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Abstract

In this paper, we consider the Cahn-Hilliard-Hele-Shaw (CHHS) system with the dynamic boundary conditions, in which
both the bulk and surface energy parts play important roles. The scalar auxiliary variable (SAV) approach is introduced
for the physical system; the mass conservation and energy dissipation is proved for the CHHS system. Subsequently, a
fully discrete SAV finite element scheme is proposed, with the mass conservation and energy dissipation laws established
at a theoretical level. In addition, the convergence analysis and error estimate is provided for the proposed SAV numerical
scheme.
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1. Introduction

The Cahn-Hilliard-Hele-Shaw system (CHHS) has attracted more and more attentions in recent years, since this
model describes two phase flows in a simple way. This system turns out to be the basic diffusion interface model for
incompressible binary fluids confined in a Hele-Shaw cell [42, 43, 50], and it has been proposed to simplify the well-
known Cahn-Hilliard-Navier-Stokes model, where the Navier-Stokes system is coupled with the convective Cahn-Hilliard
equation [19, 38, 39, 59]. This model has also been used to describe spinodal decomposition of a binary fluid in a Hele-
Shaw cell [33], tumor growth and cell sorting [25, 64], and two phase flows in porous media [17], etc.

The CHHS system with Neumann boundary conditions has been extensively studied in the existing literature [8, 9, 12,
31, 33, 49, 63]. On the other hand, the homogeneous Neumann boundary condition turns out to unsatisfactory in some
cases, due to the fact that this simple boundary condition set-up ignores the effects of certain process on the boundary
to the bulk dynamics; in other words, separate chemical reactions on the boundary are not taken into consideration.
Nevertheless, in certain applications such as fluid dynamics and contact line problems, a more accurate description of the
short-range interaction of the binary mixture with the solid wall of the vessel turns out to be necessary. At present, various
dynamic boundary conditions have been derived and analyzed for the Cahn-Hilliard equation [5, 40, 41, 52], while the
associated analysis for the CHHS system is very limited.

Let Ω ⊂ Rd (where d = 2, 3) be a bounded domain with a boundary Γ := ∂Ω. The unit outer normal vector on Γ will
be denoted by n = n(x). The standard CHHS system is formulated as

∂ϕ

∂t
+ ∇ · (ϕu) − ϵ∆µ = 0, in Ω × (0,T ], (1)

µ + ϵ∆ϕ − f (ϕ) = 0, in Ω × (0,T ], (2)
u + ∇p + γϕ∇µ = 0, in Ω × (0,T ], (3)
∇ · u = 0, in Ω × (0,T ], (4)

where γ > 0 is a dimensionless surface tension parameter, u is the advective velocity, and p is the pressure. To describe
a mixture of two materials, the phase field variable ϕ stands for the difference of two local relative concentrations. In
more details, ϕ(x) (x ∈ Ω) takes the distinct values, 1 and -1, in the respective pure phases of the materials, while
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{x ∈ Ω : −1 < ϕ(x) < 1} matches with the diffuse interface between them, whose thickness is proportional to the very
small positive constant ϵ. The variable µ stands for the chemical potential in the bulk, which can be derived from the
Fréchet derivative [16] of the following Ginzburg-Landau free energy

Ebulk[ϕ] =
∫
Ω

( ϵ
2

∣∣∣∇ϕ∣∣∣2 + F(ϕ)
)

dx,

where the functional F denotes the bulk potential and f (ϕ) = F′(ϕ). Typically, F has a double well form, which reaches
its global minima at ϕ = ±1 and a local maximum at ϕ = 0.

The homogeneous Neumann boundary conditions corresponding to the system (1)-(4) are given by

∂nϕ = 0, on Γ × (0,T ], (5)
∂nµ = 0, on Γ × (0,T ], (6)
u · n = 0 on Γ × (0,T ]. (7)

However, especially for certain materials in the bounded region, boundary condition (5) is not well-pleasing, since certain
additional effects of the boundary to the bulk dynamics are ignored. Meanwhile, several dynamic boundary conditions
have been proposed in the existing literatures [18, 46, 47, 53, 65], to replace the homogeneous Neumann condition. In
order to improve this phenomenon and to better describe the whole system, physicists put forward a surface free energy

Esur f [ϕΓ] =
∫
Γ

(κϵ
2

∣∣∣∇ΓϕΓ∣∣∣2 +G(ϕΓ)
)

dS ,

where ∇Γ denotes the surface gradient operator on Γ and G is a surface potential. Furthermore, κ > 0 is related to the
effects of surface diffusion. Some numerical works [2, 3, 52] have been reported as well.

The total free energy corresponding to the dynamic boundary conditions becomes

E = Ebulk[ϕ] + Esur f [ϕΓ]. (8)

In this paper, we consider the CHHS system with dynamic boundary conditions

∂ϕ

∂t
+ ∇ · (ϕu) − ϵ∆µ = 0, in Ω × (0,T ], (9)

µ + ϵ∆ϕ − f (ϕ) = 0, in Ω × (0,T ], (10)
u + ∇p + γϕ∇µ = 0, in Ω × (0,T ], (11)
∇ · u = 0, in Ω × (0,T ], (12)
∂ϕΓ
∂t
+ ∇Γ · (ϕΓuΓ) − ϵ∆ΓµΓ = 0, on Γ × (0,T ], (13)

µΓ + κϵ∆ΓϕΓ + ϵ∂nϕ − g(ϕΓ) = 0, on Γ × (0,T ], (14)
uΓ + ∇ΓpΓ + γϕΓ∇ΓµΓ = 0, on Γ × (0,T ], (15)
∇Γ · uΓ = 0, on Γ × (0,T ], (16)

where ∆Γ denote the surface Laplace-Beltrami operator on Γ and g(ϕΓ) = G′(ϕΓ). In addition, this system is endowed with
initial conditions

ϕ(0, x) = ϕ0(x), (17)
ϕΓ(0, x) = ϕΓ,0(x). (18)

The boundary conditions are presented as follows

∂nµ = 0, ∂n p = 0, on Γ × (0,T ], (19)
∂nΓµΓ = 0, ∂nΓ pΓ = 0, on ∂Γ × (0,T ], (20)

where nΓ is the unit outer normal vector on Γ, and ϕΓ(·, t) is Γ-periodic. For the above system, we have ϕ
∣∣∣
Γ
= ϕΓ and

µ
∣∣∣
Γ
= µΓ, on Γ × (0,T ], in which the symbol ·

∣∣∣
Γ

denotes the trace operator.
Similar to the compactness arguments in [26], since H1(Ω) is compactly embedded in L2(Ω), the properties of sub-

spaces and other basic definitions, theorems and properties in functional analysis, the existence and uniqueness of the
weak solution of this system can be established. The more detailed procedure for the proof is left to interested readers.

Due to the second law of thermodynamics, dissipative physical systems are everywhere. Maintaining the energy
law allows the numerical solution of the physical model to fit the dynamics correctly for a long time. Therefore, it is
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vital and necessary to design numerical methods to preserve discrete energy dissipation laws. Many efforts have been
devoted to the development of numerical methods for energy stability in this active research field, which include, but are
not limited to, the convex splitting method [4, 23, 28, 29, 30, 33, 45, 54, 56], the average vector field method [6, 55],
exponential time differencing (ETD) method [10, 11, 13, 22, 36, 37, 44, 51] and the invariant energy quadratization (IEQ)
method [34, 66, 67, 68, 70]. In addition, the scalar auxiliary variable (SAV) method [1, 14, 15, 27, 57, 58, 62, 69] has been
successfully developed, inspired by a similar idea of the IEQ method. Meanwhile, it has overcome many shortcomings,
while maintaining the basic advantages of the IEQ approach. The SAV method is not limited to a specific form of the
nonlinear part or the free energy, while it only requires the adoption of scalar variables independent of the spatial variables
to obtain a linear decoupled system with constant coefficients.

Moreover, it is realized that the finite element spatial discretization is more advantageous than the collocation approach
when dealing with problems concerning dynamic boundary conditions. In this paper, we adopt the combination of SAV
method and finite element spatial approximation for the CHHS system with dynamic boundary conditions.

In the process of the numerical design, we adopt the SAV approach for the bulk free energy and the surface free energy
respectively to linearize the nonlinear term. Meanwhile, semi-implicit treatment is applied to the convective and stress
terms. The discrete format of the combined finite element and SAV approach maintains the modified energy dissipation
law, which is theoretically justified in the paper. In addition, an error analysis is performed for the fully discrete numerical
scheme, with dynamic boundary conditions.

Throughout this paper, for s ∈ Z+ and 1 ≤ q ≤ ∞, let W s,p(Ω) and W s,p(Γ) stand for the standard Sobolev spaces
of Ω and Γ, respectively, with corresponding norms ∥ · ∥W s,p(Ω) and ∥ · ∥W s,p(Γ). For any 1 ≤ p ≤ ∞, the Lebesgue spaces
on Ω and Γ are denoted as Lp(Ω) and Lp(Γ), respectively, associated with the norms ∥ · ∥Lp(Ω) and ∥ · ∥Lp(Γ). Moreover,
W0,p can be identified with Lp. An alternative notation of Sobolev spaces for p = 2 becomes Hs(Ω) and Hs(Γ), equipped
with the norms ∥ · ∥Hs(Ω) and ∥ · ∥Hs(Ω), respectively. Let Hs(Ω) = [Hs(Ω)]d, Hs(Γ) = [Hs(Γ)]d, Lp(Ω) = [Lp(Ω)]d and
Lp(Γ) = [Lp(Γ)]d with bold faced letters for Sobolev spaces or Lebesgue spaces of the vector-valued functions with d
components. For a fixed time T > 0, the space Lp(0,T ; X) represents the Lp space on the interval (0,T ) with values in the
Banana space X. If X is a Hilbert space, L2(Ω)−inner product on X is denoted by (·, ·), and L2(Γ)−inner product on X is
denoted by

〈
·, ·

〉
. In addition, we set L2

0(Ω) =
{
v ∈ L2(Ω)| (v, 1) = 0

}
, and L2

0(Γ) =
{
vΓ ∈ L2(Γ)|

〈
vΓ, 1

〉
= 0

}
.

The structure of this paper is organized as follows. In Section 2, an equivalent physical system based on the SAV
formulation is introduced, and the corresponding weak form and energy decreasing law are derived as well. In Section
3, the fully discrete numerical scheme with the SAV formulation is constructed and a modified energy stability is proved.
Subsequently, a convergence analysis and error estimate in provided in Section 4, with the help of the regularity assump-
tion for the exact solution, Ritz projection and interpolation estimates, as well as the stability analysis for the numerical
error functions. The convergent order is obtained as O(hq + ∆t). Finally, some concluding remarks are given in Section 5.

