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Overview

The paradigm of Effective Field Theory (EFT)

The classical mechanics of non-conservative systems

Radiation reaction in EFT



Effective field theory paradigm



What's been done with EFT:  A snapshot

Potentials for non-spinning binaries thru 3PN
(Goldberger, Rothstein, Gilmore, Ross, Chu, Foffa, Sturani)

Radiative moments thru 3PN 
(Ross, Goldberger, Porto, Rothstein)

Spin-orbit & spin-spin potentials thru 4PN & 3PN, resp.
(Porto, Rothstein, Levi, Perrodin)

PN radiation reaction thru 3.5PN 
(CRG, Leibovich)

Gravitational waveform at LO 
(CRG)
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(Ross, Goldberger, Porto, Rothstein)

Spin-orbit & spin-spin potentials thru 4PN & 3PN, resp.
(Porto, Rothstein, Levi, Perrodin)

PN radiation reaction thru 3.5PN 
(CRG, Leibovich)

Gravitational waveform at LO 
(CRG)

Tidal Love number for BH 
(Smolkin, Kol)

First-order gravitational self-force 
(CRG, Hu)

Third-order scalar self-force 
(CRG)

Caged black holes 
(Kol, Smolkin, Chu, Goldberger, Rothstein)

Cosmological perturbation theory
(Baumann, Nicolis, Senatore, Zaldarriaga,...)

Inflation 
(Senatore, Zaldarriaga,...)

Hydrodynamics 
(Nicolis, Dubovsky, Endlich, Hui, Son,...)

Higher dimensional BHs 
(Emparan, Harmark, Niarchos, Obers)

Condensed matter/Biophysics 
(Yolcu, Rothstein, Deserno)

Absorptive effects 
(Rothstein, Goldberger, Porto)

Radiation reaction on extended charges
(CRG, Leibovich, Rothstein)



What is effective field theory?

EFT is a way of parameterizing long-distance physics with effective 
degrees of freedom that account for the short-distance effects.

EFT utilizes a separation of scales to describe perturbative corrections

Many features of EFT arise in more familiar contexts

EFT has bells & whistles to streamline perturbative computations

- e.g., Feynman diagrams, renormalization group theory

- Matched asymptotic expansions
- Multipole moment expansions
- Dimensional analysis

- e.g., lengths, masses, velocities

- Symmetries are guiding principle
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The recipe to make your own EFT

Step 1:  Identifying the relevant degrees of freedom and their symmetries

Step 2:  Writing most general action consistent with symmetries

Step 4:  Computing stuff

Step 3:  Matching to a specific theory, model, or data

EFT usually involves:



Example:  Motion of an extended charge

Consider the motion of an extended (spherical) charge distribution

Metal

Dielectric

Superconductor

Metamaterial

etc.

A complete description of the motion and radiation is hopelessly complicated...

CRG, Leibovich & Rothstein, PRL (2010)

⌅Eext, ⌅Bext

⌃P (t,x(t)), �(t,x(t)), . . .

R

L
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Metal

Dielectric

Superconductor

Metamaterial

etc.

A complete description of the motion and radiation is hopelessly complicated...

CRG, Leibovich & Rothstein, PRL (2010)

⌅Eext, ⌅Bext

⌃P (t,x(t)), �(t,x(t)), . . .

R

L

In many physical cases, R << L implying a scale separation

=) An EFT description is admissable
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The EFT action (1)

Incomplete!  

We are ignoring interactions due to the finite size of the charge distribution that 
must inevitably contribute to the dynamics

How can we incorporate finite size effects and maintain a point particle description?

Answer:  Use symmetries as the guiding principle of what could possibly be

Add extra worldline terms to the action that are consistent with the underlying 
symmetries of the full theory

Replace full theory by a point particle description of a charge coupled to field

S[zµ, A
µ

] = �1
4

Z

x

Fµ⌫F
µ⌫

�m

Z
d⌧ + e

Z
d⌧ uµA

µ

(z)

Relevant degrees of freedom: z

µ(�) , Aµ(x
↵)



The EFT action (2)

What are the underlying symmetries here?



The EFT action (2)

What are the underlying symmetries here?

Lorentz (Poincare) invariance [Rotational, time-reversal & parity invariance]



The EFT action (2)

What are the underlying symmetries here?

Lorentz (Poincare) invariance [Rotational, time-reversal & parity invariance]

Gauge invariance



The EFT action (2)

What are the underlying symmetries here?

