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Choosing a gauge

• We choose RW gauge and transform our solutions to Lorenz gauge

Regge-Wheeler gauge Lorenz gauge
Algebraic gauge Differential gauge
(set components to vanish) with residual freedom
2 equations for each 10 equations for each
harmonic mode harmonic mode
Solutions are Solutions are
C−1 / singular at particle C0 at particle
Asymptotically grows Asymptotically flat

Regularization procedure
? & Eqs. of motion

• In GR, gauge freedom is coordinate freedom
• At lowest order, we use Schwarzschild coordinates
• At first order, we choose between Regge-Wheeler and Lorenz gauge
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Fourier convergence of the master functions

Ψ`m(tp, r) =
14∑

n=−14

R`mn(r)e−iωtΨ`m(tp, r) =
12∑

n=−12

R`mn(r)e−iωtΨ`m(tp, r) =
10∑

n=−10

R`mn(r)e−iωtΨ`m(tp, r) =
8∑

n=−8

R`mn(r)e−iωtΨ`m(tp, r) =
5∑

n=−5

R`mn(r)e−iωt

Ψ`m(tp, r) =
3∑

n=−3

R`mn(r)e−iωt
p = 7.50478
e = 0.188917
t = 80.62M
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Metric perturbation reconstruction

• 3 of 4 even parity metric
perturbations are singular.
• We compute analytical values of

those singularities as funcs of t.

p = 7.50478
e = 0.188917
t = 80.62M
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Transforming to Lorenz gauge

• Gauge transformation from Regge-Wheeler (RW) to Lorenz (L)

xµRW → xµL = xµRW + Ξµ, |Ξµ| ∼ |pµν | � 1

• Metric perturbation transforms as

pRW
µν → pL

µν = pRW
µν − Ξµ|ν − Ξν|µ

• Demand pL
µν satisfy the Lorenz gauge condition, p̄L |ν

µν = 0
• Therefore

Ξµ|ν
ν = pRW|ν

µν − 1
2
gαβpRW

αβ|µ
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Equations for the gauge generator amplitudes

• Decompose gauge vector Ξµ in scalar and vector harmonics

Ξt = ξ`mt (t, r)Y `m

Ξr = ξ`mr (t, r)Y `m

ΞA = ξ`m(e) (t, r)Y `m
A + ξ`m(o)(t, r)X`m

A

• One, separate odd-parity wave equation

1
f

[
− ∂2

∂t2
+

∂2

∂r2∗
− V1

]
ξ`m(o) = 2

f

r
h`mr + p`mδ [r − rp(t)]

• Three, coupled even-parity wave equations

2ξ`mt +Mt(ξt, ξr) = Ft(ΨZM) + singular term

2ξ`mr +Mr(ξr, ξt, ξ(e)) = Fr(ΨZM) + singular term

2ξ`m(e) +M(e)(ξ(e), ξr) = F(e)(ΨZM) + singular term
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Partial annihilator method

• An inhomogeneous wave equation

1
f

[
− ∂2

∂t2
+

∂2

∂r2∗
− V1

]
ξ`m = 2

f

r
h`mr + p`mδ [r − rp(t)]

• Original Regge-Wheeler variable Ψ`m = fh`mr /r

• Satisfies the equation
[
− ∂2

∂t2
+

∂2

∂r2∗
− V2

]
Ψ`m = SRW

• Act with Regge-Wheeler wave operator on both sides

[
− ∂2

∂t2
+

∂2

∂r2∗
− V2

]
1
f

[
− ∂2

∂t2
+

∂2

∂r2∗
− V1

]
ξ`m

= 2SRW + Other singular terms

• Now a 4th-order PDE, but the source is point-singular
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An alternative: 2nd-order solutions

• A method for finding solutions without relying on annihilators
• Consider again

[
− ∂2

∂t2
+

∂2

∂r2∗
− V1

]
ξ`m = 2fΨRW

`m + PSingular

• Or, in the FD:
[
d2

dr2∗
+ ω2 − V1

]
ξ̃`mn = 2fRRW

`mn + ZSingular

• The solution to the ZSingular part can always be found using EHS
• For now consider simply

[
d2

dr2∗
+ ω2 − V1

]
ξ̃`mn = 2fRRW

`mn
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Time domain reconstruction

• TD reconstruction

ξ(t, r) =
∑

n

ξ̃(r)e−iωt

• The TD source is discontinuous (C−1), so the convergence is
algebraic ∼ 1/n3 at the particle.
• We would like exponential convergence.
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Extended particular solutions

• We look for a time domain solution of the form

ξ(t, r) = ξ+(t, r) θ [r − rp(t)] + ξ−(t, r) θ [rp(t)− r]

• Where
ξ±(t, r) = ξ±p (t, r) + ξ±h (t, r)

• Defined for r > 2M

ξ±p (t, r) ≡
∑

n

ξ̃±p (r)e−iωt, ξ±h (t, r) ≡
∑

n

ξ̃±h (r)e−iωt

• How do we find ξ̃±p (r) and ξ̃±h (r)?
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2nd-order EPS summary