2. Equivalent physical system in the SAV formulation and its energy dissipation law

The SAV approach is an efficient way to solve a gradient flow, while the energy stability is maintained [7, 27, 35].
The key point is an introduction of the scalar auxiliary variable. More precisely, it is necessary to separately introduce the
auxiliary variables of the bulk and surface parts in this system. First, we set E1 and EΓ,1 in the following form:

E1[ϕ] =
∫
Ω

F(ϕ) dx, EΓ,1[ϕΓ] =
∫
Γ

G(ϕΓ) dS , (21)

under assumption that E1[ϕ] > −c1 and EΓ,1[ϕΓ] > −c2, and let C1 > c1,C2 > c2 so that E1[ϕ]+C1 > 0 and EΓ,1[ϕΓ]+C2 >
0. For simplicity of presentation, we replace E1 by E1 + C1 without changing the gradient flow. In this setting, E1[ϕ]
always has a positive lower bound C1−c1 for any ϕ, which we still denote as C1. Similarly, we substitute EΓ,1 by EΓ,1+C2,
and apparently EΓ,1[ϕΓ] is always bounded by a positive lower bound C2 − c2 for any ϕΓ, which we still denote as C2.
Subsequently, the auxiliary variables of this system take the form of

r(t) =
√

E1[ϕ], rΓ(t) =
√

EΓ,1[ϕΓ]. (22)

In turn, by applying (22), the equations can be equivalently rewritten as

∂ϕ

∂t
+ ∇ · (ϕu) − ϵ∆µ = 0, in Ω × (0,T ], (23)

µ + ϵ∆ϕ −
r√

E1[ϕ]
f (ϕ) = 0, in Ω × (0,T ], (24)

u + ∇p + γϕ∇µ = 0, in Ω × (0,T ], (25)
∇ · u = 0, in Ω × (0,T ], (26)
∂ϕΓ
∂t
+ ∇Γ · (ϕΓuΓ) − ϵ∆ΓµΓ = 0, on Γ × (0,T ], (27)
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µΓ + κϵ∆ΓϕΓ + ϵ∂nϕ −
rΓ√

EΓ,1[ϕΓ]
g(ϕΓ) = 0, on Γ × (0,T ], (28)

uΓ + ∇ΓpΓ + γϕΓ∇ΓµΓ = 0, on Γ × (0,T ], (29)
∇Γ · uΓ = 0, on Γ × (0,T ], (30)
dr
∂t
=

1

2
√

E1[ϕ]

∫
Ω

f (ϕ)
∂ϕ

∂t
dx, t ∈ (0,T ], (31)

drΓ
∂t
=

1

2
√

EΓ,1[ϕΓ]

∫
Γ

g(ϕΓ)
∂ϕΓ
∂t

dS , t ∈ (0,T ]. (32)

It is noticed that the transformed SAV system is exactly identical to the original system (9)-(16), since (22) can be
obtained by integrating (31) and (32) with respect to time, which does not involve spatial derivative, so that the initial
conditions (17),(18) and the boundary conditions (19),(20) are still valid. In addition, the initial conditions of r and rΓ
turn out to be

r(0) =
√

E1[ϕ0(x)], rΓ(0) =
√

EΓ,1[ϕΓ,0(x)].

Inserting (26) into (25), (30) into (29), exploiting the boundary conditions (19),(20), and using integration by parts, a
weak formulation of the system (23)-(32) can be expressed as follows: for any t ∈ (0,T ], find (ϕ, µ, p, ϕΓ, µΓ, pΓ, r, rΓ),

ϕ ∈ L∞
(
0,T ; H1(Ω)

)
∩ L4(0,T ; L∞(Ω)

)
, (33)

∂tϕ ∈ L2(0,T ; H−1(Ω)
)
, (34)

µ ∈ L2(0,T ; H1(Ω)
)
, (35)

p ∈ L2(0,T ; H1(Ω) ∩ L2
0(Ω)

)
, (36)

ϕΓ ∈ L∞
(
0,T ; H1(Γ)

)
∩ L4(0,T ; L∞(Γ)

)
, (37)

∂tϕΓ ∈ L2(0,T ; H−1(Γ)
)
, (38)

µΓ ∈ L2(0,T ; H1(Γ)
)
, (39)

pΓ ∈ L2(0,T ; H1(Γ) ∩ L2
0(Γ)

)
, (40)

such that

(
∂ϕ

∂t
, χ) − (ϕu,∇χ) + ϵ(∇µ,∇χ) = 0, ∀χ ∈ H1(Ω), (41)

(µ, ζ) = ϵ(∇ϕ,∇ζ) − ϵ
〈
∂nϕ, ζ

〉
+

r√
E1[ϕ]

( f (ϕ), ζ), ∀ζ ∈ H1(Ω), (42)

(∇p,∇q) + γ(ϕ∇µ,∇q) = 0, ∀q ∈ H1(Ω), (43)〈∂ϕΓ
∂t

, ψ
〉
−

〈
ϕΓuΓ,∇Γψ

〉
+ ϵ

〈
∇ΓµΓ,∇Γψ

〉
= 0, ∀ψ ∈ H1(Γ), (44)〈

µΓ, ν
〉
= κϵ

〈
∇ϕΓ,∇ν

〉
+ ϵ

〈
∂nϕ, ν

〉
+

rΓ√
EΓ,1[ϕΓ]

〈
g(ϕΓ), ν

〉
, ∀ν ∈ H1(Γ), (45)〈

∇ΓpΓ,∇ΓqΓ
〉
+ γ

〈
ϕΓ∇ΓµΓ,∇ΓqΓ

〉
= 0, ∀qΓ ∈ H1(Γ), (46)

dr
∂t
=

1

2
√

E1[ϕ]
( f (ϕ),

∂ϕ

∂t
), (47)

drΓ
∂t
=

1

2
√

EΓ,1[ϕΓ]

〈
g(ϕΓ),

∂ϕΓ
∂t

〉
. (48)

After solving the above system, u and uΓ can be defined by the following form

(u, λ) = −(∇p, λ) − γ(ϕ∇µ, λ) = 0, ∀λ ∈ L2(Ω), (49)〈
uΓ, λΓ

〉
= −

〈
∇ΓpΓ, λΓ

〉
− γ

〈
ϕΓ∇ΓµΓ, λΓ

〉
= 0, ∀λΓ ∈ L2(Γ). (50)

The above weak formulation (41)-(50) still preserves two significant features, mass conservation and energy dissipa-
tion.

Theorem 2.1. Let (ϕ, µ, p, ϕΓ, µΓ, pΓ, r, rΓ) be the smooth solution of the weak formulation (41)-(48). Then the solution
satisfies the mass conservation identity:∫

Ω

ϕ(t, x) dx =
∫
Ω

ϕ0(x) dx,
∫
Γ

ϕΓ(t, x) dS =
∫
Γ

ϕΓ,0(x) dS , (51)

4



and the energy dissipation law

d
dt

E = −
∫
Ω

(
ϵ
∣∣∣∇µ∣∣∣2 + 1

γ

∣∣∣u∣∣∣2) dx +
∫
Γ

(
ϵ
∣∣∣∇ΓµΓ∣∣∣2 + 1

γ

∣∣∣uΓ∣∣∣2) dS ≤ 0. (52)

Proof 2.1. By choosing χ = 1 in (41) and ψ = 1 in (44), respectively, we can obtain

d
dt

∫
Ω

ϕ(t, x) dx = 0,
d
dt

∫
Γ

ϕΓ(t, x) dS = 0. (53)

In turn, a combination of (17) and (18) gives (51).
Taking χ = µ in (41), ζ = −ϕt in (42), λ =

u
γ

in (49), ψ = µΓ in (44), ν = −(ϕΓ)t in (45), λΓ =
uΓ
γ

in (50), multiplying

(47),(48) by 2r and 2rΓ, respectively, and summarizing (41)−(50) except for (43) and (46), we arrive at

d
dt

( ∫
Ω

ϵ

2

∣∣∣∇ϕ∣∣∣2 dx +
∫
Γ

κϵ

2

∣∣∣∇ΓϕΓ∣∣∣2 dS + r2 + r2
Γ

)
+

∫
Ω

(
ϵ
∣∣∣∇µ∣∣∣2 + 1

γ

∣∣∣u∣∣∣2) dx +
∫
Γ

(
ϵ
∣∣∣∇ΓµΓ∣∣∣2 + 1

γ

∣∣∣uΓ∣∣∣2) dS = 0. (54)

This is exactly (52), by recalling the notations in (21) and (22). □

3. The fully discrete SAV numerical scheme and the energy stability analysis

Let 0 = t0 < t1 < · · · < tN = T be a uniform partition of [0,T ], i.e., ti = iτ, τ = T/N, i = 0, 1, . . . ,N, where N
is a positive integer. Let Th = {K} be a conforming, shape-regular, globally quasi-uniform family of triangulations or
tetrahedrons of Ω. For any positive integer q ≥ 1, we introduce the finite element space

Mh = {vh ∈ C0(Ω)| vh|K ∈ Pq,∀K ∈ Th} ⊂ H1(Ω),
S h = {vh ∈ C0(Γ)| vh|K ∈ Pq,∀K ∈ Th} ⊂ H1(Γ),

where Pq is the space of polynomials of degree not exceeding q. Furthermore, we define the subspace M̊h := Mh ∩

L2
0(Ω), S̊ h := S h ∩ L2

0(Γ).
The first order accurate (in time), finite element SAV scheme for the CHHS system with dynamic boundary conditions

is proposed as follows. For any 0 ≤ n ≤ N, find
(
ϕn+1

h , µn+1
h , pn+1

h , ϕn+1
Γ,h , µ

n+1
Γ,h , pn+1

Γ,h , r
n+1
h , rn+1

Γ,h ) ∈ [Mh]3 × [S h]3 × [R]2 such
that (ϕn+1

h − ϕn
h

∆t
, χh

)
+

(
ϕn

h(∇pn
h + γϕ

n
h∇µ

n+1
h ),∇χh

)
+ ϵ(∇µn+1

h ,∇χh) = 0, ∀χh ∈ Mh, (55)

(µn+1
h , ζh) = ϵ(∇ϕn+1

h ,∇ζh) − ϵ
〈
∂nϕ

n+1
h , ζh

〉
+

rn+1
h√

E1[ϕn
h]

(
f (ϕn

h), ζh

)
, ∀ζh ∈ Mh, (56)

(∇pn+1
h ,∇qh) + γ(ϕn

h∇µ
n+1
h ,∇qh) = 0, ∀qh ∈ Mh, (57)〈ϕn+1

Γ,h − ϕ
n
Γ,h

∆t
, ψh

〉
+

〈
ϕn
Γ,h(∇Γpn

Γ,h + γϕ
n
Γ,h∇Γµ

n+1
Γ,h ),∇Γψh

〉
− ϵ

〈
∇Γµ

n+1
Γ,h ,∇Γψh

〉
= 0, ∀ψh ∈ S h, (58)

〈
µn+1
Γ,h , νh

〉
= κϵ

〈
∇Γϕ

n+1
Γ,h ,∇Γνh

〉
+ ϵ

〈
∂nϕ

n+1
h , νh

〉
+

rn+1
Γ,h√

EΓ,1[ϕn
Γ
]
〈
g(ϕn
Γ), νh

〉
, ∀νh ∈ S h, (59)〈

∇Γpn+1
Γ,h ,∇ΓqΓ,h

〉
+ ϵ

〈
ϕn
Γ,h∇Γµ

n+1
Γ,h ,∇ΓqΓ,h

〉
= 0, ∀qΓ,h ∈ S h, (60)

rn+1
h − rn

h

∆t
=

1
2
√

E1[ϕn
h]

(
f (ϕn

h),
ϕn+1

h − ϕn
h

∆t

)
, (61)

rn+1
Γ,h − rn

Γ,h

∆t
=

1

2
√

EΓ,1[ϕn
Γ,h]

