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The Pseudospectral Collocation Method Motivation

The metric perturbations generated by a point particle moving in a

Schwarzschild black hole

U+ Ao U +

30,-U+CU =Fi|lr —r,(t)].

Scalar charged particle falling in a geodesic of a Schwarzschild MBH

spacetime.

¢ =g""V,V, & = —pdr

p = —4mq /54(517 —2(7))dr

Problems: Distributional source term and divergence of the field at the

particle location
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The Pseudospectral Collocation Method Motivation

The retarded field can be decomposed into spherical harmonics:

o0 [

(I)ret _ S: S: (I)lm(t, T)Ylm(é), S0)

=0 m=-—1

The equation for each harmonic coefficient:

(=07 + 07 = Vi)™ = 8™ =0

i (1 B[] gyt

r r

p— S =AM — ()]
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The Particle-without-Particle Scheme

The mode-sum regularization scheme provides an analytic expression

for the field singularities.

Computed Analytically

° =
(TI)Tet:(I;S—F(I)R { -

Computed Numerically

Fo =q(Va® ™ — V,0°) = ¢V,0"

To compute the pret using PSC methods we have developed a scheme that

removes the singularity associated with the particle

U= oret
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The Pseudospectral Collocation Method Motivation

Numerical techniques to compute the field modes

Frequency domain

*Fourier harmonic decomposition:
Solve ODEs

*Sum over the Fourier harmonics:

Difficulties for handling high eccentric

orbits

Friday, 15 June 12

Time domain

*Solve the PDE for each field mode
*Handles in the same way circular

and eccentric orbits
*Numerically expensive due to the large

scale variance in the solutions
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The Pseudospectral Collocation Method Basics

Three approaches for solving PDEs in time-domain

* Finite differences
—>  Easiest to code but are computationally expensive

* Finite elements (FE)

———3 Both expand the solution in basis functions and
) use multidomain grids

e Spectral methods (SM

o FE suited to irregular geometries.
‘1

* SM use fewer subdomains than FE and for sufficiently

[see e.g. H. P. Pfeiffer et al. 2003]
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Outlook

e Basics about pseudospectral methods
e Polynomial expansion and discretization points

e How to apply pseudospectral-collocation methods to the

EMRI problem: Scalar case in Schwarzschild space-time
e Examples: Circular & eccentric case

e Results
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The Pseudospectral Collocation Method Basics

Consider an arbitrary system of hyperbolic partial differential equations

(PDEs) defined on Q) C R¢

LU(z) = S(z) z€0

with boundary conditions

HU|(x)=0 r € 0f)
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The Pseudospectral Collocation Method Basics

The spectral representation

In ID spatial dimension pseudosectral collocation methods (PSCM)
are based on expansions of every evolved field U(x) in terms of

suitable basis functions Ty, (X )with (spectral) coefficients Gy,
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The Pseudospectral Collocation Method Basics

We can derive Gy, from the values of T,,(X ) at the (discretization)
collocation points X = X; (1 =1...N )

i=1 X; i =N
o -0—0—0—0—0—0—0 0

N
Z/{(XZ) — Z CLnTn(XZ) > Ay =
n=0
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The Pseudospectral Collocation Method Basics

The physical representation

U(x) is approximated employing the Lagrange Cardinal functions
C;(z;) = 0;; ,associated with { T,,(X) }.
i=1 X; i=N

o -0—0—0—0—0—0—0—0—

UN(X) = ZU(Xz')Cz'(X)

Change between representations employing matrix multiplication

transformation
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The Pseudospectral Collocation Method Basics

The derivatives of 17,(X ) and C;(X) are known analytically

N
NUn(X) = a, 0T, (X)
n=>0

N N
0% Un(Xi) =Y 0" Ci(X ) Un(X))Ci(X)
i=0 j=0

The derivatives are obtained through a matrix multiplication
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The Pseudospectral Collocation Method Basics

Interpolation Error

The error in interpolating the solution is given by Cauchy interpolation error

U = Un(X) = O T - X)

controlled by changing the location of the collocation points,

Error = log,, |a

Priscilla Canizares 14

Friday, 15 June 12



The Pseudospectral Collocation Method Basics

Interpolation Error

The error in interpolating the solution is given by Cauchy interpolation error

U= Uy (X) = U O TIX - Xo)

controlled by changing the location of the collocation points,

Error = log,, |ay]

The solutions converge exponentially with N
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The Pseudospectral Collocation Method Basics

Time step condition

The domain of dependence of the system of hyperbolic equations

evolve at finite velocity which leads to causality restrictions: Courant-

Friedrichs-Lax conditions

4|b — a
4N2 r=d r=>b

Atcpr ~
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Expansion Basis
&
and discretization points
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The Pseudospectral Collocation Method Basics