Lorentz (Poincare) invariance [Rotational, time-reversal & parity invariance]

Gauge invariance

Reparameterization invariance of worldline



The EFT action (2)

What are the underlying symmetries here?

Lorentz (Poincare) invariance [Rotational, time-reversal & parity invariance]
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The EFT action for the extended charge and the field is then
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What are the underlying symmetries here?

The EFT action: 

- Is model independent (matching coefficients Cd, Ce, Cm,... contain info about material)

- Yields results equivalent to the full theory when R < L and the coefficients are known

- Extra interactions involve derivatives of radiation field and are perturbative corrections to 
a pure point particle description

Lorentz (Poincare) invariance [Rotational, time-reversal & parity invariance]

Gauge invariance
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The structure of the terms in the Lagrangian is

(number) x (local function of long-distance field) 

This is a consequence of the scale separation
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- The precise location of the apparent point-like charge is immaterial
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Power counting

EFT action has infinite number of terms, which are perturbative corrections in R/L:
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The story of O(R)

Power counting the interaction terms in the EFT action yields an interesting result:
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Or so it was thought...
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Feynman diagrams
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Feynman diagrams

Perturbative solution to wave equation can be represented diagrammatically
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Feynman diagrams

Dictionary ("Feynman rules"):
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Feynman diagrams
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But there's a problem...

Naive application of EFT to radiating systems yields no radiation reaction

- Radiation reaction in electrodynamics
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The problem is not with EFT but with classical mechanics itself...

- Radiation reaction in compact binaries

Se↵ [z
µ
] = (lower order conservative PN terms)� G

10

Z
dt Qij(t)

d5Qij(t)

dt5
+ · · ·

CRG & Tiglio (2009)

- Self-force in extreme mass ratio binaries

Se↵ [z
µ] = �m

Z
d⌧ + 4⇡Gm2

Z
d⌧d⌧ 0 u↵u�


G ret
↵��0�0(z

µ, zµ
0
) + G adv

↵��0�0(z
µ, zµ

0
)

2

�
u�

0
u�

0
+ · · ·

CRG & Hu (2009)
CRG & Tiglio (2009)



Classical mechanics 
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Equation of motion for q(t) is (from Hamilton's principle)

An illustrative example (2)
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A few remarks:

-- Dependence on advanced Green function implies:

      1) Solutions do not evolve causally
      
      2) Solutions are not specified by initial data alone

-- Kernel of the integral is symmetric in time, implies only conservative interactions

      Does not account for dissipation (a time-asymmetric process)



Boundary conditions, Green functions & dynamics

The reason for these unphysical features is the very formulation of 
Hamilton's principle itself

qi

qf
t = tf

t = ti

=) Boundary conditions
in time



Boundary conditions, Green functions & dynamics

The reason for these unphysical features is the very formulation of 
Hamilton's principle itself

qi

qf
t = tf

t = ti

=) Boundary conditions
in time

(
)

Time-symmetric
Green functions

Sturm-Liouville 
theory



Boundary conditions, Green functions & dynamics

The reason for these unphysical features is the very formulation of 
Hamilton's principle itself

qi

qf
t = tf

t = ti

=) Boundary conditions
in time

Conservative dynamics ()

(
)

Time-symmetric
Green functions

Sturm-Liouville 
theory



Boundary conditions, Green functions & dynamics

The reason for these unphysical features is the very formulation of 
Hamilton's principle itself

qi

qf
t = tf

t = ti

=) Boundary conditions
in time

Conservative dynamics ()

(
)

Time-symmetric
Green functions

Sturm-Liouville 
theory=

)



Boundary conditions, Green functions & dynamics

The reason for these unphysical features is the very formulation of 
Hamilton's principle itself

qi

t = tf

t = ti

=) Boundary conditions
in time

Conservative dynamics ()

(
)

Time-symmetric
Green functions

Sturm-Liouville 
theory=

)

vi

?



Boundary conditions, Green functions & dynamics

The reason for these unphysical features is the very formulation of 
Hamilton's principle itself

qi

t = tf

t = ti

=) Boundary conditions
in time

Conservative dynamics ()

(
)

Time-symmetric
Green functions

Sturm-Liouville 
theory=

)

vi

?
Initial



Boundary conditions, Green functions & dynamics

The reason for these unphysical features is the very formulation of 
Hamilton's principle itself

qi

t = tf

t = ti

=) Boundary conditions
in time

Conservative dynamics ()

(
)

Time-symmetric
Green functions

Sturm-Liouville 
theory=

)

vi

?
Initial

Retarded



Boundary conditions, Green functions & dynamics

The reason for these unphysical features is the very formulation of 
Hamilton's principle itself

qi

t = tf

t = ti

=) Boundary conditions
in time

Conservative dynamics ()

(
)

Time-symmetric
Green functions

Sturm-Liouville 
theory=

)

vi

?
Initial

Retarded

Non-conservative



A hint...
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Use two different sets of variables
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A hint...

