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Intro

Motivation

Extreme-mass-ratio inspirals

@ solar-mass neutron star or black hole orbits supermassive black hole

@ m emits gravitational radiation, loses energy, spirals into M

@ waveforms carry information about strong-field dynamics and
structure of spacetime near black hole

@ need to model motion of small body

M é
gravitational
waves
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Point particle picture

Linearized theory

@ treat m as point particle in
background g,,,, o ~y
== T(‘fl'; = fﬂ/ mu“uyi(w\/:i(T))dT
o linearized EFE 6G*[hy)] = 87T/}
= hf}l,) = mf,y GWM/,,/u”/u”/dT 2H(7)
Tails
@ perturbation propagates within
light cone

@ also, caustics develop—light
“cone” intersects itself
= hfbl,, depends on entire past
history of
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Intro
Extreme-mass-ratio inspirals

Y é
gravitational
waves
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Intro
Extreme-mass-ratio inspirals

& Q@@
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Intro
Geodesic motion in an effective metric

MiSaTaQuWa (Mino,Sasaki, Tanaka, & Quinn,Wald) equation

@ nonlocal tail acts as potential, exerts force F'* ~ mV*tail
@ tail isn't nice: non-differentiable, not a solution to a field equation

Detweiler-Whiting decomposition
@ local field near particle split into two: hf},,) = hu(y) + hR(l)
° h,SLE}) ~ 2+ O(r%); local bound field of particle

° hff,gl) ~ tail 4 local terms; smooth solution to source-free EFE
R(1)

@ motion is geodesic in effective metric g, + huo

- +\\\\

particle's field hf},,) singular field hﬂ(l) regular field hfﬁ(,l
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Intro
utline

© Introduction

© Motion of a small extended body

e Point particle limits & matched asymptotic expansions
@ Equation of motion

© Finding the global field
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Extended body

Outline

© Motion of a small extended body
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Extended body

A small extended body moving through spacetime

Fundamental question
@ how does a body's gravitational field affect its own motion?

Regime: small body body of mass m manifold M

5 0 time
@ examine spacetime
(M,g,,) containing
body of mass m and
external lengthscales R
@ seek representation of
body's motion when its

mass and size are <K R )
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Extended body

Non-perturbative approach [Harte

body at
time 7

@ assume the body is material, not
a black hole

@ give body stress-energy TH

o define momentum P ~ fbody THv

choose representative worldline v with coordinates z#(7) inside body

“
@ relate u* = dd% to P
= LF determines acceleration of v
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Extended body

Motion of a test body in an effective metric

Non-perturbative decomposition

@ split metric into “self-field” generated by body and slowly varying
remainder

full metric g, "self field" hS effective metric  g,,,, + h%

j2% nv

Equation of motion

o define multipole moments I ~ fbody i

@ body moves as test body in effective metric g,,, + hffy:

motion is geodesic except for coupling of multipole moments to
curvature of effective metric
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Extended body
However...

Material body

@ integrals over body's interior preclude description of black hole

@ describing motion in terms of metric isn't sufficient: we need a
means of solving the EFE to obtain the metric (and isolating the
piece of it that determines the motion)
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Limits

Outline

e Point particle limits & matched asymptotic expansions
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Limits

Perturbation theory

@ treat body as source of perturbation of external background
spacetime (Mg, gu):

Euv = Guv + ehf},j) + thfV) + ...

@ ¢ counts powers of m

@ assume body is compact, so as m — 0, linear size — 0 at same rate

@ seek representation of motion in (ME,QW)

diffeomorphism

/\

Body in exact spacetime Approximation of motion in
external spacetime
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Approach | [Gralla & Wald '08]: power series

Expansion of EFE

@ expand metric in Taylor series:

8w (2, €) = guu(x) + ehf}v (z) + e2hffy) () +...
@ solve EFE order by order outside body:

8GRV =0
8G,u [MP] = —82G, [RV)]

@ motion determined by Bianchi identity
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Limits

Representation of motion in power series

Expanded worldline

o worldline g time ~
identified as remnant

oy
f lef =
o} t.Jody et-at e=0 M
@ 7 is geodesic 7
Y0

@ corrections
accounted for by
deviation vector §y

Problem

@ as body drifts away from g, dv grows large
@ representation of motion only meaningful and accurate for short time
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Approach Il [Pound '10]: self-consistent expansion

Expansion of EFE

@ allow y to depend on € and assume expansion of form

g#,,(x, 5) = gﬁw(x) + h;w(m; 'Y()
= gu(z) + ehf},}) (z;7.) + thLQZ,) (@;7e) + - -

@ need a method of systematically solving for each hfff,)
= impose Lorenz gauge (or other wave gauge) on the total
perturbation: V,h*" =0

@ )G, becomes a wave operator and EFE outside body becomes
weakly nonlinear wave equation:

Ohuy + 2R, hpe = 262G k] + ...