〈
g(ϕn
Γ,h),

ϕn+1
Γ,h − ϕ

n
Γ,h

∆t

〉
, (62)

and the initial data are set as ϕ0
h = Rhϕ0 and ϕ0

Γ,h = RhϕΓ,0. The following identity is standard for the Ritz projection
operator Rh : ψ ∈ Xi → Y i

h (i = 1, 2) (with X1 = H1(Ω),Y1
h = Mh while X2 = H1(Γ),Y2

h = S h):

(∇(Rhψ − v),∇v) = 0, ∀v ∈ Y i
h, (Rhψ − ψ, 1) = 0. (63)
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In fact, for ψ ∈ X1, the following estimates are valid for the Ritz projection [19, 32]:∥∥∥Rhψ
∥∥∥

W1,p(Ω) ≤ C
∥∥∥ψ∥∥∥W1,p(Ω), ∀p ∈ [2,∞), (64)∥∥∥ψ − Rhψ

∥∥∥
Lp(Ω) + h

∥∥∥ψ − Rhψ
∥∥∥

W1,p(Ω) ≤ Chq+1
∥∥∥ψ∥∥∥Wq+1,p(Ω), ∀p ∈ [2,∞). (65)

Similarly, for ψΓ ∈ X2, the following estimates could be derived:∥∥∥RhψΓ
∥∥∥

W1,p(Γ) ≤ C
∥∥∥ψΓ∥∥∥W1,p(Γ), ∀p ∈ [2,∞), (66)∥∥∥ψΓ − RhψΓ

∥∥∥
Lp(Γ) + h

∥∥∥ψΓ − RhψΓ
∥∥∥

W1,p(Γ) ≤ Chq+1
∥∥∥ψΓ∥∥∥Wq+1,p(Γ), ∀p ∈ [2,∞). (67)

To facilitate the nonlinear analysis, we introduce the following negative norms:∥∥∥v
∥∥∥

H−s(Ω) = sup
{ (v, ζ)
∥ζ∥Hs(Ω)

; ζ ∈ Hs(Ω)
}
, f or s ≥ 0 integer,

and the corresponding norms over the boundary are defined as∥∥∥vΓ
∥∥∥

H−s(Γ) = sup
{ (vΓ, ζΓ)
∥ζΓ∥Hs(Γ)

; ζΓ ∈ Hs(Γ)
}
, f or s ≥ 0 integer.

Lemma 3.1. Based on the above definitions, we have∥∥∥v
∥∥∥

H−1(Ω) ≤
∥∥∥v

∥∥∥
L2(Ω),

∥∥∥vΓ
∥∥∥

H−1(Γ) ≤
∥∥∥vΓ

∥∥∥
L2(Γ). (68)

Lemma 3.2. [61] Suppose Rhψ is the Ritz projection of ψ, then it holds that∥∥∥ψ − Rhψ
∥∥∥

H−s(Ω) ≤ Chs+r
∥∥∥ψ∥∥∥Hr(Ω), f or 0 ≤ s ≤ q − 1, 1 ≤ r ≤ q + 1. (69)

For the sake of further analysis, we need the following preliminary estimates, which have been derived in the existing
works [21, 20, 49], etc.

The projection operator P : L2(Ω)→W is defined by

P(w) = ∇p + w, (70)

and p ∈ H̊1(Ω) := {v ∈ H1(Ω)| (v, 1) = 0} is the unique solution of

(∇p + w,∇q) = 0, ∀q ∈ H1(Ω),

where W := {u ∈ L2(Ω)| (u,∇q) = 0,∀q ∈ H1(Ω)}.

Lemma 3.3. [49] The projection P is linear, and for any given w ∈ L2(Ω), we have(
P(w) − w, v

)
= 0, ∀v ∈W. (71)

Moreover, since P(w) ∈W, by applying Cauchy-Schwarz inequality, we obtain∥∥∥P(w)
∥∥∥

L2(Ω) ≤ ∥w∥L2(Ω). (72)

In a similar manner, we define the projection operator P̃ : L2(Γ)→ W̃ via

P̃(wΓ) = ∇ΓpΓ + wΓ, (73)

and pΓ ∈ H̊1(Γ) := {vΓ ∈ H1(Γ)|
〈
v, 1

〉
= 0} is the unique solution of〈
∇ΓpΓ + wΓ,∇ΓqΓ

〉
= 0, ∀qΓ ∈ H1(Γ),

where W̃ := {uΓ ∈ L2(Γ)|
〈
uΓ,∇ΓqΓ

〉
= 0,∀q ∈ H1(Γ)}.

Similar to Lemma 3.3, the following estimates are available.

Lemma 3.4. The projection P̃ is linear, and for any given wΓ ∈ L2(Γ), we have〈
P̃(wΓ) − wΓ, vΓ

〉
= 0, ∀vΓ ∈ W̃. (74)

It is clear that P̃(wΓ) ∈ W̃, and by using Cauchy-Schwarz inequality, we obtain∥∥∥P̃(wΓ)
∥∥∥

L2(Γ) ≤ ∥wΓ∥L2(Γ). (75)
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A discrete version of W is the space Wh := {uh ∈ L2(Ω)| (uh,∇qh) = 0,∀qh ∈ Mh}. The corresponding discrete
projection operator Ph : w ∈ L2(Ω)→Wh is defined as follows:

Ph(w) = ∇ph + w, (76)

where ph ∈ M̊h is the unique solution of

(∇ph + w,∇qh) = 0, ∀qh ∈ Mh.

The projection Ph satisfies the following properties.

Lemma 3.5. [49] The projection Ph is linear, and for any given w ∈ L2(Ω), we have(
Ph(w) − w, vh

)
= 0, ∀vh ∈Wh. (77)

It is easy to find that Ph(w) ∈Wh, and consequently, we get∥∥∥Ph(w)
∥∥∥

L2(Ω) ≤ ∥w∥L2(Ω). (78)

Lemma 3.6. [49] Suppose that w ∈ Hq(Ω) satisfies the compatible boundary condition w · n = 0 on Γ and p ∈ Hq+1(Ω),
then we have ∥∥∥Ph(w) − P(w)

∥∥∥
L2(Ω) =

∥∥∥∇(p − ph)
∥∥∥

L2(Ω) ≤ Chq|p|Hq+1(Ω). (79)

Likewise, we can define the discrete forms of W̃h and P̃h.
Define W̃h := {uΓ,h ∈ L2(Γ)| (uΓ,h,∇qΓ,h) = 0,∀qΓ,h ∈ S h}. The projection operator P̃h : w ∈ L2(Ω)→ W̃h is given by

P̃h(wΓ) = ∇ΓpΓ,h + wΓ, (80)

in which pΓ,h ∈ S̊ h is the unique solution of

(∇ΓpΓ,h + wΓ,∇ΓqΓ,h) = 0, ∀qΓ,h ∈ S̊ h.

Certainly, P̃h has similar properties as Ph.

Lemma 3.7. The projection P̃h is linear, and for any wΓ ∈ L2(Γ), it follows that(
P̃h(wΓ) − wΓ, vΓ,h

)
= 0, ∀vΓ,h ∈ W̃h. (81)

Due to P̃h(wΓ) ∈ W̃h, clearly the following result holds∥∥∥P̃h(wΓ)
∥∥∥

L2(Γ) ≤ ∥wΓ∥L2(Γ). (82)

Lemma 3.8. Assume that wΓ ∈ Hq(Γ) satisfies the compatible boundary condition wΓ · nΓ = 0 on ∂Γ and pΓ ∈ Hq+1(Γ),
then we have ∥∥∥P̃h(wΓ) − P̃(wΓ)

∥∥∥
L2(Γ) =

∥∥∥∇Γ(pΓ − pΓ,h)
∥∥∥

L2(Γ) ≤ Chq|pΓ|Hq+1(Γ). (83)

Next, we provide the energy stability analysis of the fully discrete scheme. To facilitate the analysis, the following
notations are introduced:

ûn+1
h := −∇pn

h − γϕ
n
h∇µ

n+1
h , ûn+1

Γ,h := −∇Γpn
Γ,h − γϕ

n
Γ,h∇Γµ

n+1
Γ,h . (84)

un+1
h := −∇pn+1

h − γϕn
h∇µ

n+1
h , un+1

Γ,h := −∇Γpn+1
Γ,h − γϕ

n
Γ,h∇Γµ

n+1
γ,h . (85)

By (57), (60), we see that

∇ · un+1
h = 0, ∇Γ · un+1

Γ,h = 0. (86)

Theorem 3.1. Let
(
ϕn+1

h , µn+1
h , pn+1

h , ϕn+1
Γ,h , µ

n+1
Γ,h , pn+1

Γ,h , r
n+1
h , rn+1

Γ,h ) be the solution of the proposed numerical scheme (55)−(62).
Then for any ∆t > 0 and h > 0, the numerical solution satisfies the discrete energy dissipation law

En+1
S AV − En

S AV ≤ −∆tϵ
∥∥∥∇µn+1

h

∥∥∥2
L2(Ω) −

ϵ

2

∥∥∥∇ϕn+1
h − ∇ϕn

h

∥∥∥2
L2(Ω) − (rn+1

h − rn
h)2 − ∆tϵ

∥∥∥∇µn+1
Γ,h

∥∥∥2
L2(Γ)

−
κϵ

2

∥∥∥∇Γϕn+1
Γ,h − ∇Γϕ

n
Γ,h

∥∥∥2
L2(Ω) − (rn+1

Γ,h − rn
Γ,h)2 −

∆t
4γ

∥∥∥∇pn+1
h − ∇pn

h

∥∥∥
L2(Ω) −

∆t
4γ

∥∥∥∇Γpn+1
Γ,h − ∇Γpn

Γ,h

∥∥∥
L2(Γ)

≤ 0, (87)

in which the modified discrete energy functional En
S AV is defined as

En
S AV =

ϵ

2

∥∥∥∇ϕn
h

∥∥∥2
L2(Ω) + (rn

h)2 +
∥∥∥∇pn

h

∥∥∥
L2(Ω) +

κϵ

2

∥∥∥∇Γϕn
Γ,h

∥∥∥2
L2(Γ) + (rn

Γ,h)2 +
∥∥∥∇Γpn

Γ,h

∥∥∥
L2(Γ). (88)
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Proof 3.1. From (84) and (85), the following identities are observed:

un+1
h − ûn+1

h = −∇pn+1
h + ∇pn

h, un+1
Γ,h − ûn+1

Γ,h = −∇Γpn+1
Γ,h + ∇Γpn

Γ,h. (89)

Taking χh = ∆tµn+1
h in (55), ζh = ϕ

n
h − ϕ

n+1
h in (56), ψh = ∆tµn+1

Γ,h in (58), νh = ϕ
n
Γ,h − ϕ

n+1
Γ,h in (59), multiplying (61), (62) by

2rn+1
h and 2rn+1

Γ,h , respectively, and adding them together, we get

∆tϵ
∥∥∥∇µn+1

h

∥∥∥2
L2(Ω) +

ϵ

2

(∥∥∥∇ϕn+1
h

∥∥∥2
L2(Ω) −

∥∥∥∇ϕn
h

∥∥∥2
L2(Ω) +

∥∥∥∇ϕn+1
h − ∇ϕn

h

∥∥∥2
L2(Ω)

