spin-weight 0 and 1 pieces undetermined. 
 
There are algebraically special perturbations of Kerr, 
perturbations for which ψ0 and ψ4 vanish:  
changing mass  δm  
 
changing angular momentum δJ 
(and singular perturbations –  
to C-metric and to Kerr-NUT). 
  
And gauge transformations  



ret
0[ ]hαβ ψ  via CCK procedure 

ret

ret

[ ]

[ ]

h m

h J

αβ

αβ

δ

δ

from the conserved current associated 
with the background Killing vector  tα.  
                         
 
from the conserved current associated 
with the background Killing vector φα, 
for the part of δJ along background J. 
 
(L. Price) 
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This is enough to compute the self-force-induced 
change in two related quantities, a change  
invariant under gauge transformations generated 
by helically symmetric gauge vectors:   
 
∆U = ∆ut at fixed Ω 
 
∆Ω   (at fixed ut)  
 
Each computable in terms of hren

αβ uα uβ 



∆Ω for circular orbits in a Kerr background 
 
a < 0   counter-rotating 
a >  0    corotating 
 



∆U for circular orbits in a Kerr background 
a < 0   counter-rotating 
a >  0    corotating 

∆U 

r0  /M 

a/M = -0.9 M 

a/M = 0.9 M 

a/M = 0 
Comparisons underway with Alexandre Le Tiec (PN)  
and Sam Dolan (time-domain calculation).    



To find the self-force itself, one needs two final pieces:  
 
 
 
                        the part of δJ orthogonal  
                        to the background J 
 
                         
                        the change in the center of mass 
 
Each is pure gauge outside the source, but the  
gauge transformation is discontinuous across the  
source.   
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o2 [ ], [ ]h J h CMαβ αβδ ⊥

If they are pure gauge, how can they have a 
source?   
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0£ ( )gh g r rαβ ξ αβ= Θ − is not pure gauge at r=r0 



For Schwarzschild these are l=1 perturbations, with 
axial and polar parity, respectively.  
 
How do we identify them in Kerr?  
 
The idea is to find the part of the source that has not 
contributed to  
 
 One could in principle simply subtract from δTαβ the 
contribution from these three  
terms.  Writing  

ret[ ] [ ] [ ]h h m h Jαβ αβ αβψ δ δ+ +

:h Gαβ αβδ=E



 Find ξ at r0 from the jump condition 
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   Now we’re back to the old difficulty of handling 
terms that are singular at the particle.    
 
Instead of trying directly to evaluate 
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• Future problems:  
Key problems involving conservative part of  

self-force are not yet done 
 

• Self-force on particle in circular orbit in Kerr (underway in modified 
radiation gauge and Lorenz gauge) and orbital evolution. 

• Self-force on particle in generic orbit in Kerr and orbital evolutions. 
• Identify and include relevant 2nd-order corrections.  Include particle spin 

(some calculations already done).  
• In our (Abhay Shah’s) mode-sum computation, form of singular field agrees 

with Lorenz.  Why?  (What happens to a logarithmic  
divergence of the gauge vector at the position of the particle?) 

• Analytically find renormalization coeffs in radiation gauge. 
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