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l. Intro

The departure from geodesic motion to order
m/M has two parts:

Dissipative part associated with the loss of
energy to gravitational waves,

oddunderingoing «— outgoing

Conservative part

evenunderingoing «— outgoing



The dissipative part of self force plays the dominant role and is
much easier to handle:

The part of the field odd under ingoing < > outgoing is
%( h

retarded hadvanced) .

Because hiqiargeq @Nd Nygyanceq Nave the same source, the odd
combination is sourcefree and regular at the particle.

The conservative part of the force, is computed from

/2( hretarded hadvanced)
a field singular at the particle. One must renormalize the field.



II. Summary of EMRI results in a Kerr spacetime

A. Dissipative (“adiabatic”) approximation:
only dissipative part of self-force used

Method and discussion:
Mino '05,
Drasco, Flanagan, Hughes 05,

Pound, Poisson, Nickel ‘05
Hinderer, Flanagan 08

Point-mass computations with only dissipative part of self force are
well in hand:

Kennefick, Ori ‘06

Drasco, Flanagan, Hughes, Franklin 05, 06
Ganz, Hikida, Nakano, Sago, Tanaka 06, 07
Burko, Khanna 07

Mino 08...

Review: T. Tanaka, Prog. Theor. Phys. Suppl. 163, 120 (2006) [arXiv:gr-
qc/0508114].



Sundararajan, Khanna, Hughes, Drasco '08

Orbit constructed as set of short geodesics:

Using black hole perturbation theory compute the evolution of three constants of
geodesic motion, E(t), L,(t), and Q(t).

Choose initial conditions and find the inspiral trajectory [r(t), §(t), #t)] .

From this trajectory, find EMRI waveform.

http://gmunu.mit.edu/viz/emri_viz/emri_viz.html

Drasco movie: orbit with a/M = 0.9, initial eccentricity = 0.7,
inclined at 60° to equatorial plane
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B. Full self-force for scalar particles

Computations in Kerr background that include
conservative part of self-force for a particle with scalar

charge:

Static Ottewill, Taylor "12

Circular orbits Warburton, Barack "10
(frequency-domain)

Dolan, Barack, Wardell "11
(time-domain)

Eccentric orbits Warburton, Barack "11
(frequency-domain)



C. Massive particles in circular orbit

Perturbed metric renormalized, quantities AQ and Aut,

invariant under helically symmetric gauge transformations

computed. Shah, JF, Keidl
Dolan

Self-force in progress. . .



Ill. Review of method computing self-force for Kerr
in a radiation gauge

A single complex Weyl scalar, either y; or y, , determines gravitational
perturbations of a Kerr geometry (outside perturbative matter sources)
up to changes in mass, angular momentum, and change in the center of
mass.

¥, and y, are each a component of the perturbed Weyl tensor along a
tetrad associated with the two principal null directions of the spacetime.
Each satisfies a separable wave equation, the Teukolsky equation for
that component.



Newman-Penrose Formalism
-

Null tetrad [“ n m , M

E

e.g., Kinnersley tetrad for Schwarzschild
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Teukolsky equation: £, w=S
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Source function S = J 4T g,



Solution:

I/, is a sum over angular and time harmonics of the

form

WOfma)

2R€ma) (r) ZSéma)

(9) ei(m¢—wt)

>

\

spin-weighted
spheroidal harmonic

J




W, involves 2 derivatives of the metric perturbation h
To recover the metric from i, involves 2 net integrations.
The method is due to Chrzanowski and Cohen & Kegeles,

with a clear and concise derivation by Wald.

First integrate 4 times to obtain a potential ¥, the Hertz
potential.

Then take two derivatives of ¥ to find h

The resulting metric is in a radiation gauge.



e Qutgoing Radiation Gauge (ORG)

p_ _
h,n"=0  h=0

5 constraints, similar to those for ingoing waves in flat space
with a transverse-tracefree gauge. The metric perturbation
satisfying these conditions is given by

Ny =L, ¥

where L ;is a 2"d-order differential operator involving
only @ (angular derivative operator) and @t



Weyl scalar v,
Hertz potential ¥

metric perturbation h 5 and
expression for self-force a,,

renormalization coefficients

|

renormalized a, (radiative part)



WEVSEET@A  Compute ¢ from the Teukolsky

equation as a mode sum over
.M, w.