Hint:

Advanced Green functions appears because               is symmetric in q(t)q(t 0) t $ t 0

Interestingly, doubled variables appear as early as 

- 1970 (Staruszkiewicz) for a Lagrangian, and

- 1997 (Schaefer, et al.) for a Hamiltonian
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Hamilton's principle & initial conditions (1) CRG (2012)

Introduce two paths such that:

1) Both paths have vanishing displacements at the initial time

2) The coordinates and velocities of both paths are equal at the final time 
   (the equality condition)
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Hamilton's principle & initial conditions (1) CRG (2012)

Introduce two paths such that:

1) Both paths have vanishing displacements at the initial time

2) The coordinates and velocities of both paths are equal at the final time 
   (the equality condition)

After all variations are done, identify both paths with the physical one 
(the physical limit)

1

2

t = tf

t = ti



New action defined by the total line integral of the Lagrangian along both 
segments

Hamilton's principle & initial conditions (2) CRG (2012)
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Hamilton's principle & initial conditions (2) CRG (2012)
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3) K measures the "openness'' of a system

K = 0Closed if K 6= 0Open if 
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- Virtual paths are given by:
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Conditions at the time boundaries

- Vanishing displacements at initial time

⌘1(ti ) = 0 = ⌘2(ti ) =) ⌘+(ti ) = 0 = ⌘�(ti )
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Boundary contributions to action

- Continuity of coordinates at final time
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- Continuity of velocities and continuity of coordinates at final time 
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Equations of motion

- With the boundary term eliminated:
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- Lastly, identify both paths as the physical one, q(t) -- the "physical limit"
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The energy function
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- And define the energy function as the value of the Hamiltonian
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Extra goodies

A Hamiltonian for non-conservative systems can be constructed

New Hamilton's equations of motion

Poisson brackets

New action (with K=0) is classical limit of Schwinger's initial value formulation 
of quantum theory Schwinger (1961)

A(q1, q2, p1, p2) ⌘ H(q1, p1)� H(q2, p2)� K (q1, q2, p1, p2)

{{f , g}} ⌘ @f

@qa
@g

@pa
� @f

@pa

@g

@qa

q̇ =
@H

@p
�

@K

@p�

�

p.l.

ṗ = �@H

@q
+


@K

@q�

�

p.l.

etc...
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Coupled oscillators again

Formally double the variables

New action

Se↵ [q1, q2, {Qn1}, {Qn2}] = S [q1, {Qn1}]� S [q2, {Qn2}]

(q, {Qn}) ! (q1, q2, {Qn1}, {Qn2})

Integrate out the Q's
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n+ (t) +
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M

Z tf

ti
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ret (t � t 0)q+(t

0)

Qn�(t) =
�n

M

Z tf

ti

dt 0 G (n)
adv(t � t 0)q�(t

0)

Effective action and equations of motion
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dt

⇢
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n
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Summary of the new Hamilton's principle

Usual Hamilton's principle does not properly describe non-conservative 
systems (e.g., dissipation)

New Hamilton's principle is compatible with initial data

Lagrangian and Hamiltonian formulations for 
general non-conservative systems

=)



Radiation reaction in EFT



Radiation reaction on extended charge (1)

- Compare to effective action from usual Hamilton's Principle

Se↵ [z
µ] = �m

Z
d⌧ � e2

8⇡

Z
d⌧ z↵ȧ↵

Effective action

Se↵ [z
µ
1 , z

µ
2 ] = �m

Z
(d⌧1 � d⌧2) +

e2

6⇡

Z
d⌧+ z�↵

�
ȧ↵+ + u↵+u

�
+ȧ+�

�
+ · · ·



Radiation reaction on extended charge (1)

- Compare to effective action from usual Hamilton's Principle

Se↵ [z
µ] = �m

Z
d⌧ � e2

8⇡

Z
d⌧ z↵ȧ↵

Effective action

Se↵ [z
µ
1 , z

µ
2 ] = �m

Z
(d⌧1 � d⌧2) +

e2

6⇡

Z
d⌧+ z�↵

�
ȧ↵+ + u↵+u

�
+ȧ+�

�
+ · · ·

=) F↵
ALD(⌧) =

e2

6⇡
(ȧ↵ + u↵u� ȧ�)0 =

�S

�zµ�(⌧)