)
+

(
(rn+1

h )2 − (rn
h)2 + (rn+1

h − rn
h)2

)
+∆tϵ

∥∥∥∇µn+1
Γ,h

∥∥∥2
L2(Γ) +

κϵ

2

(∥∥∥∇Γϕn+1
Γ,h

∥∥∥2
L2(Ω) −

∥∥∥∇Γϕn
Γ,h

∥∥∥2
L2(Ω) +

∥∥∥∇Γϕn+1
Γ,h − ∇Γϕ

n
Γ,h

∥∥∥2
L2(Ω)

)
+
(
(rn+1
Γ,h )2 − (rn

Γ,h)2 + (rn+1
Γ,h − rn

Γ,h)2
)
− ∆t(ϕn

hûn+1
h ,∇µn+1

h ) − ∆t
〈
ϕn
Γ,hûn+1

Γ,h ,∇Γµ
n+1
Γ,h

〉
= 0. (90)

Taking the inner products with the two equations in (84) by
∆t
γ

ûn+1
h and

∆t
γ

ûn+1
Γ,h , respectively, we have

∆t
γ

∥∥∥ûn+1
h

∥∥∥
L2(Ω) = −

∆t
γ

(∇pn
h, û

n+1
h ) − γ(ϕn

h∇µ
n+1
h , ûn+1

h ), (91)

∆t
γ

∥∥∥ûn+1
Γ,h

∥∥∥
L2(Γ) = −

∆t
γ

〈
∇Γpn

Γ,h, û
n+1
Γ,h

〉
− γ

〈
ϕn
Γ,h∇Γµ

n+1
Γ,h , û

n+1
Γ,h

〉
. (92)

A substitution of (89) in (57) and (60) gives

−(ûn+1
h ,∇qh) + (∇pn+1

h − ∇pn
h,∇qh) = 0, (93)

−
〈
ûn+1
Γ,h ,∇qΓ,h

〉
+

〈
∇Γpn+1

Γ,h − ∇Γpn
Γ,h,∇ΓqΓ,h

〉
= 0. (94)

In turn, by choosing qh =
∆t
γ

pn+1
h in (93) and qΓ,h =

∆t
γ

pn+1
Γ,h in (94), we obtain

−
∆t
γ

(ûn+1
h ,∇pn+1

h ) +
∆t
2γ

(∥∥∥∇pn+1
h − ∇pn

h

∥∥∥2
L2(Ω) +

∥∥∥∇pn+1
h

∥∥∥2
L2(Ω) −

∥∥∥∇pn
h

∥∥∥2
L2(Ω)

)
= 0, (95)

−
∆t
γ

〈
ûn+1
Γ,h ,∇Γpn+1

Γ,h
〉
+
∆t
2γ

(∥∥∥∇Γpn+1
Γ,h − ∇Γpn

Γ,h

∥∥∥2
L2(Γ) +

∥∥∥∇Γpn+1
Γ,h

∥∥∥2
L2(Γ) −

∥∥∥∇Γpn
Γ,h

∥∥∥2
L2(Γ)

)
= 0. (96)

Combined with the following Cauchy inequalities

∆t
γ

(ûn+1
h ,∇pn+1

h − ∇pn
h) ≤

∆t
γ

∥∥∥ûn+1
h

∥∥∥2
L2(Ω) +

∆t
4γ

∥∥∥∇pn+1
h − ∇pn

h

∥∥∥2
L2(Ω), (97)

∆t
γ

〈
ûn+1
Γ,h ,∇pn+1

Γ,h − ∇pn
Γ,h

〉
≤
∆t
γ

∥∥∥ûn+1
Γ,h

∥∥∥2
L2(Γ) +

∆t
4γ

∥∥∥∇Γpn+1
Γ,h − ∇Γpn

Γ,h

∥∥∥2
L2(Γ), (98)

we take the summation of (91), (92), (95) and (96) to further conclude that

∆t
4γ

∥∥∥∇pn+1
h − ∇pn

h

∥∥∥
L2(Ω) +

∆t
2γ

(∥∥∥∇pn+1
h

∥∥∥
L2(Ω) −

∥∥∥∇pn
h

∥∥∥
L2(Ω)

)
+
∆t
4γ

∥∥∥∇Γpn+1
Γ,h − ∇Γpn

Γ,h

∥∥∥
L2(Γ)

+
∆t
2γ

(∥∥∥∇Γpn+1
Γ,h

∥∥∥
L2(Γ) −

∥∥∥∇Γpn
Γ,h

∥∥∥
L2(Γ)

)
≤ −∆t(ϕn

hûn+1
h ,∇µn+1

h ) − ∆t
〈
ϕn
Γ,hûn+1

Γ,h ,∇Γµ
n+1
Γ,h

〉
. (99)

As a consequence, a combination of (90) and (99) leads to

∆tϵ
∥∥∥∇µn+1

h

∥∥∥2
L2(Ω) +

ϵ

2

(∥∥∥∇ϕn+1
h

∥∥∥2
L2(Ω) −

∥∥∥∇ϕn
h

∥∥∥2
L2(Ω) +

∥∥∥∇ϕn+1
h − ∇ϕn

h

∥∥∥2
L2(Ω)

)
+

(
(rn+1

h )2 − (rn
h)2 + (rn+1

h − rn
h)2

)
+ ∆tϵ

∥∥∥∇Γµn+1
Γ,h

∥∥∥2
L2(Γ) +

κϵ

2

(∥∥∥∇Γϕn+1
Γ,h

∥∥∥2
L2(Ω) −

∥∥∥∇Γϕn
Γ,h

∥∥∥2
L2(Ω) +

∥∥∥∇Γϕn+1
Γ,h − ∇Γϕ

n
Γ,h

∥∥∥2
L2(Ω)

)
+

(
(rn+1
Γ,h )2 − (rn

Γ,h)2

+ (rn+1
Γ,h − rn

Γ,h)2
)
+
∆t
4γ

∥∥∥∇pn+1
h − ∇pn

h

∥∥∥
L2(Ω) +

∆t
2γ

(∥∥∥∇pn+1
h

∥∥∥
L2(Ω) −

∥∥∥∇pn
h

∥∥∥
L2(Ω)

)
+
∆t
4γ

∥∥∥∇Γpn+1
Γ,h − ∇Γpn

Γ,h

∥∥∥
L2(Γ) +

∆t
2γ

(∥∥∥∇Γpn+1
Γ,h

∥∥∥
L2(Γ) −

∥∥∥∇Γpn
Γ,h

∥∥∥
L2(Γ)

)
≤ 0, (100)

which is equivalent to

En+1
S AV − En

S AV + ∆tϵ
∥∥∥∇µn+1

h

∥∥∥2
L2(Ω) +

ϵ

2

∥∥∥∇ϕn+1
h − ∇ϕn

h

∥∥∥2
L2(Ω) + (rn+1

h − rn
h)2 + ∆tϵ

∥∥∥∇Γµn+1
Γ,h

∥∥∥2
L2(Γ)
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+
κϵ

2

∥∥∥∇Γϕn+1
Γ,h − ∇Γϕ

n
Γ,h

∥∥∥2
L2(Ω) + (rn+1

Γ,h − rn
Γ,h)2 +

∆t
4γ

∥∥∥∇pn+1
h − ∇pn

h

∥∥∥
L2(Ω)

+
∆t
4γ

∥∥∥∇Γpn+1
Γ,h + ∇Γpn

Γ,h

∥∥∥
L2(Γ) ≤ 0. (101)

This completes the proof of Theorem 3.1. □

Remark 3.1. Since the proposed SAV numerical scheme (55)-(62) is linear, the energy dissipation estimate (87)-(88)
reveals that, the linear system corresponding to homogeneous part of the numerical scheme (55)-(62) has a trivial solution.
As a result, the unique solvability of the linear numerical scheme (55)-(62) is theoretically justified.

4. The error estimate

For the convergence analysis in this section, we assume that the weak solution (ϕ, µ, p, ϕΓ, µΓ, pΓ, r, rΓ) of CHHS
system satisfies the following regularity conditions

ϕ ∈ H2(0,T ; L2(Ω)
)
∩ L∞

(
0,T ; W1,6(Ω)

)
∩ H1(0,T ; Hq+1(Ω)

)
, u ∈ L∞

(
0,T ; Hq(Ω)

)
,

µ ∈ L∞
(
0,T ; H1(Ω)

)
∩ L2(0,T ; Hq+1(Ω)

)
, ∇µ ∈ L∞

(
0,T ; Hq(Ω)

)
, (102)

ϕΓ ∈ H2(0,T ; L2(Γ)
)
∩ L∞

(
0,T ; W1,6(Γ)

)
∩ H1(0,T ; Hq+1(Γ)

)
, uΓ ∈ L∞

(
0,T ; Hq(Γ)

)
,

µΓ ∈ L∞
(
0,T ; H1(Γ)

)
∩ L2(0,T ; Hq+1(Γ)

)
, ∇ΓµΓ ∈ L∞

(
0,T ; Hq(Γ)

)
.

Define the backward difference operator Dtϕ
n+1 :=

ϕn+1 − ϕn

∆t
, and the approximation errors as follows

ηn+1
ϕ = ϕn+1

h − Rhϕ
n+1, ηn+1

µ = µn+1
h − Rhµ

n+1, ηn+1
p = pn+1

h − Rh pn+1,

θn+1
ϕ = ϕn+1 − Rhϕ

n+1, θn+1
µ = µn+1 − Rhµ

n+1, θn+1
p = pn+1 − Rh pn+1,

ηn+1
ϕΓ
= ϕn+1

Γ,h − Rhϕ
n+1
Γ , ηn+1

µΓ
= µn+1

Γ,h − Rhµ
n+1
Γ , ηn+1

pΓ = pn+1
Γ,h − Rh pn+1

Γ ,

θn+1
ϕΓ
= ϕn+1

Γ − Rhϕ
n+1
Γ , θn+1

µΓ
= µn+1

Γ − Rhµ
n+1
Γ , θn+1

pΓ = pn+1
Γ − Rh pn+1

Γ ,

σn+1
ϕ = ∂tϕ

n+1 − DtRhϕ
n+1, σn+1

ϕΓ
= ∂tϕ

n+1
Γ − DtRhϕ

n+1
Γ ,

ρn+1
r = rn+1

h − rn+1, ρn+1
rΓ = rn+1

Γ,h − rn+1
Γ .

