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Transient resonances may effect parameter estimation

- Change of phase by about 15 rad if waveform doesn't track resonance

Flanagan & Hinderer (2010)� ⇠ 1
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Why bother with scalar fields?

- Most useful regularization scheme (Detweiler & Whiting (2003)) first developed and 
understood in a scalar model

Historically, scalar models offer a simpler framework

- Numerical self-force computations first accomplished for linear scalar models

- Conceptually cleaner because not a gauge theory



Why bother with scalar fields?

- Most useful regularization scheme (Detweiler & Whiting (2003)) first developed and 
understood in a scalar model

Historically, scalar models offer a simpler framework

- Numerical self-force computations first accomplished for linear scalar models

- Conceptually cleaner because not a gauge theory

Higher order perturbative expressions can be used "out of the box" for 
Green function based self-force computations

- Hadamard decomposition most useful for this

- Applicable for arbitrary accelerated orbits



Nonlinear scalar self-force:

	
 	
 A brief survey

CRG, CQG (2012a, b)
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Action for gravitational perturbations from a small compact object:

- Lorenz gauge

- Ricci-flat background (e.g., Schwarzschild, Kerr)

- Ignore finite size, spin, and permanent moments of small body
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Nonlinear scalar theory (2)

A fortuitous change of field variable removes all self-interactions of the 
field

r↵ = r↵�

✓
1 +

1X

n=1

2an+2

(n + 2)!
�n

◆1/2



Nonlinear scalar theory (2)
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- Action for a nonlinear scalar field becomes one for a linear field with nonlinear 
couplings to the small body
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Self-force and radiated field (1)

In previous work, the 3rd order self-force and corresponding radiation 
field were derived  CRG, CQG (2012a, b)

- Calculated using EFT and the classical mechanics for non-conservative systems

 R(z
µ) = �mc1IR(z

µ) +m2c1c2

Z
d⌧ 0 DR(z

µ, zµ
0
)IR(z

µ0
)

�m3c1c
2
2

Z
d⌧ 0

Z
d⌧ 00 DR(z

µ, zµ
0
)DR(z

µ0
, zµ

00
)IR(z

µ00
)

�m3c21c3
2

Z
d⌧ 0 DR(z

µ, zµ
0
)I2R(z

µ0
) +O(✏4)



Self-force and radiated field (1)

In previous work, the 3rd order self-force and corresponding radiation 
field were derived  CRG, CQG (2012a, b)

- Calculated using EFT and the classical mechanics for non-conservative systems

 R(z
µ) = �mc1IR(z

µ) +m2c1c2

Z
d⌧ 0 DR(z

µ, zµ
0
)IR(z

µ0
)

�m3c1c
2
2

Z
d⌧ 0

Z
d⌧ 00 DR(z

µ, zµ
0
)DR(z

µ0
, zµ

00
)IR(z

µ00
)

�m3c21c3
2

Z
d⌧ 0 DR(z

µ, zµ
0
)I2R(z

µ0
) +O(✏4)

- Formal expression for self-force found to be

C
�
 R(z

µ)
�
⌘

1X

n=0

cn
n!
 R(z

µ)maµ = �m(gµ⌫ + uµu⌫)r⌫ lnC
�
 R(z

µ)
�



Self-force and radiated field (1)

In previous work, the 3rd order self-force and corresponding radiation 
field were derived  CRG, CQG (2012a, b)

- Calculated using EFT and the classical mechanics for non-conservative systems

 R(z
µ) = �mc1IR(z

µ) +m2c1c2

Z
d⌧ 0 DR(z

µ, zµ
0
)IR(z

µ0
)

�m3c1c
2
2

Z
d⌧ 0

Z
d⌧ 00 DR(z

µ, zµ
0
)DR(z

µ0
, zµ

00
)IR(z

µ00
)

�m3c21c3
2

Z
d⌧ 0 DR(z

µ, zµ
0
)I2R(z

µ0
) +O(✏4)

- Formal expression for self-force found to be

C
�
 R(z

µ)
�
⌘

1X

n=0

cn
n!
 R(z

µ)maµ = �m(gµ⌫ + uµu⌫)r⌫ lnC
�
 R(z

µ)
�

- Regular part of field calculated through 3rd order with DW decomposition

IR(z
µ) ⌘

Z
d⌧ 0 GR(z

µ, zµ
0
)

 R(z
µ) = �mc1IR(z

µ) +m2c1c2

Z
d⌧ 0 GR(z

µ, zµ
0
)IR(z

µ0
)

�m3c1c
2
2

Z
d⌧ 0

Z
d⌧ 00 GR(z

µ, zµ
0
)GR(z

µ0
, zµ

00
)IR(z

µ00
)

�m3c21c3
2

Z
d⌧ 0 GR(z

µ, zµ
0
)I2R(z

µ0
) +O(✏4)

- Regularization via dimensional regularization, implies                    (at all orders)Gret ! GR



Third order self-force and field (2)

- Radiated field in Detweiler-Whiting decomposition

2nd order expression agrees with Rosenthal (2006) for appropriate parameter choices

CRG, CQG (2012b)
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Third order self-force and field (3)

- 3rd order self-force
in Hadamard decomposition

Class. Quantum Grav. 29 (2012) 015010 C R Galley

and 6. After a straightforward but tedious calculation we find

meff(τ )aµ = Pµν

{
m2c2

1

[
fν (zµ) + Itail

ν (zµ)
]
− m3c2

1c2

[
2 fν (zµ)Itail(zµ) + Itail

ν (zµ)Itail(zµ)