ξ±(t, r) = ξ±p (t, r) + ξ±h (t, r)

ξ±p (t, r) ≡
∑

n

ξ̃±p (r)e−iωt, ξ±h (t, r) ≡
∑

n

ξ̃±h (r)e−iωt

2fR+
EHS

2fR−EHS

∼ eiωr∗

∼ fe−iωr∗

• EHS source
• Extended

particular
solutions: ξ̃±p
• Use same

homog. sols: ξ̃±h

∼ eiωr∗

∼ fe−iωr∗

2fRStd

• Std. source
• Std. particular

solutions: ξ̃∞/Hp

• Causality gives
homog. sols: ξ̃±h
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How to check the solution
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• Given the metric perturbation transforms as

pL
µν = pRW

µν − Ξµ|ν − Ξν|µ,

• The MP amplitudes are pushed via

h`m,Lr = h`m,RW
r − ∂

∂r
ξ`m +

2
r
ξ`m

h`m,Lt = h`m,RW
t − ∂

∂t
ξ`m

h`m,L2 = h`m,RW
2 − 2ξ`m

• The Lorenz gauge amplitudes should be C0

• Lorenz gauge field equations provide jumps in first derivs
• They should be asymptotically ∼ wave
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h`mt in Regge-Wheeler gauge

• Now C−1 at the particle
• Asymptotically grows

h21
t (t◦, r∗) asymptoticallyh21

t (t◦, r∗) locally
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h`mr in Regge-Wheeler gauge

• Now C−1 at the particle
• Asymptotically grows
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ξodd
`m - numerical results

ξ21(t◦, r∗) asymptoticallyξ21(t◦, r∗) locally

• We see the expected local
and asymptotic behavior
following the partial sum.
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Even-parity gauge transformations: Direct approach

• We choose between the “Direct approach” and the “SNS
approach” (Sago, Nakano, and Sasaki)
• As we saw earlier, in the direct approach the natural

decomposition of Ξµ is

Ξt = ξ`mt (t, r)Y `m

Ξr = ξ`mr (t, r)Y `m

ΞA = ξ`m(e) (t, r)Y `m
A + ξ`m(o)(t, r)X`m

A

• This leads to the coupled even-parity equations

2ξ`mt +Mt(ξt, ξr) = Ft(ΨZM) + singular terms

2ξ`mr +Mr(ξr, ξt, ξ(e)) = Fr(ΨZM) + singular terms

2ξ`m(e) +M(e)(ξ(e), ξr) = F(e)(ΨZM) + singular terms
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Even-parity gauge transformations: SNS approach

• Formalism devised by Sago, Nakano, and Sasaki (2002)
• The odd-parity part same as before
• The even-parity splits further into scalar part and divergence-free

vector part
Ξµeven = Ξ(s)

|µ + Ξµ(v)
• Leads to a set of decoupled equations

W4ξ`mscalar = Fscalar(ΨZM) + singular terms

W2ψ`m1 = F1(ΨZM) +G1(ξscalar) + singular terms

W2ψ`m−1 = F−1(ΨZM) +G−1(ξscalar) + singular terms

W2ξ`mvt
= Fvt(ΨZM) +Gvt(ψ1) +Hvt(ψ−1) + singular terms

ξ`mvr
= Fvr(ξvt) +Gvr(ψ1) +Hvr(ψ−1) + singular terms
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Even-parity gauge transformations: SNS approach

• These equations are wave equations with sources that include
extended terms with jumps and singular terms
• Can be solved via the EHS and EPS methods
• Having solved these equations gives

ξ`mscalar, ξ`mvt
, ξ`mvr

,

and derivatives to high accuracy everywhere.
• Finally, we recover the gauge push variables

ξ`mt = Ft(ξvt) +Gt(ξvr) +Ht(ξscalar)

ξ`mr = Fr(ξvt) +Gr(ξvr) +Hr(ξscalar)

ξ`m(e) = F(e)(ξvt) +G(e)(ξvr) +H(e)(ξscalar)
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Even-parity gauge transformations: Pushing the MP
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Even-parity gauge transformations: Current status

• We have adopted the SNS approach
• The equations have extended source terms and singular

source terms
• We have solutions for all extended source terms
• Presently computing expressions for singular sources
• Will give high accuracy solutions to the first-order

Einstein equations for “all” radiative modes.
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Conclusions

• We have developed two useful solution techniques for wave
equations with periodic extended source terms with discontinuities
• Both the partial annihilator and extended particular

solutions methods provide high accuracy solutions at all points.
• These are exact analogies to the EHS method for extended sources.

• High accuracy MPs in RW gauge for eccentric orbits on
Schwarzschild
• Performed the odd-parity gauge transformation taking the metric

perturbation from Regge-Wheeler to Lorenz gauge
• Partial annihilators and extended particular solutions give the

same result
• Even-parity very close to being done
• With low-order modes, will allow for high-accuracy SF calcs
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