By the definition of Ritz projection, subtracting (55)−(62) from (41)−(48) (at t = tn+1), we obtain

(Dtη
n+1
ϕ , χ) + ϵ(∇ηn+1

µ ,∇χ) = (σn+1
ϕ , χ) + (ϕn+1un+1 − ϕn

hûn+1
h ,∇χ), (103)〈

Dtη
n+1
ϕΓ
, ψ

〉
+ ϵ

〈
∇ηn+1

µΓ
,∇ψ

〉
=

〈
σn+1
ϕΓ
, ψ

〉
+

〈
ϕn+1
Γ un+1

Γ − ϕ
n
Γ,hûn+1

Γ,h ,∇ψ
〉
, (104)

(ηn+1
µ , ν) − ϵ(∇ηn+1

ϕ ,∇ν) +
〈
ηn+1
µΓ
, ν

〉
− κϵ

〈
∇Γη

n+1
ϕΓ
,∇Γν

〉
= (θn+1

µ , ν) − rn+1(
f (ϕn+1)√
E1[ϕn+1]

−
f (ϕn)√
E1[ϕn]

, ν) + ρn+1
r (

f (ϕn
h)√

E1[ϕn
h]
, ν) − rn+1(

f (ϕn)√
E1[ϕn]

−
f (ϕn

h)√
E1[ϕn

h]
, ν)

+
〈
θn+1
µΓ
, ν

〉
− rn+1
Γ

〈 g(ϕn+1
Γ

)√
E1[ϕn+1

Γ
]
−

g(ϕn
Γ
)√

E1[ϕn
Γ
]
, ν

〉
+ ρn+1

rΓ
〈 g(ϕn

Γ,h)√
E1[ϕn

Γ,h]
, ν

〉
− rn+1
Γ

〈 g(ϕn
Γ
)√

E1[ϕn
Γ
]
−

g(ϕn
Γ,h)√

E1[ϕn
Γ,h]

, ν
〉
, (105)

Dtρ
n+1
r + Dtrn+1 − ∂trn =

1
2

{
(

f (ϕn
h)√

E1[ϕn
h]
,Dtη

n+1
ϕ ) − (

f (ϕn
h)√

E1[ϕn
h]
,Dtθ

n+1
ϕ )

+(
f (ϕn

h)√
E1[ϕn

h]
,
ϕn+1 − ϕn

∆t
− ∂tϕ

n) + (
f (ϕn

h)√
E1[ϕn

h]
−

f (ϕn)√
E1[ϕn]

,Dtϕ
n)
}
, (106)

Dtρ
n+1
rΓ + Dtrn+1

Γ − ∂trn
Γ =

1
2

{〈 g(ϕn
Γ,h)√

E1[ϕn
Γ,h]

,Dtη
n+1
ϕΓ

〉
−

〈 g(ϕn
Γ,h)√

E1[ϕn
Γ,h]

,Dtθ
n+1
ϕΓ

〉
(107)

+
〈 g(ϕn

Γ,h)√
E1[ϕn

Γ,h]
,
ϕn+1
Γ
− ϕn

Γ

∆t
− ∂ϕn

Γ

〉
+

〈 g(ϕn
Γ,h)√

E1[ϕn
Γ,h]
−

g(ϕn
Γ
)√

E1[ϕn
Γ
]
,Dtϕ

n
Γ

〉}
.

Substituting χ = ηn+1
µ , ηn+1

ϕ into (103), ψ = ηn+1
µΓ
, ηn+1

ϕΓ
into (104), ν = −Dtη

n+1
ϕ , ηn+1

µ into (105), multiplying (106), (107)
by 2ρn+1

r and 2ρn+1
rΓ , respectively, and summarizing all equalities, we immediately get the following equation

∆tϵ
∥∥∥∥ηn+1

µ

∥∥∥∥2

H1(Ω)
+ ∆tϵ

∥∥∥∥ηn+1
µΓ

∥∥∥∥2

H1(Γ)
+
ϵ

2

(∥∥∥∥ηn+1
ϕ − ηn

ϕ

∥∥∥∥2

H1(Ω)
+

∥∥∥∥ηn+1
ϕ

∥∥∥∥2

H1(Ω)
−

∥∥∥∥ηn
ϕ

∥∥∥∥2

H1(Ω)

)
+
κϵ

2

(∥∥∥∥ηn+1
ϕΓ
− ηn

ϕΓ

∥∥∥∥2

H1(Γ)
9



+
∥∥∥∥ηn+1

ϕΓ

∥∥∥∥2

H1(Γ)
−

∥∥∥∥ηn
ϕΓ

∥∥∥∥2

H1(Γ)

)
+

((
ρn+1

r − ρn
r
)2
+

(
ρn+1

r
)2
−

(
ρn

r
)2
)
+

((
ρn+1

rΓ − ρ
n
rΓ
)2
+

(
ρn+1

rΓ
)2
−

(
ρn

rΓ
)2
)

= ∆t
6∑

i=1

(Ai + Ii), (108)

with

A1 =
(
σn+1
ϕ , ηn+1

µ

)
+ ϵ

(
σn+1
ϕ , ηn+1

ϕ

)
, (109)

I1 =
〈
σn+1
ϕΓ
, ηn+1

µΓ

〉
+ κϵ

〈
σn+1
ϕΓ
, ηn+1

ϕΓ

〉
, (110)

A2 = −
(
θn+1
µ ,Dtη

n+1
ϕ

)
+ ϵ

(
θn+1
µ , ηn+1

µ

)
, (111)

I2 = −
〈
θn+1
µΓ
,Dtη

n+1
ϕΓ

〉
+ ϵ

〈
θn+1
µΓ
, ηn+1

µΓ

〉
, (112)

A3 = rn+1
( f (ϕn+1)√

E1[ϕn+1]
−

f (ϕn)√
E1[ϕn]

,Dtη
n+1
ϕ

)
+ ϵrn+1

( f (ϕn+1)√
E1[ϕn+1]

−
f (ϕn)√
E1[ϕn]

, ηn+1
µ

)
, (113)

I3 = rn+1
Γ

〈 g(ϕn+1
Γ

)√
E1[ϕn+1

Γ
]
−

g(ϕn
Γ
)√

E1[ϕn
Γ
]
,Dtη

n+1
ϕΓ

〉
+ ϵrn+1

Γ

〈 g(ϕn+1
Γ

)√
E1[ϕn+1

Γ
]
−

g(ϕn
Γ
)√

E1[ϕn
Γ
]
, ηn+1

µΓ

〉
, (114)

A4 = −rn+1
( f (ϕn

h)√
E1[ϕn

h]
−

f (ϕn)√
E1[ϕn]

,Dtη
n+1
ϕ

)
+ ρn+1

r

( f (ϕn
h)√

E1[ϕn
h]
−

f (ϕn)√
E1[ϕn]

,Dtϕ
n+1

)
−ϵrn+1

( f (ϕn
h)√

E1[ϕn
h]
−

f (ϕn)√
E1[ϕn]

, ηn+1
µ

)
, (115)

I4 = rn+1
Γ

〈 g(ϕn
Γ
)√

E1[ϕn
Γ
]
−

g(ϕn
Γ,h)√

E1[ϕn
Γ,h]

,Dtη
n+1
ϕΓ

〉
+ ρn+1

rΓ

〈 g(ϕn
Γ,h)√

E1[ϕn
Γ,h]
−

g(ϕn
Γ
)√

E1[ϕn
Γ
]
,Dtϕ

n+1
Γ

〉

−ϵrn+1
Γ

〈 g(ϕn
Γ,h)√

E1[ϕn
Γ,h]
−

g(ϕn
Γ
)√

E1[ϕn
Γ
]
, ηn+1

µΓ

〉
, (116)

A5 = ρ
n+1
r

( f (ϕn)√
E1[ϕn]

,Dtϕ
n+1 − ∂tϕ

n
)
− ρn+1

r

( f (ϕn
h)√

E1[ϕn
h]
,Dtθ

n+1
ϕ

)
− 2γ · ρn+1

r

(
Dtrn+1 − ∂trn

)
+ϵρn+1

r

( f (ϕn)√
E1[ϕn]

, ηn+1
µ

)
, (117)

I5 = ρ
n+1
rΓ

〈 g(ϕn
Γ
)√

E1[ϕn
Γ
]
,Dtϕ

n+1
Γ − ∂tϕ

n
Γ

〉
− ρn+1

rΓ

〈 g(ϕn
Γ,h)√

E1[ϕn
Γ,h]

,Dtθ
n+1
ϕΓ

〉
− 2γ · ρn+1

rΓ

(
Dtrn+1
Γ − ∂trn

Γ

)
+ϵρn+1

rΓ

〈 g(ϕn
Γ
)√

E1[ϕn
Γ
]
, ηn+1

µΓ

〉
, (118)

A6 = (ϕn+1un+1 − ϕn
hûn+1

h ,∇ηn+1
µ

)
+ ϵ

(
ϕn+1un+1 − ϕn

hûn+1
h ,∇ηn+1

ϕ

)
, (119)

I6 =
〈
ϕn+1
Γ un+1

Γ − ϕ
n
Γ,hûn+1

Γ,h ,∇Γη
n+1
µΓ

〉
+ κϵ

〈
ϕn+1
Γ un+1

Γ − ϕ
n
Γ,hun+1

Γ,h ,∇Γη
n+1
ϕΓ

〉
. (120)

For the estimates of (109) − (120), we start with the following lemma.

Lemma 4.1. [19] If the weak solution (ϕ, µ, p, ϕΓ, µΓ, pΓ, r, rΓ) of (41)− (48) satisfies the regularity assumption (102), we
have ∥∥∥∥σn+1

ϕ

∥∥∥∥2

L2(Ω)
≤ C

h2q+2

∆t

∫ tn+1

tn

∥∥∥∥∂sϕ(s)
∥∥∥∥2

Hq+1(Ω)
ds +

∆t
3

∫ tn+1

tn

∥∥∥∥∂ssϕ(s)
∥∥∥∥2

Hq+1(Ω)
ds, ∀t ∈ (0,T ], (121)

where C > 0 is a constant independent of h and τ.

Similarly, we are able to derive the following estimate:∥∥∥∥σn+1
ϕΓ

∥∥∥∥2

L2(Γ)
≤ C

h2q+2

∆t

∫ tn+1

tn

∥∥∥∥∂sϕΓ(s)
∥∥∥∥2

Hq+1(Γ)
ds +

∆t
3

∫ tn+1

tn

∥∥∥∥∂ssϕΓ(s)
∥∥∥∥2

Hq+1(Γ)
ds, ∀t ∈ (0,T ]. (122)

Moreover, we assume that the potentials F and G are bounded from below:

F′′(s) = f ′(s) ≤ −C̃1, s f (s) ≥ b|s|p1 − c̃1, (123)
10



∣∣∣ f ′(s)
∣∣∣ < C

(
|x|p + 1

)
, f or any p > 0 i f d = 1, 2; 0 < p < 4 i f d = 3, (124)∣∣∣ f ′′(s)

∣∣∣ < C
(
|x|q + 1

)
, f or any q > 0 i f d = 1, 2; 0 < q < 3 i f d = 3, (125)

G′′(s) = g′(s) ≤ −C̃2, sg(s) ≥ b|s|p2 − c̃2, (126)∣∣∣g′(s)
∣∣∣ < C

(
|x|p + 1

)
, f or any p > 0 i f d = 1, 2; 0 < p < 4 i f d = 3, (127)∣∣∣g′′(s)

∣∣∣ < C
(
|x|q + 1

)
, f or any q > 0 i f d = 1, 2; 0 < q < 3 i f d = 3, (128)

where C > 0, C̃1 > 0, C̃2 > 0, p1 > 0 and p2 > 0 are all constants [60].
Last but not least, by the a-priori estimates [48], the following bounds are available:∥∥∥ϕn

h

∥∥∥
L∞(Ω) ≤

∥∥∥ϕ∥∥∥L∞
(

L∞(Ω)
) + 1,

∥∥∥ϕn
Γ,h

∥∥∥
L∞(Γ) ≤

∥∥∥ϕΓ∥∥∥L∞
(

L∞(Γ)
) + 1. (129)

The proof is left to interested readers.

