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Machine learning in real life

• Search engine design
I To max chance one gets what he searches in top K entries

• Computational advertising
I Placement of ads to maximize profit

• Design of e-commerce web site
I Selection of selling items to max click thru rate (or profit)

• Selection of headline news
I e.g., which news as headline in news portal at Yahoo, CNN etc

• Object recognition
I OCT hand digits recognition by USPS

• House (pool) cleaning robot.
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State of the art in AI

• AlphaGo
I Beat Ke Jie (ranked #1 in world) 3:0 in 2017
I Major milestone in AI research

• Self-driving

• Conversation robot.
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What is machine learning (ML)?

Definition. Machine learning refers to application, methodology,
and theory relevant to the automatic learning of patterns or
regularities from data.
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Two important assumptions in Machine learning

• The future is related to the past
I The phenomenon is stationary, or the past and future drawn from

the same probability distribution
• Knowledge about the problem under study

I Generalization only possible when knowledge is encoded
I Features being the most elementary form.
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Problems in machine learning

• Classification
I Y ∈ C = {c1, c2, ..., ck}, called labels

• Clustering
I Y not given (often called unsupervised learning)

• Regression
I Y ∈ R, called response

• Ranking
• And a lot more new topics emerging in recent years

I Topic model (e.g., what is the topic of a blogger article)
I Manifold (topological) learning
I Salient sentence extraction
I Graph learning etc.
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A little history about the evolving of machine learning

• Early days
I The AI approach

– 1956 Dartmouth conference marks the start of AI
– Perceptron (Rosenblatt, 1957)
– Dying of the research on Neural network late 1960’s
– Various induction machine, expert system, fuzzy system etc
– PAC learning (Valiant 1984)

I The statistical approach
– Statistical learning theory (Vapnik and Chervonenkis, 1964-1974)
– Fisher’s LDA, logistic regression, k-means, mixture analysis etc
– Early nonparametric statistics (e.g., kNN)

• The revitalization of Neural network in mid 1980’s
• SVM, boosting, Random Forests from early 1990’s and on

I The statistical approach is gaining popularity

• Neural network back again under guise of deep learning (2008-).
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Connections to other subjects

• Aspects of machine learning
I Machine

– Computer science (algorithms to realize machine learning)
I Learning

– Mathematics, probability and statistics (analysis and theory)
I Applications

– Provides motivation and ultimate testbed for learning algorithms.

• What’s the connection of (nonparametric) statistics and ML?
I Both learn from the data
I Nonparametric statistics ⊆ML (by my definition)
I But, as a matter of fact, ML focus more on discrete problems

(e.g., classification) while (nonparametric) statistics more on the
continuous world (e.g., regression).
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Predictive learning or classification

• Given data (X1, Y1), ..., (Xn, Yn), we wish to learn the
relationship f : X 7→ Y s.t.

The future prediction is the best

e.g., smallest error rate (or precision/recall, AUC etc)
I Xi called features, Yi ∈ {1, 2, ..., J} called labels or classes

I (X1, Y1), ..., (Xn, Yn) is called a training sample

I f is called the trained or fitted model

♠ The best possible decision rule (Bayes rule)
I As if one knows the distribution (X,Y ) (often unknown).
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The classification problem

• What does the solution to a classification problem really do?
– Identifying the decision (or class) boundary.
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Loss function

Depends on the application, typical loss functions

• The 0-1 loss

cost =

{
1, if f(X) 6= Y
0, otherwise.

I A loss function of special interest and most commonly used

• Cost-sensitive loss functions, i.e., a cost matrix, for a 6= b,[
0 b
a 0

]
I Suitable when errors in diff classes have diff consequence

– e.g., fraud detection, cost a when mistaking fraud as normal and b
when mistaking normal as fraud.
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Function class

Function class F = {f} determines the type of classifiers

• Linear classifiers
I Logistic regression: logit(P (Y |X)) = Xβ

I SVM: f(X) =
∑n

i=1 wiK(Xi, X) + w0

• Boosting
I f(X) =

∑T (n)
i=1 aih(X1, ..., Xn, X)

with h from some data dependent basis library
• Tree-based classifiers

I C4.5, CART
I Random Forests and its variants.
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Evaluation of a machine learning algorithm

• Train on training data and evaluate on test data
I Most common

• Cross-validation
I Split data into J partitions
I Use any one of the J partitions as test and rest for training
I Average result on all J tests

• Bootstrap and use out of bag estimate
I Train on a sample with replacement of all observations in the data
I Test on the rest
I Repeat many times and average results.
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Evaluation methodology

• Have separate training/test set

• Fit a model (e.g., logistic model) on the training set
• Evaluate the trained model on the test set

I Correct classification when the label matches (0/1 loss)
I More advanced metric like AUC.
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Evaluation illustrated
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Selection of tuning parameters

• Treat the training set as the entire data

• Split training data = training set + tuning set

• Treat tuning set→ test set and proceed as usual evaluation
I Calculate a performance metric, e.g., accuracy
I Select parameters that lead to the best performance
I Use selected parameters for final performance evaluation.
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Performance metrics

Some popular performance metrics

• Error rate
– Most commonly used in statistics and machine learning

• Kappa statistics
– Commonly used in remote sensing, medical assessment

• Area under curve (AUC)
– When detection and false alarm rate matter, e.g., biomarker

discovery, anomaly/fraud detection.
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Kappa statistic

• The idea is to measure the amount of departure from that arises
purely by chance
I κ is calculated from the confusion matrix
I κ takes into account sample sizes for different classes
I Controversial (many modifications going on).
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The confusion matrix

Label 1 ... j ... C Total

1 n11 ... n1j ... n1C n1.
... ... ... ... ... ... ...
i ni1 ... nij ... niC ni.
... ... ... ... ... ... ...
C nC1 ... nCj ... nCC nC.

Total n.1 ... n.j ... n.C n

I C = # classes
I nij = # points from class i but classified as j
I n = size of the sample.
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Calculation of κ

Definition. The κ coefficient is calculated as

κ =
Pobserved − Pexpected

1− Pexpected

where

Pexpected =

C∑
i=1

ni.
n
.
n.i
n
, Pobserved =

1

n

C∑
i=1

nii.

I Pexpected measures chance that observed and true labels agree
I Pobserved measures proportion of observations labeled correctly.
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Example κ statistics

Confusion matrix of Logit on the South Africa Heart data

True/Predicted 1 2 Total

1 130 41 171
2 22 38 60

Total 152 79 231

I n1. = 171, n2. = 60, n.1 = 151, n.2 = 79, n = 231

I Pexpected = n1.n.1/n+ n2.n.2/n =
171 · 152/2312 + 60 · 79/2312 = 0.5759

I Pobserved = (n11 + n22)/n = (130 + 38)/231 = 0.7273

I κ = (Pobserved − Pexpected)/(1− Pexpected) =
(0.7273− 0.5759)/(1− 0.5759) = 0.36.
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Area under curve

• ROC curve is a graphical plot of true positive rate (TPR) vs.
false positive rate (FPR) as discrimination threshold varies
I TPR = % true positives out of the positives
I FPR = % false positives out of the negatives

• Example (assume class 1 = positive, 2 = negative)

True/Predicted 1 2 Total
1 130 41 171

(true pos) (false neg) (pos)
2 22 38 60

(false pos) (true neg) (neg)
Total 152 79 231
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Area under curve (AUC)

• Another measure to assess a machine learning algorithm
• Often used when cost for mis-classification is asymmetric

I e.g., intrusion as normal Vs normal as intrusion in cyber security
• R package “AUC”.
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