+ lim
ε→0+

∫ τ−ε

−∞
dτ ′∇νDret(zµ, zµ′

)Itail(zµ′
)

]

+ m4c2
1c2

2

[
fν (zµ)I2

tail(z
µ) − 1

2π
fν (zµ)

DItail(zµ)

dτ
− 1

4π
Itail
ν (zµ)

DItail(zµ)

dτ

+ Itail
ν (zµ) lim

ε→0+

∫ τ−ε

−∞
dτ ′Dret(zµ, zµ′

)Itail(zµ′
)

+ Itail(zµ) lim
ε→0+

∫ τ−ε

−∞
dτ ′∇νDret(zµ, zµ′

)Itail(zµ′
)

+ 2 fν (zµ) lim
ε→0+

∫ τ−ε

−∞
dτ ′Dret(zµ, zµ′

)Itail(zµ′
)

− 1
4π

lim
ε→0+

∫ τ−ε

−∞
dτ ′∇νDret(zµ, zµ′

)
DItail(zµ′

)

dτ ′

+ lim
ε→0+

∫ τ−ε

−∞
dτ ′∇νDret(zµ, zµ′

) × lim
ε′→0+

∫ τ ′−ε′

−∞
dτ ′′Dret(zµ′

, zµ′′
)Itail(zµ′′

)

]

+
m4c3

1c3

2

[
2 fνI2

tail(z
µ) + Itail

ν (zµ)I2
tail(z

µ)

+ lim
ε→0+

∫ τ−ε

−∞
∇νDret(zµ, zµ′

)I2
tail(z

µ′
)

]
+ O(ε4)

}
, (136)

where Itail(zµ) and Itail
ν (zµ) are the following tail integrals:
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is the local radiation reaction force in a non-vacuum background spacetime. The effective
mass of the compact object is meff(τ ) = m'Had(zµ) where 'Had(zµ) is given by
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Nonperturbative self-force effects

CRG (in preparation)
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Assumptions
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Circular geodesics of Schwarzschild
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Assumptions

Continue to ignore finite-size effects

Let only c1 and c2 be non-zero;  all other coefficients vanish

Circular geodesics of Schwarzschild
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Nonperturbative regular field

Wave equation
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Nonperturbative conservative quantities (1)

The components of the worldline equations of motion for circular orbits 
yield non-perturbative expressions for:
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Nonperturbative conservative quantities (1)

The components of the worldline equations of motion for circular orbits 
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Nonperturbative conservative quantities (2)

Effective potential
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Nonperturbative conservative quantities (3)
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Improving perturbation theory

CRG (in progress)
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An ambiguity at first order

The effective action for 1st order self-force generates a 2nd order piece

- Drop the formally 2nd order term

maµ = �mc1(g
µ⌫ + uµu⌫)r⌫ R(z)�mc1 R(z)a

µ

One may either:

- Keep it and see what happens

If keeping this term then

- Can identify an effective mass for the particle
�
m+mc1 R(z)

�
aµ = �mc1(g

µ⌫ + uµu⌫)r⌫ R(z)

- Can incorporate into a partially resummed expression of the 1st order self-force

maµ = �mc1(gµ⌫ + uµu⌫)r⌫ R(z)

1 + c1 R(z)
Improved 1st order

self-force



Improved 1st order self-force effects
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Higher order self-force effects are of intrinsic and practical interest

Conclusions

A simple nonlinear scalar theory helps for gravitational self-force:

- For understanding some conceptual aspects (e.g., regularization at higher orders)

- For developing and studying algorithms for higher order computations

- Provide a context to estimate errors of numerical self-force codes

For a class of nonlinear scalar theories, the regular field can be resummed in the 
mass ratio for circular orbits

A 2nd order piece comes from the 1st order action, which can be used to improve 
the first order perturbative expressions

- Worth studying for improving 1st order gravitational self-force results
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An ambiguity

Worldline equations of motion

Collect 4-acceleration to one side

mC(z)aµ = �mPµ⌫r⌫C(z)

Two equivalent interpretations:

1) Particle carries an effective mass 

2) Inertial mass but an effective self force

me↵ = mC(z)

Fµ
e↵(⌧) =

Fµ
R(⌧)

C(z)
= �mPµ⌫r⌫ lnC(z)

maµ = �m(aµ + Pµ⌫r⌫)C(z)



Comparison with Rosenthal's expression (1)

Rosenthal developed a somewhat complicated procedure to derive the regular 2nd 
order perturbations

- Investigate behavior of wave equation when

- Make ansatz for particular solution

- Use physical considerations to identify divergent b.c.'s for field as field point 
approaches worldline

- Solve the wave equation with those divergent b.c.'s

E. Rosenthal CQG (2006)
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Comparison with Rosenthal's expression (2)

Rosenthal's model is a member of our class of nonlinear theories:
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Combining all the contributions to the scalar perturbations then gives the radiative 
field

Scalar perturbations through 3rd order
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Rich structures

If the c2 parameter is much larger than c1 than one finds rich structure in the non-
perturbative orbital quantities
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Summary

We constructed a class of nonlinear scalar models analogous to the 
perturbative description of EMRIs in GR

Calculated the scalar perturbations and SF through 3rd order

Explicitly showed that DW scheme is valid at higher orders

A subclass of these models can be resummed exactly to yield non-
perturbative expressions in the mass ratio

Showed how various orbital quantities vary with full mass ratio range

Perturbative SF can be improved by retaining the "effective mass" piece