The solutions can be discretized using an expansion in a basis of

Chebyshev polynomials

T.(X) = cos (ncos™ (X)), X e |—1,1].

n

The domain of definition of T, (X )can always be mapped to the spatial

(sub)domain of our problem
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The Pseudospectral Collocation Method Basics

Chebyshev series can be expressed as a Fourier cosine series

X : 0,27 — [—1,1]
0 —  X(0)=cos()

UX) =) anTy(z) < U(cosh) =) ay cos(nb)

The Fourier series of U (cos 6)have exponential convergence, unless

U(X) is singular.
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The Pseudospectral Collocation Method Basics

Matrix multiplications can be performed using a FFT algorithm:
O(N In(N) operations instead of N X N operations needed in a

direct matrix multiplication

FFT

o (U} ™% (e} 25 b} P35 {0,.U),)
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The Pseudospectral Collocation Method Basics

The set of collocation points that minimises the Cauchy interpolation
error correspbonds to the zeros of the Chebyshev polynomial or

alternatively to the extrema of its derivative: Lobatto-Chebyshev grid

(1-X*)Ty(X)=0

XZ-:—COS(%Z> (t=0,1,...,N)
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PSCM & The EMRI problem

Priscilla Canizares

21



The Particle-without-Particle Scheme

é )
(=07 + 0% — Vg)wem = A€m5[r* —1,(1)]
S[r* — T (1)]

—00 — 17 T r* — 00
Particle
The computational domain is split and the particle

is set at the interface between 2 subdomains
. ,
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The Particle-without-Particle Scheme

( )
(—(‘9152 + (‘9,,%* — Vg)wem = A€m5[r* — fr‘;(t)]
Olr™ =1y ()]

_I I—
—00 «— 1 iy r* — 00

Particle
The computational domain is split and the particle

is set at the interface between 2 subdomains
. J
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The Particle-without-Particle Scheme

(- ™ a — — ~
82 A2 tabm . Abmsie U=UO(r, —r") +U.O(r, — 1)
( 815 _I_ar* V€)¢ = A 5[T rp(t)]

4 )
Uy =A-0.Us +B-Us

+
U] = lim U, — lim U_

ﬁ b ¥ s r¥ sk
" " k p p )

.o 7T — 00
1t ﬁ U —=A-o.U +B.y O T A Ol TBU
Particle \ Sr 3¢ () /
The computational domain is split and the particle — [Z/I]I_
f set at the interface between 2 subdomains ) . The PwP technique ensures smooth solutions )
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The Particle-without-Particle Scheme

( ) ( )
U=U_O(r} — ) +ULO(r} — 1)

4 )
Uy =A-0.Us +B-Us

+
o U] = lim U, — lim U_
o % % o U —=A-o.U +B.y O T A Ol TBU
Particle \ Sr 3¢ () /
The computational domain is split and the particle — [Z/I]I_
f set at the interface between 2 subdomains ) . The PwP technique ensures smooth solutions )

(. )
The discontinuities on hyperbolic equations

bropagate along the characteristics.

U= (7, o, o) (ptm = p @tm
8#/[ — A'@r*Z/{—FB ’Z/{ ¢£m:at¢£m

wﬁmzﬁr*wﬁm

0 0 0 0 1 0\ ™ /
A=1[0 0 1 B=|-V, 0 0
0O 1 0 0 0 0

\_ _J
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The Particle-without-Particle Scheme

- N\ )
U=U_O(r} — ) +ULO(r} — 1)
(=07 + 02 — Vo)u'™ = A"™6[r* — 1 (t)] g ~
UL =A-0,..Ur +B - Uy
+
5 k . >k t
[r* = (t)] U] = lim U, — lim U_
l I ) \. i T

r, Ty rT — 00 e .
T 1N OU_=A-0.U_+B-U_ Orlh+ Op Ul +B- U
Particle \ Sr 3¢ () /
The computational domain is split and the particle — U ]I—
is set at the interface between 2 subdomains ) g The PwP technique ensures smooth solutions )
.
(. . — . ) ( )
The discontinuities on hyperbolic equations
propagate along the characteristics. The jumps are enforced employing two
o ), / different methods:
U=, o™, ) (ptm = p @tm

Im m
OU=A-0..U+DB-U| " =0y |. The penalty method.

Spﬁm _ 6r*¢€m
o0 010\ g 2.C ication of the ch istic field
A=1lo o 1 B — _Ve 0 0 LLommunication of the characteristic rields
0O 1 O 0 0 0
\_ _J \_ Y,
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The Particle-without-Particle Scheme

|. The penalty

method:

The system is dynamically driven to fulfil a set of additional conditions.

9,U.

:+B°U:

=A-0.U.