@ can be split into wave equations for each subsequent hfff,) [v] and
exactly solved for arbitrary v

@ gauge condition will then constrain
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Limits

How to determine motion? Buffer region

M
.
@ define buffer region by
mILr <R m
@ because m < r, can treat inner region
mass as small perturbation (r ~m)
of external background buffer
@ because r < R, can use region
information about small external universe (r ~ R)
body
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Limits
Matched asymptotic expansions: inner expansion

Zoom in on body

@ use scaled coords 7 ~ 1 /e to keep size of body fixed, send other
distances to infinity as e — 0

@ unperturbed body defines background spacetime gy, in inner
expansion

@ buffer region at asymptotic infinity r > m
= can define multipole moments without integrals over body

diffeomorphism 1))
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Limits

Representation of motion in self-consistent approximation

Enforce a relationship between the expansions

...to define a worldline for all time, even for black hole

@ in buffer region, write metric in
coordinates centered on

@ make body at “center” of
coordinates, in that its mass
dipole vanishes
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Motion

Outline

@ Equation of motion
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Motion

Local coordinates

Fermi-Walker coordinates

~
@ spatial coordinates z® span
surface intersecting z*(7)
2(t) orthogonally
xCL

@ time t on that surface = proper
time 7

e radial distance 72 = §gpx%a? is

geodesic distance from -y
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Motion

Solving the EFE in buffer region

Expansion for small r

@ allow all negative powers of r in hm)

@ but inner expansion must not have negative powers of €
= most singular power of 7 in e”hf}f,) IS & = o = L

enpn T pn

].
n n,—n ’I'L+1 n, n+1 ’I'L+2 n, n+2
h’(l/)iinh(l/ )+7’ h(u )+7’ h(l/ )+...

Information from inner expansion

@ 1/7™ terms arise from asymptotic expansion of zeroth-order
background in inner expansion

= hfﬁ,’fﬂ) is determined by multipole moments of isolated body
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Motion

Form of solution in buffer region

What appears in the solution?

@ throw expansion into nth-order wave equation, solve order by order
inr
@ expand each h(n’p in spherical harmonics
@ given a worldline v, the solution at all orders is fully characterized by
. . Lm
© body’s multipole moments (and corrections thereto): ~ %
@ smooth solutions to vacuum wave equation: ~ ¢y ™
@ everything else made of (linear or nonlinear) combinations of the
above

Self field and regular field

@ multipole moments define hi&”); interpret as bound field of body

@ smooth homogeneous solutions define h%n); free radiation,
determined by global boundary conditions
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Motion

First and second order solutions

(Fistoder |
o Rl = hio + b
o hiSY ~ 1/r + O(r°) defined by mass monopole m

hﬁ,g ) is undetermined homogenous solution regular at r =0

evolution equations (from gauge condition): = 0 and af; =0

(assuming a”* = ajo) + €afyy +...)

Second order

o h?) = 5P 4 pER)

o ht? ~1/1% + O(1/r) defined by
@ mass correction dm

@ mass dipole M*
@ spin dipole S*

@ evolution equations: SH = 0, om = ..., and M*H = ...
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Motion

A master equation of motion

Evolution of mass dipole

Me — Raﬁ,ﬂsuﬁu’yM's = —ma?l) + %R“,@W;uﬁsw

— §mlg™ +ua”)(2hgl) — L)) wu

)

hots of bod
geodesic deviation Snapshots of bocy

o first-order term in acceleration of ~

@ Mathisson-Papapetrou spin force

o self-force (force due to regular field) ta
°

this relationship between a® and to
M* is valid for any v
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Motion
Equations of motion

Self-force in self-consistent expansion

@ -y defined by M, (t) = 0. Therefore

afy = =% (°0 + ueu®) (2540 — RN WP

@ through order €, small body moves on a geodesic of g, + hllfy

Self-force in power series expansion

@ 7 is geodesic, so aé‘n) = 0. Therefore

OFM® = R® grsulu? M° — Jm (97 + o) (2hs1) — W] ) uPu?

’
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Field

Outline

© Finding the global field
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Effective interior metric

From self-field to singular field

o hi;, and hy,, derived only in buffer region

@ simply extend them to all » > 0 (and r = 0, for h}j‘y)
@ does not change field in buffer region or beyond

y B 4

full metric g, "self field" 1f effective metric g, + hW

na
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Effective interior metric

From self-field to singular field

o hi;, and hy,, derived only in buffer region
@ simply extend them to all » > 0 (and r = 0, for h}j‘y)
@ does not change field in buffer region or beyond

P F

full metric g,,,, "self field" hS

‘pv

effective metric g, + hi,
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Effective interior metric

From self-field to singular field

o hi;, and hy,, derived only in buffer region
@ simply extend them to all » > 0 (and r = 0, for h}j‘y)
@ does not change field in buffer region or beyond

N s v

effective metric g, + hi,

full metric
Bpuv singular field A5

pv
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Obtaining global solution

Puncture/effective source scheme

o define hﬁu as small-r expansion of hiy truncated at order 7 or higher

e PR — P ~ pR
o define hy, = hyy — hy,, =~ hy,

out here, solve
0GM [hyo) = —(52G“”[h,,,(,] +...)

in here, solve—><J

SGM AR ] = 87T [y] — (582G [l + ...) — 6GH[IT,]

° hfw found in buffer region suffices to determine both hﬁy and global
solution outside body
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Field

Effective stress-energy tensor

What looks like the source of the perturbation?

o all terms in hS}, are (linear and nonlinear) combinations of multipole

moment terms ~ Y/ /pt+1
e using 0'9;1/r = —4mé3(x), can show moments are effectively
sourced by
v vag... §H(xP —2P (1
D] = 55 J, T 0T Ty B2 g

@ in buffer region and outside it, body looks like a skeleton of
multipole moments on ~y

Point particle picture recovered

@ at first order, there is only the mass monopole

1/ v 64 (zP—2P (T
= T(’i) f mut 7@\/_%]( ) dr

@ all the early point-particle results hold true
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Field
Conclusion

Determining the motion of a small body

@ a self-gravitating material body moves as a test body in an effective
geometry g, + h},

o EFE solved perturbatively to find full field h,, outside body and the
piece h;%, that determines the motion

@ singular field hfw calculated in buffer region outside body suffices to

determine both hﬁ,, and Ay,

Current status

@ point particle picture and MiSaTaQuWa equation have been justified

@ for spherical body, analytical portion of problem now also complete
at second order

o for more general body, we will require some model for evolution of
body's multipole moments
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