����
z�=0,z+=z

Self-force

- Thus, radiation reaction (a dissipative force) is derived from a Lagrangian



Radiation reaction on extended charge (2)

Effective action in non-relativistic limit ⇢K
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Radiation reaction on extended charge (2)

Effective action in non-relativistic limit ⇢K

Change in mechanical energy
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@~v

� L

dh

dt
= �~v ·


d

dt

@K

@~v�
� @K

@~z�

�

p.l.

⇤e↵ [~z±] =
m

2
(~v 2

1 � ~v 2
2 ) +

e2

6⇡
z�i ȧ
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Radiation reaction on extended charge (2)

Effective action in non-relativistic limit ⇢K
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i
+ + · · ·



Radiation reaction on extended charge (2)

Effective action in non-relativistic limit ⇢K
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2
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i
+ + · · ·



Radiation reaction on extended charge (2)

Effective action in non-relativistic limit ⇢K

=
1

2
m~v 2

= +
e2

6⇡
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Change in mechanical energy
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d
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- Move time derivative onto the velocity

d

dt

✓
h � e2

6⇡
~v ·~a

◆
= � e2
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~a 2
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Radiation reaction in compact binaries (1)

The EFT for this system:

Identify the relevant degrees of freedom and their symmetries

General coordinate invariance

Reparameterization invariance of worldline
{Xµ(⌧), hµ⌫(x

↵)}

Write most general action consistent with symmetries (i.e., derivative expansion)

S [Xµ, hµ⌫ ] =
1

16⇡G

Z

x

g1/2R �M

Z
d⌧ +

Z
d⌧ Q

IJ

(⌧)E IJ(X ) + · · ·

M,QIJ , S
IJ , ...



Radiation reaction in compact binaries (2)

Matching to a specific theory, model, or data
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mKx
i
K (t)x

j
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CRG & Leibovich, (2012) 
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- Resulting force is precisely the 2.5PN radiation reaction of Burke & Thorne
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- Resulting force is precisely the 2.5PN radiation reaction of Burke & Thorne

- Compare to effective action from usual Hamilton's Principle

Se↵ [~x1,~x2] =
m

2

Z
dt ~v 2

+ (3PN potentials)� G

5

Z
dt Q ij

(t)
d5Qij

dt5
+ O(v7

)

Se↵ [~x1±,~x2±] =
m

2

Z
dt (~v 2

1 � ~v 2
2 ) + (3PN potentials)� G

5

Z
dt Q ij

�(t)
d5Q+ij

dt5
+ O(v7

)

Compute stuff:  Leading order radiation reaction force (2.5PN = v5) CRG & Tiglio, (2009)
CRG & Leibovich, (2012) 



Radiation reaction in compact binaries (2)

Matching to a specific theory, model, or data

Q

ij(t) =

"
2X

K=1

mKx
i
K (t)x

j
K (t)

#

STF

+ · · ·M = m1 +m2 + · · ·

=)0 =
�S

�x i
K�(t)

����
x

K�=0,x
K+=x

K

F

i
Burke�Thorne

(t) = �2mKG

5

d

5

Q

i
j(t)

dt

5

x

j
K (t)

- Resulting force is precisely the 2.5PN radiation reaction of Burke & Thorne

Recently, the 3.5PN radiation reaction was computed in EFT and agreement found 
with published results  CRG & Leibovich, (2012)

- Compare to effective action from usual Hamilton's Principle
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Effective action

I

ij
�(t) =

2X

K=1

mK

⇥
x

i
K�x

j
K+

⇤
STF

I ij+(t) =
2X

K=1

mK

⇥
x iK+x

j
K+

⇤
TF

+ O(x2K�)

⇤e↵ [~x1±,~x2±] = L3PN[~xK1]� L3PN[~xK2] +
G

5
I ij�(t)I

(5)
+ij (t) + O(v7)

⇢K

⇤e↵ [~x1±,~x2±] = L3PN[~xK1]� L3PN[~xK2]�
G

5
I ij�(t) I

(5)
+ij (t) + O(v7)

⇤e↵ [~x1±,~x2±] = L3PN[~xK1]� L3PN[~xK2]�
G

5
I ij�(t) I

(5)
+ij (t) + O(v7)



