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Goals

o Kerr

scalar field for now
develop techniques for future work with gravitational field

be able to handle highly eccentric orbits
(stellar dynamics in dense star clusters may lead to |e| ~ 0.98)

compute self-force very accurately
(eLISA/NGO will eventually need templates with
phase error <0.01 radians over ~10° orbits of inspiral)

as efficient as possible (orbital evolution!)

This is work in progress: some goals accomplished, some not yet!
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Overall Plan of the Computation

Effective-Source (also known as puncture-function) method

e use Barry Wardell's 4th order puncture fn and effective src

e scalar field for now

e gravitational field in the future? (m = 0 and m = 1 instabilities)
m-mode decomposition

Time domain (241D numerical evolution for each m)

can handle (almost) any orbit, including high eccentricity
Cauchy evolution, AMR

(almost) causally-disconnected spatial boundaries
(with AMR we hope this won't be too expensive)

higher order finite differencing for improved accuracy/ efficiency
special finite differencing for C? fields near the particle

Worldtube scheme to treat far-from-the-particle region
e wordtube moves in (r, 8) to follow the particle around its orbit
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The effective-source (puncture-function) method

The particle’s physical (retarded) field ¢ satisfies i = 6(x — Xparticle(t))

We construct a “puncture function” ¢, which approximates the
Detweiler-Whiting singular field gingular, such that for some n > 0

* ©p— Peingutar = O (|x — xpa,tic|e(t)|n) close to the particle
e the “residual field" ¢, := ¢ — ¢, is C"~2 near the particle
o the radiation-reaction self-force is given by F? = q (V)|

particle

Then the residual field satisfies
Opr = O(p —¢p) = Op—Depp
= 5(X - Xparticle(t)) - D‘Pp = Seffective
where the “effective source” Sefrective is C"~# near the particle.

In practice we choose n = 4,

= Seffective 15 CO near the particle; ¢, is C? near the particle
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m-mode decomposition

i : Seffective  inside the worldtube
Instead of numerically solving Oynum = { effective 13! worldtu

0 outside the worldtube
in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2-+1D:

o Goum(t, 1,0, 0) = 3 €™ Gpum m(t, 1, 0)
m

(where ¢ := ¢ + f(r) to avoid infinite-twisting at horizon)
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in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2-+1D:
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m-mode decomposition
Seffective  1Nside the worldtube
0 outside the worldtube

in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2-+1D:
o @num(t; r, 0; ‘P) = Z eimqb(ﬂnum,m(ta r, 9)

(where ¢ := ¢ + f(r) to avoid infinite-twisting at horizon)

Instead of numerically solving Opnym = {

e now each ¢nym,m satisfies

numerically
0 | Seffective,m  inside the worldtube solve this
m Poum,m = g outside the worldtube for each m
in 241D
oo
e the radiation-reaction self-force is given by F? =¢q > (va‘/’num,m”pamde

m=0
e solve numerically for 0 < m < mpay ~ 15;
fit large-m asymptotic series to estimate contributions from m > mp,.x

e move the wordtube in (r, 0) to follow particle around eccentric orbit

e more efficient than numerical evolution in 34+1D
» can use different numerical parameters for each m
» multiple 241D evolutions vs. single 341D evolution
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Series expansions for the puncture fn and effective src

For a given t, Barry Wardell's puncture function ¢, is a series expansion

S Ni(6r)'(86Y (sin(389))
(S D6y (50) (sin(206))"

©p(dr,80,00) = 7

P i i
where dx' := X" — X0, e

and where the Njj and Djj coefficients (there are 30-50 of them) depend on the

central black hole's mass and spin and on the particle position and 4-velocity, but
do not depend on §x’.
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For a given t, Barry Wardell's puncture function ¢, is a series expansion

S Ni(6r)'(86Y (sin(389))

©p(dr,80,00) = X
(e Dur(5r)/ (56 (sin(356)) )
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P s
where dx' := X" — X0, e

and where the Njj and Djj coefficients (there are 30-50 of them) depend on the

central black hole's mass and spin and on the particle position and 4-velocity, but
do not depend on §x’.

The effective source Seffective := 0 (X — Xparticle(t)) — Om@p,m is similar,
but more complicated. Note that the derivatives in [J,,, must be computed
analytically, not numerically!