Weyl scalar v,

Hertz potential ¥

For vacuum:
Find the Hertz potential ¥"™ from ¥y or ¥,

either algebraically from angular equation
or as a 4 radial integrals from the radial equation.

The angular harmonics of ¥," and ¥, are defined
for r>ry or r<r,, with r,the radial coordinate of

the particle.



Explicitly,
1 . 4 —
g[(Ei—lasln 60,) ¥ +12M8ﬁ”} =¥

Integrate 4 times with respect to ¢

Algebraic solution for vacuum, valid for circular orbit:
For each frequency and angular harmonic

T — 8 (_1)le/70€—m—a) +12iM0)WO€ma)
fme D? +144M? &?



Equivalent alternative involves radial
derivatives along principal null geodesics:

v, = (1"0,)'W=0,"¥(u,r,0,0)

For each angular harmonic of y, this gives
a unique solution satisfying the Teukolsky
equation: e.g., for r>r,,

U = (1"0,)' W =0,"¥(u,r,0,0)

U= f drf drf drf drmo(ur@qb)

< dr
—)

(Kerrcoordinates : ¢ = ¢+f N



When the orbit is not circular, one cannot use the
algebraic method to find ¥ near the particle. Inside
the spherical shell betweenr,; and r .. ¥y, hasa
nonzero source and the vacuum algebraic relation fails:

M= Mmax Y, = E Yy, sourcefree

V,, hasasource
W= » ¥,  algebraic




Radial integration commutes with decomposition into
spherical harmonics: Can use ¥, near the particle if
computed by radial integration:

Wi :fmdﬁﬁmdrzJ:zwdrsfgmdr4¢01mw

— =) Yom, =




Weyl scalar v,
Hertz potential ¥

metric perturbation h 5 and

expression for self-force a,,

ret

Find, in a radiation gauge, the components of h ;
and its derivatives that occur in the expression
for a« by taking derivatives of U™

e.g.:
h,,m*m” o< (n-0 +I')(n-0+ I')¥



Weyl scalar v,
Hertz potential ¥

metric perturbation h g and
expression for self-force a,,

renormalization coefficients



renormalization coefficients

ret«

Compute a, " from the perturbed geodesic equation
as a mode sum truncated at/ . Compute the
renormalization vectors A% and B¢ (and C? ?),
numerically matching a power series in
to the values of &, . (Shah et al)



Weyl scalar v,
Hertz potential ¥

metric perturbation h g and
expression for self-force a,,

renormalization coefficients

!

renormalized a, (radiative part)



renormalized a, (radiative part)

Subtract singular part of expression mode-by-mode

a;ena . reta (AaL+ Ba )

rena: ||m Zarena

Emax—>oo

Shahuses/ . =



The missing pieces

I, and i, do not determine the full perturbation:
Spin-weight 0 and 1 pieces undetermined.

There are algebraically special perturbations of Kerr,
perturbations for which y; and y, vanish:
changing mass om

changing angular momentum oJ
(and singular perturbations —

to C-metric and to Kerr-NUT).

And gauge transformations



hret [WO] via CCK procedure

h ret [é‘m]

hrEt[5J]

from the conserved current associated
with the background Killing vector <.

from the conserved current associated
with the background Killing vector ¢~
for the part of ©J along background J.

(L. Price)



h,lom], h[oJ]

- a o o S T a a p
Joy . =0T, =0, TI" )" =—0T" 40

Background T, =0 =
Va j(t)a — O’ V.l

om= | j,*ds, 53 =~ j,)"dS

=m(2u“V t —) =—mu_g“



This is enough to compute the self-force-induced
change in two related quantities, a change
invariant under gauge transformations generated
by helically symmetric gauge vectors:

AU = Aut at fixed (2
A (at fixed ut)

Each computable in terms of h®"_,u® u”