Theorem 4.1. Suppose that
(
ϕn+1

h , µn+1
h , pn+1

h , ϕn+1
Γ,h , µ

n+1
Γ,h , pn+1

Γ,h , r
n+1
h , rn+1

Γ,h ) and
(
ϕn+1, µn+1, pn+1, ϕn+1

Γ
, µn+1
Γ
, pn+1
Γ
, rn+1, rn+1

Γ
)

be the solution of (55)-(62) and (23)-(32), respectively. Under the regularity assumption (102), we have the error estimate

max
0≤l≤N−1

{∥∥∥∥ϕl+1 − ϕl+1
h

∥∥∥∥2

H1(Ω)
+

∥∥∥∥ϕl+1
Γ − ϕ

l+1
Γ,h

∥∥∥∥2

H1(Γ)
+ (rl+1 − rl+1

h )2 + (rl+1
Γ − rl+1

Γ,h )2

+∆t
l∑

n=1

(∥∥∥∥µn+1 − µn+1
h

∥∥∥∥2

H1(Ω)
+

∥∥∥∥µn+1
Γ − µ

n+1
Γ,h

∥∥∥∥2

H1(Γ)

)}
≤ C

(
(∆t)2 + h2q), (130)

where C > 0 is a constant independent of h,∆t.

Proof 4.1. Using the error estimate (121) and Young’s inequality, we are able to derive

A1 ≤ C
(
h2q+2 + (∆t)2) + ϵ

16

∥∥∥∥ηn+1
µ

∥∥∥∥2

H1(Ω)
+

ϵ

16

∥∥∥∥ηn+1
ϕ

∥∥∥∥2

H1(Ω)
. (131)

Taking a similar approach, by virtue of (122), it’s easy to get

I1 ≤ C
(
h2q+2 + (∆t)2) + ϵ

16

∥∥∥∥ηn+1
µΓ

∥∥∥∥2

H1(Γ)
+
κϵ

16

∥∥∥∥ηn+1
ϕΓ

∥∥∥∥2

H1(Γ)
. (132)

By employing (65), (123) and Young’s inequality, we obtain

A2 ≤

∥∥∥∥θn+1
µ

∥∥∥∥
H1(Ω)

∥∥∥∥Dtη
n+1
ϕ

∥∥∥∥
H−1(Ω)

+
∥∥∥∥θn+1

µ

∥∥∥∥
H−1(Ω)

∥∥∥∥ηn+1
µ

∥∥∥∥
H1(Ω)

≤ Ch2q +
1
3

∥∥∥∥Dtη
n+1
ϕ

∥∥∥∥2

H−1(Ω)
+

ϵ

16

∥∥∥∥ηn+1
µ

∥∥∥∥2

H1(Ω)
. (133)

In a similar way, by applying (70), (124), we see that

I2 ≤

∥∥∥∥θn+1
µΓ

∥∥∥∥
H1(Γ)

∥∥∥∥Dtη
n+1
ϕΓ

∥∥∥∥
H−1(Γ)

+ ϵ
∥∥∥∥θn+1

µΓ

∥∥∥∥
H−1(Γ)

∥∥∥∥ηn+1
µΓ

∥∥∥∥
H1(Γ)

≤ Ch2q +
1
3

∥∥∥∥Dtη
n+1
ϕΓ

∥∥∥∥2

H−1(Γ)
+

ϵ

16

∥∥∥∥ηn+1
µΓ

∥∥∥∥2

H1(Γ)
. (134)

To proceed further, from (124) and (127), we get the following estimates∥∥∥∥rn+1
( f (ϕn+1)√

E1[ϕn+1]
−

f (ϕn)√
E1[ϕn]

)∥∥∥∥
Hs(Ω)

≤
∣∣∣rn+1

∣∣∣ ∥∥∥∥ f (ϕn+1)√
E1[ϕn+1]

−
f (ϕn)√
E1[ϕn]

∥∥∥∥
Hs(Ω)

≤ sup
t∈[0,T ]

∣∣∣r(t)
∣∣∣ (∥∥∥∥ f (ϕn

h)
∥∥∥∥

Hs(Ω)

∣∣∣E1[ϕn] − E1[ϕn+1]
∣∣∣√

E1[ϕn]E1[ϕn+1](E1[ϕn] + E1[ϕn+1])
+

∥∥∥∥ f (ϕn+1) − f (ϕn)
∥∥∥∥

Hs(Ω)√
E1[ϕn]

)
≤ C∆t, (135)

and ∥∥∥∥rn+1
Γ

( g(ϕn+1
Γ

)√
EΓ,1[ϕn+1

Γ
]
−

g(ϕn
Γ
)√

EΓ,1[ϕn
Γ
]

)∥∥∥∥
Hs(Γ)
≤

∣∣∣rn+1
Γ

∣∣∣ ∥∥∥∥ g(ϕn+1
Γ

)√
EΓ,1[ϕn+1

Γ
]
−

g(ϕn
Γ
)√

EΓ,1[ϕn
Γ
]

∥∥∥∥
Hs(Γ)
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≤ sup
t∈[0,T ]

∣∣∣rΓ(t)∣∣∣ (∥∥∥∥g(ϕn
Γ,h)

∥∥∥∥
Hs(Γ)

∣∣∣EΓ,1[ϕn
Γ
] − EΓ,1[ϕn+1

Γ
]
∣∣∣√

EΓ,1[ϕn
Γ
]EΓ,1[ϕn+1

Γ
](EΓ,1[ϕn

Γ
] + EΓ,1[ϕn+1

Γ
])
+

∥∥∥∥g(ϕn+1
Γ

) − g(ϕn
Γ
)
∥∥∥∥

Hs(Γ)√
EΓ,1[ϕn

Γ
]

)
≤ C∆t. (136)

Then, from (135) and Young’s inequality, we see that

A3 ≤ C(∆t)2 +
1
3

∥∥∥∥Dtη
n+1
ϕ

∥∥∥∥2

H−1(Ω)
+

ϵ

16

∥∥∥∥ηn+1
µ

∥∥∥∥2

H1(Ω)
. (137)

Likewise, from (136) and Young’s inequality, we discover that

I3 ≤ C(∆t)2 +
1
3

∥∥∥∥Dtη
n+1
ϕΓ

∥∥∥∥2

H−1(Γ)
+

ϵ

16

∥∥∥∥ηn+1
µΓ

∥∥∥∥2

H1(Γ)
. (138)

Meanwhile, it is observed that∥∥∥∥Dtϕ
n+1

∥∥∥∥
H−1(Ω)

≤ (∆t)−1
∫ tn+1

tn

∥∥∥∥∂tϕ
n+1

∥∥∥∥
Hmax(1,q−1)(Ω)

ds ≤ C. (139)

By employing (139) and Young’s inequality, we get

A4 ≤

∥∥∥∥rn+1
( f (ϕn

h)√
E1[ϕn

h]
−

f (ϕn)√
E1[ϕn]

)∥∥∥∥
H1(Ω)

∥∥∥∥Dtη
n+1
ϕ

∥∥∥∥
H−1(Ω)

+
∥∥∥∥ρn+1

r

( f (ϕn
h)√

E1[ϕn
h]
−

f (ϕn)√
E1[ϕn]

)∥∥∥∥
H1(Ω)

∥∥∥∥Dtϕ
n+1

∥∥∥∥
H−1(Ω)

+ϵ
∥∥∥∥ f (ϕn

h)√
E1[ϕn

h]
−

f (ϕn)√
E1[ϕn]

∥∥∥∥
L2(Ω)

∥∥∥∥ηn+1
µ

∥∥∥∥
L2(Ω)

≤ C(ρn+1
r )2 +

1
3

∥∥∥∥Dtη
n+1
ϕ

∥∥∥∥2

H−1(Ω)
+

ϵ

16

∥∥∥∥ηn+1
µ

∥∥∥∥2

H1(Ω)
+C

∥∥∥∥ f (ϕn
h)√

E1[ϕn
h]
−

f (ϕn)√
E1[ϕn]

∥∥∥∥2

H1(Ω)
. (140)

In order to estimate A4, we rewrite the gradient of last term on the right-hand side as follows

∇
( f (ϕn

h)√
E1[ϕn

h]
−

f (ϕn)√
E1[ϕn]

)
= ∇ f (ϕn)

E1[ϕn] − E1[ϕn
h]√

E1[ϕn]E1[ϕn
h](E1[ϕn] + E1[ϕn

h])
+
∇ f (ϕn

h) − ∇ f (ϕn)√
E1[ϕn

h]
:= Q1 + Q2. (141)

Using the fact that E1[ϕn
h] ≥ C1 with (124), combinedwith(125) and (129), we get∥∥∥Q1

∥∥∥
L2(Ω) ≤ C

∥∥∥∥∇ f (ϕn
h)
∥∥∥∥

L2(Ω)

∥∥∥∥ϕn − ϕn
h

∥∥∥∥
L2(Ω)

≤ C
(∥∥∥ηn

ϕ

∥∥∥
L2(Ω) +

∥∥∥θn
ϕ

∥∥∥
L2(Ω)

)
, (142)

and ∥∥∥Q2
∥∥∥

L2(Ω) ≤ C
∥∥∥∥∇ f (ϕn

h) − ∇ f (ϕn)
∥∥∥∥

L2(Ω)

≤ C
( ∥∥∥∥( f

′

(ϕn
h) − f

′

(ϕn)
)
∇ϕn

∥∥∥∥
L2(Ω)

+
∥∥∥∥ f

′

(ϕn
h)∇ηn

ϕ

∥∥∥∥
L2(Ω)

+
∥∥∥∥ f

′

(ϕn
h)∇θn

ϕ

∥∥∥∥
L2(Ω)

)
≤ C

( ∥∥∥∥∇ηn
ϕ

∥∥∥∥
L2(Ω)

+
∥∥∥∥∇θn

ϕ

∥∥∥∥
L2(Ω)

+
∥∥∥∥ηn

ϕ

∥∥∥∥
L2(Ω)
+

∥∥∥∥θn
ϕ

∥∥∥∥
L2(Ω)

)
. (143)

Hence, from (141)-(143), we have∥∥∥∥∇( f (ϕn
h)√

E1[ϕn
h]
−

f (ϕn)√
E1[ϕn]

)∥∥∥∥
L2(Ω)

≤ Chq
∥∥∥ϕn

∥∥∥
Hq+1(Ω) +C

( ∥∥∥∥∇ηn
ϕ

∥∥∥∥
L2(Ω)

+
∥∥∥∥ηn

ϕ

∥∥∥∥
L2(Ω)

)
. (144)

Similarly, the following estimate is valid:∥∥∥∥ f (ϕn
h)√

E1[ϕn
h]
−

f (ϕn)√
E1[ϕn]

∥∥∥∥
L2(Ω)

≤ Chq
∥∥∥ϕn

∥∥∥
Hq+1(Ω) +C

∥∥∥ηn
ϕ

∥∥∥
L2(Ω). (145)

It follows from (141)-(145) that

A4 ≤ Ch2q +C(ρn+1
r )2 +

1
3

∥∥∥∥Dtη
n+1
ϕ

∥∥∥∥2

H−1(Ω)
+

ϵ

16

∥∥∥∥ηn+1
µ

∥∥∥∥2

H1(Ω)
+

ϵ

16

∥∥∥∥ηn
ϕ

∥∥∥∥2

H1(Ω)
. (146)
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Similarly, we are able to derive the following estimate

I4 ≤ Ch2q +C(ρn+1
rΓ )2 +

1
3

∥∥∥∥Dtη
n+1
ϕΓ

∥∥∥∥2

H−1(Γ)
+

ϵ

16

∥∥∥∥ηn+1
µΓ

∥∥∥∥2

H1(Γ)
+

ϵ

16

∥∥∥∥ηn
ϕΓ

∥∥∥∥2

H1(Γ)
. (147)