- +1(7, [U])

2. The direct communication of the characteristic fields:

We pass the value of the characteristic fields.

v

\_

wﬁm — (I)Em
Uﬁm _ gbém L gpﬁm

Vﬁm _ gbﬁm . SOﬁm,

U = (wém7 U‘Em7 Vﬁm)
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The Particle-without-Particle Scheme

e Jo implement the PwP scheme numerically we use PSCM. Each
subdomain is discretised with a number N of collocation points of a
Lobatto-Chebyshev grid:

Y, Un(X) =uUx;)
0 \ 0 N

|00.0.00.0000
. T* 7“*
H

r p 'p r7
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The Particle-without-Particle Scheme

e Jo implement the PwP scheme numerically we use PSCM. Each
subdomain is discretised with a number N of collocation points of a

Lobatto-Chebyshev grid:

Y, Un(X) =uUx;)
0 \ 0 N

x X

|000000000000
* (A T
H

r p 'p r7

To prevent incoming signals from outside the physical domain

Ot ) — () = 0=UT () ry — —00

Ot )+ S = 0= V() ¥ — 00
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The Particle-without-Particle Scheme

Employing a Chebyshev basis there are some paybacks:

FFT
® Physical representation < »  Spectral representation

U {a;}

@ Differentiation is cheaper in the spectral domain:

N N
Uy = DijU;(X) Uy =Y b T;(X)
=0 =0
N2 operations ~ NLn(N) operations
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The Particle-without-Particle Scheme

Employing a Chebyshev basis there are some paybacks:

FFT
® Physical representation < »  Spectral representation
{U;} {a;}
@ Differentiation is cheaper in the spectral domain:
N N
/
Uy = > DijUs(X) Uy =Y b T;(X)
§=0 7=0
N2 operations ~ NLn(N) operations

Our (smooth) solutions converge exponentially with N
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The Particle-without-Particle Scheme

Multidomain flexibility
e Covering the spatial domain with a given number of subdomains (D) we improve the

field resolution with a relatively small N.

QH Qa—l Q QI
0 N 0 N 0 N 0 N sk . k L sk
b | e | b | b | A?“a — TN To
T "1
0.2 {=10 m=6
= 0.1 PR
| A Dt, N ¥
O - l" “ .
g f ' Resolution = {
> DV N 4
~0.1| ----p=2 ]
D=6
_ ====D=10 |
— D =16
0.2 i
0 50 100 150 200
r* [ M,]
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The Particle-without-Particle Scheme

Advantages of the Multidomain Framework

* Different harmonic modes need different resolution
* We adjust the size of the subdomain around the particle location to the smaller

mode wavelength

B | | { { {1 i
000000000000000000000000000 00000000000 00000000000 0000000000000000000000000000
ro TN Ty TN 7“8 N

-0.02551

_0.026} * * *
. 0.026 Ar* = I — T (AT* -~ )\m)
00'9‘
~0.0265 |
mmmArt=1
A h m——Ar*=5 AT*
~0.027} ‘ e Arr=10 | P~y ——
m— A" =20 N
== =A =40
~0.0275}
5 10 15 20 25 30

Ag ~ 11]"\‘4 [ Canizares & Sopuerta (201 1)].
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The Particle-without-Particle Scheme

Convergence Test (circular case)

The dependence of the truncation error (~ |an| ) with respect increasing numbers of collocation

—N

points, N, give us an estimation of the exponential convergence of the code: €

(£,m) = (2,2)

_2 T T
\ * Mode(2,2)
>
—4r I e=00,p=6
\
N Exponential
-6 " convergence
\ /
\
= )
o \
o \
S -10f \
\
\
\
-12f ' The truncation error reaches
\ the numerical roundoff
\
* '
—141 .
- _ _ e - - - - _
[ J
-16 : :
0 5 10 15 20 25 30
N

Iog10(IaNI)

[ Canizares & Sopuerta (2009)] [ Canizares & Sopuerta (201 1)].
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(¢, m) = (20,0)

o e Mode (20,0) |
N e =0.0, p= 6

\ Exponential
.o convergence

N The truncation error reaches -
N the numerical roundoff
\
N
\ l
;\ —& — — 99— —— - — — & — 7]

5 10 15 20 25 30 35 40 45 50
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The Particle-without-Particle Scheme

Snapshots from the Circular case
(D=12, N=50)

0 N 0 N 0 N 0 N
r | [ U]} | r |
~ ‘ ‘ ‘ 0'1270\.12“\‘\“\‘\“\‘\“ \\\\\\\\\\\\\\\\\ 7 70"18‘ T
0.4] | i | I
0.34 | 701
/\ - 00870'07 002/
0.3L0.14 | , .
-0.06 3 1 0.02 l 1-0.06 /
= 02 =
-0.26 00, 0 ; 10 15

0.1l 0 4 s 1 i 0.041

[\
RN
0\/\/W\/\/\)