Radiation reaction in compact binaries (3)

Effective action

I

ij
�(t) =

2X

K=1

mK

⇥
x

i
K�x

j
K+

⇤
STF

I ij+(t) =
2X

K=1

mK

⇥
x iK+x

j
K+

⇤
TF

+ O(x2K�)

⇤e↵ [~x1±,~x2±] = L3PN[~xK1]� L3PN[~xK2] +
G

5
I ij�(t)I

(5)
+ij (t) + O(v7)

⇢K

⇤e↵ [~x1±,~x2±] = L3PN[~xK1]� L3PN[~xK2]�
G

5
I ij�(t) I

(5)
+ij (t) + O(v7)

⇤e↵ [~x1±,~x2±] = L3PN[~xK1]� L3PN[~xK2]�
G

5
I ij�(t) I

(5)
+ij (t) + O(v7)

Change in mechanical energy

dh

dt

= �
2X

K=1

~
vK ·


d

dt

@K

@~vK�
� @K

@~xK�

�

p.l.

h =
2X

K=1

~vK · @L

@~vK
� L



Radiation reaction in compact binaries (3)

Effective action

I

ij
�(t) =

2X

K=1

mK

⇥
x

i
K�x

j
K+

⇤
STF

I ij+(t) =
2X

K=1

mK

⇥
x iK+x

j
K+

⇤
TF

+ O(x2K�)

⇤e↵ [~x1±,~x2±] = L3PN[~xK1]� L3PN[~xK2] +
G

5
I ij�(t)I

(5)
+ij (t) + O(v7)

=
2X

K=1

1

2
mK~v

2
K + V3PN

⇢K

⇤e↵ [~x1±,~x2±] = L3PN[~xK1]� L3PN[~xK2]�
G

5
I ij�(t) I

(5)
+ij (t) + O(v7)

⇤e↵ [~x1±,~x2±] = L3PN[~xK1]� L3PN[~xK2]�
G

5
I ij�(t) I

(5)
+ij (t) + O(v7)

Change in mechanical energy

dh

dt

= �
2X

K=1

~
vK ·


d

dt

@K

@~vK�
� @K

@~xK�

�

p.l.

h =
2X

K=1

~vK · @L

@~vK
� L



Radiation reaction in compact binaries (3)

Effective action

= �G

5
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Take-home points

Hamilton's Principle of Extremal Action, as usually formulated, has shortcomings:

1) Is applicable to systems with boundary data in time

2) Cannot generally account for dissipative effects

Hamilton's Principle can be reformulated to address these shortcomings

- A variational calculus for initial value problems

- Naturally yields Lagrangian & Hamiltonian formulations for non-conservative systems

Most EFTs rely on building an action and thus on Hamilton's Principle

Hamilton's Principle compatible with initial data + EFT is a powerful framework

EFTs exploit separation of scales to parameterize effects of short-distance physics on 
long-distance physics



5) Scalar self-force and waveforms through 3rd order in mass ratio  (see Wed talk)
    CRG, CQG (2011a, b)

Conclusion

New Hamilton's principle compatible with initial data is successfully applied in EFT:

2) 2.5 & 3.5 PN radiation reaction forces
    CRG, & Tiglio, PRD (2009); CRG & Leibovich (arXiv: 1205.3842)

4) Gravitational self-force and waveform at 1st order in mass ratio
    CRG & Hu, PRD (2009)

1) Finite size corrections to radiation reaction force on an extended charge 
    CRG, Leibovich & Rothstein, PRL (2010)

3) 4 PN tail contribution to potential
    Foffa & Sturani (arXiv:1111.5488)



5) Scalar self-force and waveforms through 3rd order in mass ratio  (see Wed talk)
    CRG, CQG (2011a, b)

Conclusion

Some possible applications of the new Hamilton's Principle:

- Engineering/Economics:  Optimal control/Pontryagin's Minimum Principle

- Numerical computing:  Variational/Symplectic integrators

- Mathematics:  Variational calculus for initial value problems

- Physics:  Lots! -- Statistical mechanics, fluid mechanics, kinetic theory, nonlinear dynamics,...

New Hamilton's principle compatible with initial data is successfully applied in EFT:

2) 2.5 & 3.5 PN radiation reaction forces
    CRG, & Tiglio, PRD (2009); CRG & Leibovich (arXiv: 1205.3842)

4) Gravitational self-force and waveform at 1st order in mass ratio
    CRG & Hu, PRD (2009)

1) Finite size corrections to radiation reaction force on an extended charge 
    CRG, Leibovich & Rothstein, PRL (2010)

3) 4 PN tail contribution to potential
    Foffa & Sturani (arXiv:1111.5488)



Extra slides



A brief history of Effective Field Theory (EFT)

Long history...