Njjx and Djj coefficients computed by Barry Wardell via
lengthly symbolic-algebra manipulations of the series expansions.
(Details omitted here.)
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Computing the m-mode effective src (and puncture fn)

We need to compute the Fourier integral

SefFec:tlve m (5!’ 59 / Seffective® imé Q';
—Tr
at each (r, 0) grid point in the worldtube at each time step.
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Computing the m-mode effective src (and puncture fn)

We need to compute the Fourier integral

SefFectlve m((sr 59 / Seffective€ img (5
—T
at each (r, 0) grid point in the worldtube, at each time step.

Numerical ¢ integration:

e compared to naive numerical quadrature,
can speedup by a factor of ~ 5 by using “Fourier quadrature” subroutine
which “knows” the sin(m¢)/cos(m¢) factors analytically

e even so, the numerical quadrature is very slow, and accuracy is marginal

Elliptic integrals:

e construct series expansions such that denominator is of degree 2 in sin(%&b)

e Fourier integrals can then be written in terms of
complete elliptic integrals E(k) and K(k)

e this is ~ 300 faster than even an optimized numerical ¢ integration
e the elliptic-integral form should also be more accurate
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Initial data, boundary conditions

Initial data:
o start evolution with arbitrary initial data (¢num,m = 0)
e evolution then produces an initial burst of “junk radiation”

e junk radiation quickly propagates out of the system,
field configuration settles down to a quasi-equilibrium state
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Initial data, boundary conditions

Initial data:
o start evolution with arbitrary initial data (¢num,m = 0)
e evolution then produces an initial burst of “junk radiation”

e junk radiation quickly propagates out of the system,
field configuration settles down to a quasi-equilibrium state

e equatorial orbit: evolve until @num,m is periodic

generic orbit: evolve until Ynym,m is the same for different
initial data choices (integrated in parallel)

Boundary Conditions:
e in theory: use domain large enough that inner/outer boundaries
are causally disconnected from particle worldline
e in practice: for @num,m = 0 initial data, boundary reflections
are only significant when outgoing junk radiation reaches the boundaries
=> domain only needs to be about % the causally-disconnected size
to reduce boundary reflections to a negligible level
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Current Status

elliptic-integral puncture fn & effective src for equatorial circular orbits
numerical ¢ integration for equatorial eccentric orbits

code is currently unigrid (no AMR) = limited resolution, very slow

e code currently uses a uniform grid in (., 6)
e typical worldtube size ~4M in r,, /8 (22.5°) in 6

e 4th order spatial finite differencing,
4th order Runge-Kutta time integration

June 11, 2012

11 /20



Falloff of F™ at large m for equatorial circular orbit

Should have Fp, ~ % + k5 4 Jo 4 ... at large m

Kerr spin=0.6 equatorial circular orbit r=10M

10° \ 1.05
10 |
uE o] | 1.00 8
=
'8
107 F
resolution Ar,=M/24 t
—e— Fpy \\\a
~ tail fit to m=[6,10]
10'8 1 1 1 Il Il 095
0 2 4 6 8 10

June 11, 2012 12 /20



Self-force for equatorial circular orbit
Kerr spin 0.6, particle in equatorial circular orbit at r = 10M

Self-force in units of 107%¢2/M?:
this work: —7.4999 £ 0.0060 (resolution Ar, = M/24)
of which 1/m* tail sum (m > 11) is —0.8%
1/m® tail sum (m > 11) is —0.4%
total tail sum (m > 11) is —1.2%
Niels Warburton: ~ —7.491205 (very accurate frequency-domain calculation)

difference (error): —0.0087+0.0060 (~0.1%)
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Dependence of self-force on central black hole spin

particle in equatorial circular orbit at r = 10M

resolution: Ar, = M/16

Dependence of self-force on spin of central (Kerr) black hole
for orbits at coordinate radius r=10M

2 N W A O o
o O O O o o o
T

T~

self-force (x 10'6)

210 +
20 +
-30

-1.0 -08 -06 -04
black hole dimensionless spin Jim?