[
E

0.1
0 20 40 60 0 60 140 220 300 -300 30 20 440 60 0 6 10 220 30
™ (M) ™ (M)
m m . m o afm

[ Canizares & Sopuerta (2009)]
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The Particle-without-Particle Scheme

From circular to eccentric orbits:

e The key point of the PwP method is to keep the (|) ; NI ? : ]\1
particle at the interface between subdomains: . : : -
H ,( —y I

r, =1,(1)

® For eccentric orbits we use a time dependent

linear mapping between the physical and t fper, Tape
n I """""""""""" i """""" N """""""""""""""""" I
spectral domains. i N\
m I -
. =0 r* (t,) )
rp = 1p(t) L | .+ gtm L — e e |
[at w@m] _ ,rp S | (/F*p(tz)
P (1 =752)f(rp) G e, e r— |
Sem t )
[0pp™™] = — e — — |
p (1 Tp )f(’f'p) ; (t)/l
[ Canizares, Sopuerta & Jaramillo (2010 )]. t T . I_"im:": R |
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The Particle-without-Particle Scheme

Convergence Test (eccentric case)

The dependence of the truncation error (~|apn| ) with respect increasing numbers of collocation

. . o . —N
boints, N, give us an estimation of the exponential convergence of the code: €

(¢,m) = (20,0)

oF -« e Mode (2,2 . [ | ]
N (2.2) 1 ol . . * Mode (20,0) |
: \ e=05p=38 | e )
2; ‘\ p b : ° ° \\\ e=05,p=8
=27 N . ] [ ° "~
: iR —4r -
L N - \
-4} *. *
—~ : N N i @ g
= N =~ _gl hRC The truncation error reaches |
S 4 . & [ | Yo the numerical roundoff
OS o o [ Exponential AN .
o i / e The truncation error reaches | % gl convergence R
-8} Exponential AN ., thenumerical roundoff - = : AN .
i convergence N l 1 I AN
I AN ] f .
~-10F N . -10r N
, . , , .
: ° 90— — ¢ — —9— — : \‘¥._!_'_.__
—12¢ 12}
0 5 10 15 20 25 30 - :
N 0 5 10 15 20 25 30 35 40 45 50
N
[ Canizares & Sopuerta (2011)]. 30
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The Particle-without-Particle Scheme

Snapshots from the Eccentric (e=0.5,p= 7.1) case (D=10,N=100) (¢,m) = (2,2)

0 N 0 N [Z/[] 0 N 0 N
P 00 I I'OOO OOOOOI PO0.000000 I cee IQ I
< " " >
r, =1,(t)
0.2f " | | | | | " 0.03 | | | | | | 0.12f
0.12 : I
| | 0.02k B 0.08
__-0.08 S = W W i
= 0.1

. 0.1 0 1 :
§ 08 H % /\ M g ™ T
= _0.28 08 | =00 | = —0.08 °

=0.02] -0 e -o.12-°-1\
-0.38 . .

048 4 ‘6 f? 10‘ | | B -0.03r s 1w | | N -0.16; K 6 8 10 | | |
600 -400 -200 O 200 400 600 ~600 -400 =200 0O 200 400 600 -600 -400 -200 O 200 400 600
r* [M] r* [M] r* [M]
“x Alm m
W, =0, [ I S PRI S
. -
P (1 o Tp ) p (1 rp )

[ Canizares, Sopuerta & Jaramillo (2010 )].
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The Particle-without-Particle Scheme

Results for the self-force components:
e We have employed lpor =17, D = 10,N = 100 and Ar* =2 — 5M,

The Self-force values have been obtained near the pericenter. [ Canizares, Sopuerta & Jaramillo (2010 )].

* We compare our results with posterior ones obtained in the frequency-domain
[Warburton & Barack (2010)]

(e,p) Fao PwP Frequency-Domain | Relative Difference

Mo R | 45171961074 | 4.517994-10~* 0.01%
q t

(0.1,6.3) | M @F | 2125049 - 10~ 2.125 710~ 0.03%
Te®F | —6.204083-107° | —6.20401- 1077 3-107°%
Megi | 7.698 048107 | 71773107 0.25%

(0.3,6.7) | M= ®F | 3.63 3926 - 10~* 3.6322- 10~ 0.04%
% ®% | —9.040222-107° | —9.04021-107? 1.5-107°%
Megr | 1.233071-107% | 1.2331-107° 0.015%

(0.5,7.1) | M= ®% | 5.612209 10~ 5.617 9 - 104 0.1%
Fe®f | —1.268 5601072 | —1.26857- 107 6.1-107*%
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Summary

e The PwP scheme provides accurate and efficient self-force

computations in (1+1)

e [t is a robust method suitable to deal with generic EMRI orbits.

e We are working to extend the PwP scheme to 2+ computations
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