To obtain an estimate for A5, we see that∣∣∣∣En
r

∣∣∣∣ = ∣∣∣∣( f (ϕn)√
E1[ϕn]

,Dtϕ
n+1 − ∂tϕ

n
)
− 2

(
Dtrn+1 − ∂trn

)∣∣∣∣
≤ C

( ∫ tn+1

tn

∫
Ω

∣∣∣∣∂ttϕ(s, x)
∣∣∣dxds +

∫ tn+1

tn

∣∣∣∂ttr(s)
∣∣∣ds

)
≤ C∆t. (148)

A combination of (129) and (148) results in

A5 ≤

∣∣∣∣ ρn+1
r

( f (ϕn
h)√

E1[ϕn
h]
,Dtθ

n+1
ϕ

)∣∣∣∣ + ∣∣∣∣ ρn+1
r En

r

∣∣∣∣ + ϵ∣∣∣∣ρn+1
r

( f (ϕn)√
E1[ϕn]

, ηn+1
µ

)∣∣∣∣
≤ C

∥∥∥∥ρn+1
r

f (ϕn
h)√

E1[ϕn
h]

∥∥∥∥
H1(Ω)

∥∥∥∥Dtθ
n+1
ϕ

∥∥∥∥
H−1(Ω)

+C
∣∣∣ρn+1

r

∣∣∣∣∣∣En
r

∣∣∣ +C
∥∥∥∥ρn+1

r
f (ϕn)√
E1[ϕn]

∥∥∥∥
L2(Ω)

∥∥∥∥ηn+1
ϕ

∥∥∥∥
L2(Ω)

≤ C(h2q + (∆t)2) +C
(
ρn+1

r
)2
+

ϵ

16

∥∥∥∥ηn+1
ϕ

∥∥∥∥2

L2(Ω)
. (149)

Applying the above two inequalities (148) and (149), we find that

I5 ≤ C(h2q + (∆t)2) +C
(
ρn+1

rΓ
)2
+

ϵ

16

∥∥∥∥ηn+1
ϕΓ

∥∥∥∥2

L2(Γ)
. (150)

In the estimate of A6, the first part is rewritten as

A1
6 =

(
ϕn+1un+1 − ϕn

hûn+1
h ,∇ηn+1

µ

)
=

(
ϕn+1un+1 − Rhϕ

n+1un+1 + Rhϕ
n+1un+1 − Rhϕ

nun+1 + Rhϕ
nun+1 − ϕn

hun+1 + ϕn
hun+1 − ϕn

hûn+1
h ,∇ηn+1

µ

)
=

(
θn+1
ϕ un+1,∇ηn+1

µ

)
+

(
∆tDtRhϕ

n+1un+1,∇ηn+1
µ

)
−

(
ηn
ϕun+1,∇ηn+1

µ

)
+

(
ϕn

h
(
un+1 − ûn+1

h
)
,∇ηn+1

µ

)
. (151)

By using (64), it is observed that∣∣∣∣(θn+1
ϕ un+1,∇ηn+1

µ

)∣∣∣∣ ≤ C
∥∥∥θn+1

ϕ

∥∥∥
L3(Ω)

∥∥∥un+1
∥∥∥

L6(Ω)

∥∥∥∇ηn+1
µ

∥∥∥
L2(Ω) ≤ Ch2q +

ϵ

16

∥∥∥∇ηn+1
µ

∥∥∥2
L2(Ω). (152)

In virtue of (65),H1(Ω) ↪→ L3(Ω) and the Taylor formula, we are able to acquire∣∣∣∣(∆tDtRhϕ
n+1un+1,∇ηn+1

µ

)∣∣∣∣
≤ C

∥∥∥∆tDtRhϕ
n+1

∥∥∥
L3(Ω)

∥∥∥un+1
∥∥∥

L6(Ω)

∥∥∥∇ηn+1
µ

∥∥∥
L2(Ω)

≤ C∆t
∥∥∥Dtϕ

n+1
∥∥∥2

H1(Ω) +
ϵ

16

∥∥∥∇ηn+1
µ

∥∥∥2
L2(Ω)

≤ C
( ∫ tn+1

tn

∥∥∥∂tϕ
∥∥∥∥

H1(Ω)
ds

)2
+

ϵ

16

∥∥∥∇ηn+1
µ

∥∥∥2
L2(Ω)

≤ C(∆t)2 +
ϵ

16

∥∥∥∇ηn+1
µ

∥∥∥2
L2(Ω). (153)

Similar to (153), the following inequality could be derived:∣∣∣∣(ηn
ϕun+1,∇ηn+1

µ

)∣∣∣∣ ≤ C
∥∥∥ηn

ϕ

∥∥∥
L3(Ω)

∥∥∥un+1
∥∥∥

L6(Ω)

∥∥∥∇ηn+1
µ

∥∥∥
L2(Ω) ≤ C

∥∥∥ηn
ϕ

∥∥∥2
H1(Ω) +

ϵ

16

∥∥∥∇ηn+1
µ

∥∥∥2
L2(Ω). (154)

Just for the sake of the next process, we introduce

ũn+1
h = −∇pn+1

h − γϕn
h∇µ

n+1
h . (155)

By the the definition of projections P and Ph, we get

−
(
un+1 − ûn+1

h

)
= −

(
∇pn+1 + γϕn+1∇µn+1 −

(
∇pn

h + γϕ
n
h∇µ

n+1
h

))
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= −
(
un+1 − ũn+1

h + ∇(pn+1
h − pn

h)
)

= P(γϕn+1∇µn+1) − Ph(γϕn
h∇µ

n+1
h ) − ∇(pn+1

h − pn
h)

= P(γϕn+1∇µn+1) − Ph(γϕn+1∇µn+1) + Ph(γϕn+1∇µn+1) − Ph(γϕn∇µn+1)
+Ph(γϕn∇µn+1) − Ph(γϕn

h∇µ
n+1) + Ph(γϕn

h∇µ
n+1) − Ph(γϕn

h∇µ
n+1
h ) − ∇(pn+1

h − pn
h)

= P(γϕn+1∇µn+1) − Ph(γϕn+1∇µn+1) + P(γ∆tDtϕ
n+1∇µn+1) + P

(
γ(θn

ϕ + η
n
ϕ)∇µn+1)

+P(γϕn
h∇(θn

µ + η
n
µ)) − ∇(pn+1

h − pn
h)

= Q5 + P(γϕn
h∇(θn

µ + η
n
µ)). (156)

A combination of (72), (78) and (79) yields∥∥∥Q5
∥∥∥2

L2(Ω) ≤ 4
∥∥∥∥P(γϕn+1∇µn+1) − Ph(γϕn+1∇µn+1)

∥∥∥∥2

L2(Ω)
+ 4

∥∥∥∥P(γ∆tDtϕ
n+1∇µn+1)

∥∥∥∥2

L2(Ω)

+4
∥∥∥∥P(γ(θn

ϕ + η
n
ϕ)∇µn+1)∥∥∥∥2

L2(Ω)
+ 4

∥∥∥∥ − ∇(pn+1
h − pn

h)
∥∥∥∥2

L2(Ω)

≤ Ch2q
∣∣∣p∣∣∣2Hq+1(Ω) +C(∆t)2

∥∥∥∥Dtϕ
n+1

∥∥∥∥2

L3(Ω)

∥∥∥∥∇µn+1
∥∥∥∥

L6(Ω)
+ 8

∥∥∥∥θn
ϕ∇µ

n+1
∥∥∥∥2

L2(Ω)

+8
∥∥∥∥ηn

ϕ∇µ
n+1

∥∥∥∥2

L2(Ω)
+C

∥∥∥∥ ∫ tn+1

tn
∂t(∇pn+1

h )
∥∥∥∥2

L2(Ω)

≤ C(h2q + (∆t)2) +
ϵ

16

∥∥∥∥ηn
ϕ

∥∥∥∥2

L2(Ω)
. (157)

In turn, the last term of A1
6 could be bounded as follows∣∣∣∣(ϕn

h
(
un+1 − un+1

h
)
,∇ηn+1

µ

)∣∣∣∣
≤

∣∣∣∣(ϕn
hQ5,∇η

n+1
µ

)∣∣∣∣ + ∣∣∣∣(ϕn
hP(γϕn

h∇(θn
µ + η

n
µ)),∇ηn+1

µ

)∣∣∣∣
≤ C

∥∥∥∥ϕn
h

∥∥∥∥
L∞(Ω)

∥∥∥Q5
∥∥∥

L2(Ω)

∥∥∥∥∇ηn+1
µ

∥∥∥∥
L2(Ω)
+C

∥∥∥∥ϕn
h

∥∥∥∥
L∞(Ω)

∥∥∥∥ϕn
h∇(θn

µ + η
n
µ)
∥∥∥∥

L2(Ω)

∥∥∥∥∇ηn+1
µ

∥∥∥∥
L2(Ω)

≤ C
∥∥∥Q5

∥∥∥2
L2(Ω) +C

(∥∥∥θn
µ

∥∥∥2
L2(Ω) +

∥∥∥ηn
µ

∥∥∥2
L2(Ω)

)
+

ϵ

16

∥∥∥∥∇ηn+1
µ

∥∥∥∥2

L2(Ω)

≤ C(h2q + (∆t)2) +
ϵ

16

∥∥∥∥ηn
ϕ

∥∥∥∥2

L2(Ω)
+

ϵ

16

∥∥∥∥ηn
µ

∥∥∥∥2

L2(Ω)
+

ϵ

16

∥∥∥∥∇ηn+1
µ

∥∥∥∥2

L2(Ω)
. (158)

Therefore, we get the estimate of A1
6

A1
6 ≤ C(h2q + (∆t)2) +

ϵ

16

∥∥∥∇ηn+1
µ

∥∥∥2
L2(Ω) +

ϵ

16

∥∥∥∥ηn
ϕ

∥∥∥∥2

L2(Ω)
+

ϵ

16

∥∥∥∥ηn
µ

∥∥∥∥2

L2(Ω)
. (159)

The other part of A6 could be analyzed as follows

A2
6 = ϵ

(
ϕn+1un+1 − ϕn

hûn+1
h ,∇ηn+1

ϕ

)
≤ C(h2q + (∆t)2) +

ϵ

16

∥∥∥∇ηn+1
ϕ

∥∥∥2
L2(Ω) +

ϵ

16

∥∥∥∥ηn
ϕ

∥∥∥∥2

L2(Ω)
+

ϵ

16

∥∥∥∥ηn
µ

∥∥∥∥2

L2(Ω)
. (160)

Repeating a similar process as (151)-(160), we get

I6 ≤ C(h2q + (∆t)2) +
κϵ

16

∥∥∥∇Γηn+1
µΓ

∥∥∥2
L2(Γ) +

κϵ

16

∥∥∥∥ηn
ϕΓ

∥∥∥∥2

L2(Γ)
+
κϵ

16

∥∥∥∥ηn
µΓ

∥∥∥∥2

L2(Γ)
+
κϵ

16

∥∥∥∇Γηn+1
ϕΓ

∥∥∥2
L2(Γ). (161)

Besides, we have to estimate
∥∥∥∥Dtη

n+1
ϕ

∥∥∥∥
H−1(Ω)

in (133), (137) and (146).

