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Regularization procedure
& Eqgs. of motion

e We choose RW gauge and transform our solutions to Lorenz gauge
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Metric perturbation reconstruction
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Transforming to Lorenz gauge

Gauge transformation from Regge-Wheeler (RW) to Lorenz (L)

Trw — 2 =Tpw + 2, [E~ el <1

Metric perturbation transforms as
RW L _ RW _ = =
Puw =7 Puw =D — =plv — Evp

Demand p{jy satisfy the Lorenz gauge condition, 13,5,,'” =0

Therefore

v RWlv 1 af, RW

plv: = Puv 99 Paplu
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Equations for the gauge generator amplitudes

e Decompose gauge vector Z, in scalar and vector harmonics
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Partial annihilator method

e An inhomogeneous wave equation
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Partial annihilator method

e An inhomogeneous wave equation
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fl o2 o2

Original Regge-Wheeler variable ‘™ = fhfm /r
Satisfies the equation

0? 0?
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- VZ] T = Spw

Act with Regge-Wheeler wave operator on both sides

o2 o2
= 25grw + Other singular terms
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Now a 4th-order PDE, but the source is point-singular
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A method for finding solutions without relying on annihilators

Consider again

0 0 RW
|:8t2 + ﬁ B Vvl:| fém = 2f\l’ém + PSingular

Or, in the FD:

d? -
|:d 2 2 :| gfmn = 2fR?r\r]L‘; + ZSingular
T

The solution to the Zgijnguiar part can always be found using EHS

For now consider simply

d2
|:d 2 +w _‘/1:| g@mn*2fR€mn



Finding causal solutions
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Time domain reconstruction

d2

7o Telw’l‘*

Causal solution ~ oW

e TD reconstruction

§ : 7uut
n

e The TD source 1s discontinuous (C~!), so the convergence is
algebraic ~ 1/n? at the particle.

e We would like exponential convergence.
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Extended particular solutions

We look for a time domain solution of the form

§(t,r) =7 (t,r) O[r —rp(t)] + & (t,7) O [rp(t) — 7]

Where

EEtr) =& (tr) + & (tr)
Defined for » > 2M

é—p t 7,, pr _Zth éh t 7" Zé—h —lwt

e How do we find §p (r) and & (r)?
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How to check the solution
e Given the metric perturbation transforms as
L RW - e
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e The MP amplitudes are pushed via
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e They should be asymptotically ~ wave
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e We choose between the “Direct approach” and the “SNS
approach” (Sago, Nakano, and Sasaki)

e As we saw earlier, in the direct approach the natural
decomposition of =, is
= =
=, = (YT
= { ¢
Ba = () YA™ + 00 () X"

e This leads to the coupled even-parity equations

Dé“fm + M(&, &) = Fi(¥z) + singular terms
Dﬁfm + M (&, &5 €(e)) = Fr(Wzm) + singular terms
Dgf + Moy (§e), &) = Fey)(Pzm) + singular terms
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Even-parity gauge transformations: SNS approach

e Formalism devised by Sago, Nakano, and Sasaki (2002)
e The odd-parity part same as before

e The even-parity splits further into scalar part and divergence-free
vector part

—

e =S +2fy)

—even

e Leads to a set of decoupled equations

WA, = Ficalar(Wz01) + singular terms
W™ = Fy (Wza1) + G (scalar) + singular terms
W2 = F_ 1 (Wzn1) + G -1 (Excalar) + singular terms
W? ﬁin = F,,(Yzm) + Go, (V1) + Hy, (Y1) + singular terms

f;n = Fy, (&) + Go,. (Y1) + Hy, (¥—1) + singular terms
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Even-parity gauge transformations: SNS approach

e These equations are wave equations with sources that include
extended terms with jumps and singular terms

e Can be solved via the EHS and EPS methods

e Having solved these equations gives

£
gscalar ’ gvt ) UT ’

and derivatives to high accuracy everywhere.

e Finally, we recover the gauge push variables

= Ft (gvt) + Gt (é.vr) + Ht (Escalar)
fm = F (5 ) + G (gvr) + H (gscalar)
5(e) - F(e (&) + G (gvr) + H (gscalar)
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Even-parity gauge transformations: Current status

e We have adopted the SNS approach

e The equations have extended source terms and singular
source terms

e We have solutions for all extended source terms
e Presently computing expressions for singular sources

e Will give high accuracy solutions to the first-order
Finstein equations for “all” radiative modes.
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Conclusions

High accuracy MPs in RW gauge for eccentric orbits on
Schwarzschild

Performed the odd-parity gauge transformation taking the metric
perturbation from Regge-Wheeler to Lorenz gauge

Partial annihilators and extended particular solutions give the
same result

Even-parity very close to being done

With low-order modes, will allow for high-accuracy SF calcs

We have developed two useful solution techniques for wave
equations with periodic extended source terms with discontinuities

Both the partial annihilator and extended particular
solutions methods provide high accuracy solutions at all points.

These are exact analogies to the EHS method for extended sources.
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