-02 00 +0.2 +0.4 +0.6 +0.8 +1.0
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Self-force for low-eccentricity orbit

Kerr spin 0.6, particle in equatorial eccentric orbit: p =8M, e = 0.2
resolution: Ar, = M/12

lﬂ@gg@&ﬂ -

self-force (x 10‘6)
o
o
error in self-force (x 10‘6)

1 -0.5
self-force (thiSwork)
— self-force (Warburton, frequency-domain)
—— error in self-force

tail sum (m212)
-50 L . . -1.0

-100 -50 0 50 100
time before/after periastron
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Self-force for low-eccentricity orbit
Kerr spin 0.6, particle in equatorial eccentric orbit: p =8M, e = 0.2

resolution: Ar* = M/12 Large-m Decay of F,, modes at t=3M before periastron
10 \ 1.05
0 — ; , , — 1.0 . .
00 —— 10° | . \ H [ =
c I I 100 3
w X =
2 rrrmes
405 & 10 | w
o
& ;c —— Fp H
9 ~ — tail fit to m=[8,11]
x e 8 —— Fpl(tail fit)
Y 00 & 107 0.95
8 e Y 0 2 4 6 8 10
S lﬂlﬁl‘fﬂ?@&'ﬁq 3 m
E E Large-m Decay of F,, modes at t=60M after periastron
1.5 % 10° 1.05
self-force (thiSwork) \
— self-force (Warburtor|, frequency-domain) .
—— error in self-force 6
tail sum (m=12) 107 .
-50 L L . -1.0
-100 -50 0 50 100 £ 100 §
time before/after periastron ;s
107 |
L
—— Fry ~
— ftail fit to m=[8,11]
—— Fp/(tail fit)
108 T 0.95
0 2 4 6 8 10
m
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Conservative and dissipative parts of the self-force
Kerr spin 0.6, particle in equatorial eccentric orbit: p =8M, e = 0.2

resolution: Ar, = M/12

T
—— self-force

10  +—— dissipative self-force
—— conservative self-force

“—
o \/
<10 F y E
K N Ty
= s = F :!
2 -20 ¢ RS i E
T R dyd
2] 2“. a.' &
30 b hY "\/;.s<.f 1
40 | N |
100 50 0 50 100

time before/after periastron
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Self-force for moderately eccentric orbit

Kerr spin 0.6, particle in equatorial eccentric orbit: p =8M, e = 0.4
resolution: Ar, = M/12

ksfv2.29.3 Kerr spin=0.6 orbit: p=8M e=0.4

&~
o
S —
5 x
~ [
z °
@ L
S bl
s @
2 o
T £
& =
e
11 @
60 |
i seltforce (this work, resolution Ar,=M/12)
—— Warburton (frequency-domain)
70 b - i error estimate (this work, resolution Ar,=M/g) 7| ~2
i error estimate (this work, resolution Ar,=M/12)
= tail sum (mzlz}
80 I . .
-100 -50 0 50 100

time before/after periastron
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Self-force for moderately eccentric orbit

Kerr spin 0.6, particle in equatorial eccentric orbit: p =8M, e = 0.4

resolution: Ar, = M/12
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Conservative and dissipative parts of the self-force
Kerr spin 0.6, particle in equatorial eccentric orbit: p =8M, e = 0.4

self-force (x 10'6)
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“Self-force” for highly eccentric orbit

Kerr spin 0.6, particle in equatorial eccentric orbit: p =8M, e = 0.9
resolution: mixture of Ar, = M/12 and M/8

self-force (x 10‘6)
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“Self-force” for highly eccentric orbit

Kerr spin 0.6, particle in equatorial eccentric orbit: p =8M, e = 0.9

resolution: mixture of Ar, = M/]_2 and M/8 Large-m Decay of F,, modes at t=5M after periastron
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Conclusions

e puncture-function regularization works well

e m-mode decomposition and 241D evolution are very nice
» gives moderate parallelism “for free”
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Conclusions

e puncture-function regularization works well

e m-mode decomposition and 241D evolution are very nice
» gives moderate parallelism “for free”

e moving worldtube is easy to implement at the finite differencing level

e evaluating Barry Wardell’s 4th order puncture fn and effective src:
» numerical ¢ integration is very slow, accuracy is marginal

» elliptic-integral form is ~ 300x faster, also more accurate
> interpolate near the particle to preserve accuracy
e preliminary results:

» nice 1/m* falloff of F,, at large m

» good agreement of self-force with Niels Warburton's
frequency-domain results for circular and e = 0.2 orbits

» moderate agreement for e = 0.4 (need higher-m modes)

> have partial results for e = 0.9, but accuracy is poor
and we don't yet understand the major noise sources

e eccentric-orbit elliptic integrals and AMR shoulod greatly improve this;
better finite differencing at the particle should also help
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