The method outlined in [24] is adopted. DefineQh as the standard L2 projection operator into Mh. For any χ ∈ H1(Ω),
setting χh = Qhχ in (103), by using Young’s inequality and (121), we have(

Dtη
n+1
ϕ , χ

)
=

(
Dtη

n+1
ϕ , χh

)
= −ϵ

(
∇ηn+1

µ ,∇χh
)
+

(
σn+1
ϕ , χh

)
+

(
ϕn+1un+1 − ϕn

hûn+1
h ,∇χh

)
≤

ϵ

16

∥∥∥∥∇ηn+1
µ

∥∥∥∥
L2(Ω)

∥∥∥∥∇χh

∥∥∥∥
L2(Ω)

+
∥∥∥∥σn+1

ϕ

∥∥∥∥
L2(Ω)

∥∥∥∥χh

∥∥∥∥
L2(Ω)
+

(
ϕn+1un+1 − ϕn

hûn+1
h ,∇χh

)
≤ C

( ϵ
16

∥∥∥∥∇ηn+1
µ

∥∥∥∥
L2(Ω)

+ hq+1 + ∆t
) ∥∥∥χh

∥∥∥
H1(Ω) +

(
ϕn+1un+1 − ϕn

hûn+1
h ,∇χh

)
. (162)
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Recalling the techniques applied in the process of proving A1
6, we can give an estimate of the last term in (162) as follows(

ϕn+1un+1 − ϕn
hûn+1

h ,∇χh

)
=

(
θn+1
ϕ un+1,∇χh

)
+

(
∆tDtRhϕ

n+1un+1,∇χh

)
−

(
ηn
ϕun+1,∇χh

)
−

(
ϕn

hQ5,∇χh

)
−

(
ϕn

hP
(
γϕn

h∇(θn
µ + η

n
µ)
)
,∇χh

)
≤ C

∥∥∥θn+1
ϕ

∥∥∥
L3(Ω)

∥∥∥un+1
∥∥∥

L6(Ω)

∥∥∥∇χh

∥∥∥
L2(Ω) +C

∥∥∥∆tDtRhϕ
n+1

∥∥∥
L3(Ω)

∥∥∥un+1
∥∥∥

L6(Ω)

∥∥∥∇χh

∥∥∥
L2(Ω)

+C
∥∥∥ηn

ϕ

∥∥∥
L3(Ω)

∥∥∥un+1
∥∥∥

L6(Ω)

∥∥∥∇χh

∥∥∥
L2(Ω) +C

∥∥∥∥ϕn
h

∥∥∥∥
L∞(Ω)

∥∥∥Q5
∥∥∥

L2(Ω)

∥∥∥∥∇χh

∥∥∥∥
L2(Ω)

+C
∥∥∥∥ϕn

h

∥∥∥∥
L∞(Ω)

∥∥∥∥γϕn
h∇(θn

µ + η
n
µ)
∥∥∥∥

L2(Ω)

∥∥∥∥∇χh

∥∥∥∥
L2(Ω)

≤

(
C
(
hq + ∆t +

∥∥∥∥ηn
ϕ

∥∥∥∥
H1(Ω)

)
+

ϵ

16

∥∥∥∥∇ηn+1
µ

∥∥∥∥
L2(Ω)

) ∥∥∥χh

∥∥∥
H1(Ω). (163)

A combination of (162) and (163) yields∥∥∥∥Dtη
n+1
ϕ

∥∥∥∥
H−1(Ω)

≤ C
(
hq + ∆t +

∥∥∥∥ηn
ϕ

∥∥∥∥
H1(Ω)

)
+

ϵ

16

∥∥∥∥∇ηn+1
µ

∥∥∥∥
L2(Ω)

. (164)

As for the estimate of
∥∥∥∥Dtη

n+1
ϕΓ

∥∥∥∥
H−1(Γ)

in (134), (138) and (147), repeating the process (162) − (164), we are able to

derive ∥∥∥∥Dtη
n+1
ϕΓ

∥∥∥∥
H−1(Γ)

≤ C
(
hq + ∆t +

∥∥∥∥ηn
ϕΓ

∥∥∥∥
H1(Γ)

)
+

ϵ

16

∥∥∥∥∇Γηn+1
µΓ

∥∥∥∥
L2(Γ)

. (165)

With the help of all estimates of Ai, Ii (1 ≤ i ≤ 6) and (164), (165), we obtain

∆tϵ
∥∥∥∥ηn+1

µ

∥∥∥∥2

H1(Ω)
+ ∆tϵ

∥∥∥∥ηn+1
µΓ

∥∥∥∥2

H1(Γ)
+
ϵ

2

(∥∥∥∥ηn+1
ϕ

∥∥∥∥2

H1(Ω)
−

∥∥∥∥ηn
ϕ

∥∥∥∥
H1(Ω)

)
+
κϵ

2

(∥∥∥∥ηn+1
ϕΓ

∥∥∥∥
H1(Γ)
−

∥∥∥∥ηn
ϕΓ

∥∥∥∥
H1(Γ)

)
+ (ρn+1

r )2 − (ρn
r )2 + (ρn+1

rΓ )2 − (ρn
rΓ )

2

≤ C
(
h2q + (∆t)2) + ∆t

{
3ϵ
5

∥∥∥∥ηn+1
µ

∥∥∥∥2

H1(Ω)
+
ϵ

5

∥∥∥∥ηn
µ

∥∥∥∥2

H1(Ω)
+
ϵ

5

∥∥∥∥ηn+1
ϕ

∥∥∥∥2

H1(Ω)
+
ϵ

2

∥∥∥∥ηn
ϕ

∥∥∥∥2

H1(Ω)

+
3ϵ
5

∥∥∥∥ηn+1
µΓ

∥∥∥∥2

H1(Γ)
+

ϵ

16

∥∥∥∥ηn
µΓ

∥∥∥∥2

H1(Γ)
+
κϵ

5

∥∥∥∥ηn+1
ϕΓ

∥∥∥∥2

H1(Γ)
+

3κϵ
10

∥∥∥∥ηn
ϕΓ

∥∥∥∥2

H1(Γ)

}
. (166)

For any positive integer l (0 ≤ l ≤ N − 1), summing (166) up from n = 0 to l and applying the discrete Gronwall’s
inequality, we arrive at

ϵ

2

∥∥∥∥ηl+1
ϕ

∥∥∥∥2

H1(Ω)
+
κϵ

2

∥∥∥∥ηl+1
ϕΓ

∥∥∥∥2

H1(Γ)
+ (ρl+1

r )2 + (ρl+1
rΓ )2 +

∆tϵ
5

l∑
n=1

(∥∥∥∥ηn+1
µ

∥∥∥∥2

H1(Ω)
+

∥∥∥∥ηn+1
µΓ

∥∥∥∥2

H1(Γ)

)
≤ C

(
h2q + (∆t)2). (167)

Finally, with the help of the error estimates of Ritz projection, we complete the proof of Theorem 4.1. □

5. Numerical results

In this section we perform a numerical accuracy check for the proposed numerical scheme (55)-(62). The computa-
tional domain is chosen as Ω = (0, 1)2, and the exact profiles for the phase variable, the velocity vector, the pressure field,
are set to be

ϕe(x, y, t) =
1

2π

(
sin(2πx) cos(2πy), cos(2πx) sin(2πy)

)T
cos(t),

ue(x, y, t) =
1

2π

(
− sin(2πx) cos(2πy), cos(2πx) sin(2πy)

)T
cos(t),

pe(x, y, t) =
1

2π
cos(2πx) cos(2πy) cos(t).

(168)

Of course, the chemical potential is given by µe = ϵ∆ϕe+ f (ϕe), and the boundary profiles are determined as (ϕ
∣∣∣
Γ
)e = (ϕe)Γ

and (µ
∣∣∣
Γ
)e = (µe)Γ. The physical parameters are taken as: ε = 0.5, κ = 1 and γ = 1. To make (ϕe,ue, pe) satisfy the

original PDE system (9)-(16), we have to add an artificial, time-dependent forcing term. Due to the square domain, the
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Figure 1: The discrete L2 and L∞ numerical errors vs. temporal resolution NT for NT = 100 : 100 : 1000, with a spatial resolution N = 256, so that
there are 2×2562 uniform triangular meshes. The numerical results are obtained by the computation using the proposed scheme (55)-(62). The physical
parameters are taken as: ε = 0.5, κ = 1 and γ = 1. The numerical errors for the three physical variables: ϕ, u and v, are displayed. The data lie roughly
on curves CN−1

T , for appropriate choices of C, confirming the full first-order temporal accuracy of the scheme.

linear element with a uniform triangular mesh is used. In this set-up, the proposed scheme (55)-(62) could be efficiently
implemented with the help of FFT.

In the accuracy check for the temporal accuracy, we fix the spatial resolution as N = 256 (with h = 1
256 ), so that there

are 2 × 2562 uniform triangular meshes. Because of this fine mesh, the spatial numerical error is negligible. The final
time is set as T = 1. Naturally, a sequence of time step sizes are taken as ∆t = T

NT
, with NT = 100 : 100 : 1000. The

expected temporal numerical accuracy assumption e = C∆t indicates that ln |e| = ln(CT ) − ln NT , so that we plot ln |e| vs.
ln NT to demonstrate the temporal convergence order. The fitted line displayed in Figure 1 shows an approximate slope of
-0.9757, -0.9993, -0.9993, for the phase variable and the two velocity component variables, respectively. This which in
turn verifies a very nice first order temporal convergence order, for all the physical variables, in both the discrete L2 and
L∞ norms.

Notice that the dynamical boundary condition has been applied in the numerical scheme (55)-(62), although the
exact profile (168) also satisfies the homogeneous Neumann boundary condition. In fact, if the homogeneous Neumann
boundary condition is imposed for the physical system, the corresponding numerical system becomes much simpler,
and no coupling between the interior solution and boundary profile is needed. With either the homogeneous Neumann
boundary condition and the dynamical boundary condition, the full first order temporal accuracy is valid, while the one
with the dynamical boundary condition corresponds to a larger convergence constant, as expected.

Another interesting issue is the dependence of the numerical solution on the interfacial width parameter ϵ. Our
numerical experiments have revealed that, the perfect convergence rate still preserves up to ϵ = 0.2 at the final time
T = 1, while such a perfect convergence rate is not available for smaller ϵ. Meanwhile, as validated by the theoretical
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analysis, the numerical stability is still preserved for smaller ϵ, although a perfect numerical convergence rate may not
be valid at O(1) time scale. Also see the related work [69], which reported that a smaller time step size is needed for the
SAV numerical simulation of certain challenging physical model (such as functionalized Cahn-Hilliard gradient flow) to
achieve a desired numerical accuracy.

6. Conclusion

In this paper, the Cahn-Hilliard-Hele-Shaw (CHHS) system is considered with dynamic boundary conditions, in which
some influences of the boundary to the bulk dynamics are taken into account. To facilitate the nonlinear analysis of
the physical model, we adopt the SAV formulation to construct an equivalent system (23)-(32), which is equivalent to
the original PDE system (9)-(16). The mass conservation identity and and energy dissipation law could be similarly
established at a PDE level. Furthermore, we propose the fully discrete SAV numerical scheme, with mixed finite element
spatial approximation. The discrete mass conservation and energy dissipation law have been proved by a careful analysis.
In addition, the convergence analysis and error estimate is performed for the proposed finite element scheme, with the
help of Ritz projection estimate, a few appropriate regularization assumptions, as well as detailed stability analysis for the
nonlinear error terms.
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