AQ) for circular orbits in a Kerr background

a <0 counter-rotating
a> 0 corotating

ro/M| a=—09M a=—0TM a= —0.5M a=0.0M a=0.5M a=07TM a=0.9M

1 - - - - - 0.049494757 | 0.047064792
5 - - - - 0.045714221 | 0.044118580 | 0.043175673
6 - - - 0.042727801 | 0.039444628 | 0.038657945 | 0.038163269
7 - - - 0.036056740 | 0.034230509 | 0.033772187 | 0.033467250
8 - - -0.032654832 | 0.031046361 | 0.020912054 | 0.029617108 | 0.029410780
10 | -0.025452677 | -0.025047514 | -0.024678134 | 0.023913779 | 0.023380440 | 0.023232381 | 0.023121616
15 | -0.014748048 | -0.014648207 | -0.014556074 | 0.014359915 | 0.014213208 | 0.014168481 | 0.014131741
20 | -0.0099345954 | -0.0008961562 | -0.0098603936 | 0.0097825022 | 0.0097222383 | 0.0007028068 | 0.0096861192
30 | -0.0055402445 | -0.0056086307 | -0.0055989040 | 0.0055772872 | 0.0055595452 | 0.0055535368 | 0.0055481511
50 | -0.0026950345 | -0.0026929563 | -0.0026910361 | 0.0026865907 | 0.0026827611 | 0.0026814019 | 0.0026801414
70 | -0.0016493214 | -0.0016486061 | -0.0016479203 | 0.0016463355 | 0.0016449360 | 0.0016444281 | 0.0016439500
100 [-0.00007594981|-0.00097571320(-0.00097548493| 0.00097495060|0.00007446889|0.00097429076 [0.00097412099

TABLE IV: This table presents the numerical values of AQ for different values of ro/M and a.




AU for circular orbits in a Kerr background
a <0 counter-rotating

a> 0 corotating
_ r, /M

—0.05 |-

AU —0.10 —

—0.15 |

—0.20 |

—iy 5 L

Comparisons underway with Alexandre Le Tiec (PN)
and Sam Dolan (time-domain calculation).

O




To find the self-force itself, one needs two final pieces:

hret [5J ] the part of 5J orthogonal
to the background J

t
hre [CM ] the change in the center of mass

Each is pure gauge outside the source, but the
gauge transformation is discontinuous across the

source.



2> h,[61.] h,ICM]

If they are pure gauge, how can they have a
source?

h,s =£:9,, ©(r—1,) is not pure gauge at r=r,

(hys = £ orr)Jas 1S PUre gauge)



For Schwarzschild these are |=1 perturbations, with
axial and polar parity, respectively.

How do we identify them in Kerr?

The idea is to find the part of the source that has not
contributed to hz[w]+h ;[om]+h ,[5J]

One could in principle simply subtract from oT*P the
contribution from these three
terms. Writing

Cr .
“h,,=6G,,



we have

h® =878T

af’
870 ;;ma'”'”g =80 op T < (h™ [w]+h[om]+h[oJ] ])
Find & at ry from the jump condition

j ((/ hgauge aﬂ J' 872_5-|-ar;maining

For h9Y% continuous, the jump in /7 h%% involves
only the few terms in /© with second derivatives in
the radial direction orthogonal to u“.



But
Now we’re back to the old difficulty of handling
terms that are singular at the particle.

Instead of trying directly to evaluate

870T,, — (W [yw]+h[om]+h[5J]),,

use the fact thXQS‘”g has source JT_;

heeE = (0, = (W [w]+h[6m]+h[5]]),,

T AR = —r0+g?”>e” 4 om]+h[oJ
[ orhowe == [ (W [y]+ h[om] + h[5J]),,

lh—¢



e Future problems:
Key problems involving conservative part of
self-force are not yet done

Self-force on particle in circular orbit in Kerr (underway in modified
radiation gauge and Lorenz gauge) and orbital evolution.

Self-force on particle in generic orbit in Kerr and orbital evolutions.

|dentify and include relevant 2"%-order corrections. Include particle spin
(some calculations already done).

In our (Abhay Shah’s) mode-sum computation, form of singular field agrees
with Lorenz. Why? (What happens to a logarithmic
divergence of the gauge vector at the position of the particle?)

Analytically find renormalization coeffs in radiation gauge.
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