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Challenges of clustering on modern datasets

Modern datasets scale along several dimensions
♦ Large number of features (dimensionality)

- e.g., web access log (∼ 20), image (> 100), microarray and
genomics data (∼ 4000)

♦ Huge number of observations (scalability)
- e.g., US Census Income (285,779), Poker hand (1,000,000)

♦ Increasingly complex in structure
- e.g., nonlinearity of interesting patterns, “heterogeneity”

(“locality”) of data in the space.

This work focuses on the scalability issue for spectral clustering
I To leverage the remarkable ability of spectral clustering in

handling complex patterns with scalability in mind.
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Spectral clustering

Spectral clustering aims to partition a set of given points
V = {X1, ..., XN} into K disjoint classes by spectral
decomposition over an affinity graph G = (V, E , A) with the
edge weights (Aij)N

i,j=1 encoding the pairwise similarity of
points in V .

Popular spectral clustering algorithms include
I Normalized cuts (Shi & Malik, 2000)
I Ng, Jordan and Weiss (2002)
I Kannan, Vempala and Vetta (2004).

Normalized cuts is adopted in this work.
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Why spectral clustering?

♦ Extensive studies in computer vision, machine learning, parallel
computing during the last two decades.

♦ Wide range of applications in image segmentation, circuit
design, search (clusty), spam detection, social network mining.

♦ Theoretical support (von Luxburg et al 2008; Kannan et al 2004;
Ng et al 2002).

♦ Compared to competitors (e.g., K-means, hierarch. clustering)
I More flexible and capture a wider range of geometries (e.g.,

nonlinearity and nonconvexity)
I Typically superior empirical performance.

BUT not widely viewed as a player for large-scale data mining
due to a complexity of up to O(N3).
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Why spectral clustering?

I An example of K-means (left) and spectral clustering (right).
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Methods to speed up spectral clustering

♦ Lanzcos/Arnoldi methods
I Computation depends highly on problem difficulty

♦ Rank reduction methods (the Nyström methods)
I To sparsify Gram matrix with a low-rank approximation
I Sample columns of Gram matrix and approximate the full matrix

G =
[

C B
BT D

]
≈

[
C B
BT BT C−1B

]

I Williams and Seeger (2001), Drineas and Mahoney (2005)
I General issues

¦ The working memory can be very high (∼ O(N2))
¦ For unbalanced data sets, small clusters may be missed and

potential problems with numerical stability.
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A framework for fast approximate spectral clustering

A class of algorithms which consists of three steps

I Replace the original data with a small “representative” set via a
“distortion” minimizing local transformation.

I Spectral clustering on the representative set.

I Recover cluster membership for the original data according to
their correspondence to the representative set.

The key is to look for a distortion-minimizing transformation
(min. quant. error is sufficient by our perturb. analysis)

I K-means clustering
I Random projection trees (Dasgupta and Freund, 2008).
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A framework for fast approximate spectral clustering

Original set S0 = {X1, ..., XN} L99 O(N3)
⇓ Distortion minimizing

Bridge set S = {Y1, ..., Y1, ..., Yn, ..., Yn}
m Equiv. (Embed. Lemma)

Representative set S1 = {Y1, ..., Yn} L99 O(n3)

♦ Distortion min. ⇐⇒ small loss in accuracy (perturb. analysis)

♦ |S1| = n ¿ |S0| = N ⇐⇒ significant reduction in computation

♦ Overall computational complexity O(n3) + O(ndN).
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A framework for fast approximate spectral clustering

Figure: Small loss in clustering accuracy via distortion minimizing
local transformation. Straight and zigzag solid lines indicate cluster
boundaries on original and transformed data, respectively.
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Datasets

♦ Datasets used in the experiments (smaller ones omitted)

Data set # Features # instances # classes
Connect-4 42 67,557 3

USCI 37 285,779 2
Poker Hand 10 1,000,000 3

♦ Competing algorithms
I Various K-means algorithms

¦ Hartigan and Wong (1979)
¦ K-means in Matlab with the “cluster” option
¦ Bradley and Fayyad (1998).

I The Fowlkes et al implementation of Nyström (2004).
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Experimental results

RF K-means Nyström KASP RASP
Connect-4 75.00 65.33 65.82 65.69 63.95

3 181 51 67
0.19 4.0 0.20 < 0.4

USCI 95.27 63.47 93.88 94.03 92.09
11 1603 282 418

0.65 12.0 0.78 < 0.8
Poker Hand 60.63 35.56 50.24 49.84 49.70

35 1047 310 215
0.42 17.0 0.45 < 0.5

Table: Comparison on accuracy, running time and memory footprint.
Numbers for Nyström produced by Matlab while the rest in R. Further
increasing running time for K-means does not improve its accuracy.
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Statistical perturbation analysis

♦ Assume the cluster is generated by mixture

G =
K∑

i=1

πiGi. (1)

♦ Limit to additive perturbation X̃ = X + ε and assume ε ∈ Rd is
symmetric about 0.

♦ What is the impact of perturbation on spectral clustering?
I Measured by mis-clustering rate defined as

ρ =
1
n

n∑

i=1

I{Ii 6= Ĩi},

Ii and Ĩi indicates cluster ID before and after perturbation.
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Mis-clustering rate of KASP

Theorem. Let the data be generated from (1) with density
f : Rd 7→ R+. Then, under suitable assumptions, the
mis-clustering rate is bounded by

Cb2,d||f ||d/(d+2)n
−2/d + O

(
n−4/d

)

where C is a constant depending on the number of clusters, the
variance of the original data, the similarity metric and the
eigengap of L (or that of all Laplacian matrices used in Ncut).

=⇒ The mis-clustering rate ρ vanishes when n →∞.
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The embedding lemma

Let S = {Y1, Y1, . . . , Y1, Y2, . . . , Y2, . . . , Yn, . . . , Yn} be the bridge
set with repetition counts ri s.t.

∑n
i=1 ri = N .

Lemma. 1). The 2nd eigenvector, v2, for LS can be written as

v2 = [x1, . . . , x1, x2, . . . , x2, . . . , xn, . . . , xn]T ,

where the number of repetitions for xi is exactly ri.

2). Let matrix B = [r1a1, r2a2, ..., rnan] with [a1, a2, ...,an] the
affinity matrix for S1. Let vB = [y1, y2, . . . , yn]T be the second
eigenvector of LB. Then, up to scaling,

x1 = y1, x2 = y2, . . . , xn = yn.

=⇒ v2 can be computed through vB.
Donghui Yan, Ling Huang, Michael I. Jordan Fast Approximate Spectral Clustering



Outline
Introduction

A framework for fast approximate spectral clustering
Experiments

Analysis

Summary

♦ A general framework for fast approximate spectral clustering

♦ Distortion-minimizing local transformations implemented by
K-means and RP tree partitions

♦ Statistical perturbation analysis of spectral clustering serves as
the theoretical motivation of the general framework

♦ Empirically our algorithms are competitive in terms of accuracy,
running time, and working memory.

http://www.cs.berkeley.edu/∼jordan/fasp.html
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The end

Thank you!
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