Initial motivations come from Ken Wilson's ideas on renormalization 
group

(talk about coarse-graiing, how that goes into redefining the interactions, 
etc.?)

Application of EFT to classical physics by Goldberger & Rothstein
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Aspects of EFT appear in very familiar examples (e.g., extended charge)
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Aspects of EFT appear in very familiar examples (e.g., extended charge)
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Aspects of EFT appear in very familiar examples (e.g., extended charge)
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r >> R
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- The short-distance physics factorizes from the long-distance physics

- Far away, the charge looks like a point carrying multipole moments
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Common ground with EFT (2)

- Field on worldline diverges, simply because the expansion is invalid there

- Long-wavelength perturbations interact locally in space and time

- The long-distance field is parameterized by STF moments

Use highly successful renormalization group

�(x) =
q

r

+
pix

i

r

3
+

1

2

Iijx
i
x

j

r

5
+ · · ·

Can determine the moments through experiment 
or

matching to the predictions of a theory 



Electrostatics in a Lagrangian

Lagrangian for electric potential

�(x) =
1X
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Expand field about arbitrary point in charge distribution



Electrodynamics in a Lagrangian

In an inertial frame, the action is

L[�] = �1

4

Z

x

Fi0(x)F
i0(x) +

1X

n=0

1

n!
IN�1
STF

i @N�1Fi0(x0)

In terms of field strength tensor (gauge invariant)
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2

t = tf

t = ti

q1(ti ) = qi

1
2

t = tf

t = ti

q2(ti ) = qi

Identifying the paths:  The "physical limit" (1)

An ambiguity in associating physical initial data for a physical path with 
two unphysical paths

1

2

t = tf

t = ti

+

q+(ti ) = qi

Natural to identify physical initial data with q+(ti)

Physical limit =) q�(t) ! 0, q+(t) ! q(t)

- Make this a convention
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Connection to quantum theory

The new action is the one that arises in the classical limit of the 
corresponding "in-in" or "closed-time-path (CTP)" quantum theory

"In-in" or "CTP" formulation of quantum theory

- Is an initial value formulation of path integral quantization

- Developed by Schwinger, Keldysh, Feynman, Vernon, Hu, Calzetta, Cooper,...

- On the other hand, path integral quantization based on the new action
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Z
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⇢
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~

Z
dt(J1q1 � J2q2)

�
= Zin�in[J1, J2]

- Approach the classical limit
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Z
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Self-force in extreme mass ratio binaries (1)



The EFT for this system:

Identify the relevant degrees of freedom and their symmetries

Write most general action consistent with symmetries (i.e., derivative expansion)

General coordinate invariance

Reparameterization invariance of worldline

Self-force in extreme mass ratio binaries (II)

{zµ(⌧), hµ⌫(x↵)}

S [zµ, hµ⌫ ] =
1

16⇡

Z

x

g1/2R �m

Z
d⌧ + C

e

Z
d⌧ E↵�(z)E↵�(z) + · · ·

- Power counting

Geodesic deviation from finite-size is O(R4)
CRG & Hu (2009)

=)Ce ⇠ R5 ⇠ m5

Matching to a specific theory, model, or data

- Ce vanishes for a black hole 
  Damour & Nagar (2009), Binnington & Poisson (2009), Kol & Smolkin (2011)



Self-force in extreme mass ratio binaries (III)

Compute stuff:  Self-force through first order in mass ratio

- New action

S [zµ1,2, h
µ⌫
1,2] ⌘ S [zµ1 , h

µ⌫
1 ]� S [zµ2 , h

µ⌫
2 ]

T

↵�
1,2 ⌘ m

Z
d�

�4(x � z1,2)
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u

↵
1,2u

�
1,2

(�u

2
1,2)

1/2

= � 1

64⇡
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✓
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◆
�m

Z
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1

2

Z

x

ha↵�T
↵�
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+ · · ·

- Integrate out metric perturbations using Feynman diagrams and rules to get eff action

Se↵ [z
µ
1,2] = �m

Z
(d⌧1 � d⌧2)+ a b

m m

+O
�
(m/M)2

�



a b

m m

Self-force in extreme mass ratio binaries (IV)

- Diagram for leading order self-force
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