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Abstract. In this paper we propose and analyze a numerical scheme coupling a
second-order backward differential formulation (BDF) and the finite element method
(FEM) to solve the incompressible resistive magnetohydrodynamic (MHD) equations.
In the discrete scheme, the pressure variable in the fluid field equation is computed
through a Poisson equation, and a linear and decoupled method is adopted to separate
both the magnetic and the fluid field functions from the original system. As a result,
the original system is divided into several sub-systems for which the numerical so-
lutions can be obtained efficiently. We prove the unique solvability, the unconditional
energy stability, and particularly optimal error estimates for the proposed scheme. Nu-
merical results are presented to validate the theory of the scheme.
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1 Introduction

The MHD system describes the interaction between the conductive fluids and the elec-
tromagnetic fields [16]. It has been widely applied to the industry production, such as
liquid-metal processing, and its numerical solutions are of great significance in science
and engineering [45]. This model is governed by the Navier–Stokes equations and the
Maxwell equations through the Ohm’s law and the Lorentz force. Physically, in order to
consider the further effect of magnetic fields, one can introduce a fourth-order curl oper-
ator on the magnetic fields into the standard incompressible MHD equations, arriving at
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the following so-called incompressible resistive MHD system [65]

∂tH−∇×(u×H)+
η

µ0
∇×(∇×H)+

η2

µ0
∇×(∇×(∇×(∇×H)))=0, (1.1a)

∂tu+u·∇u−µ∆u+∇p+
1
µ0

H×(∇×H)=0, (1.1b)

∇·u=0, (1.1c)

over Ω×(0,T], where Ω is a bounded and convex polygonal domain in R2 (polyhedral
domain in R3), and T is a constant representing the final time. Here, the unknowns u, H
and p denote the velocity field, the magnetic filed, and the pressure variable, respectively.
The constant η represents the resistivity, η2 is the hyper-resistivity, µ is the viscosity of the
fluid and µ0 stands for the magnetic permeability of free space. The initial and boundary
conditions are given by

H|t=0=H0, u|t=0=u0 in Ω, (1.2a)
H×n=0, (∇×(∇×H))×n=0, u=0 on ∂Ω×(0,T]. (1.2b)

It is assumed that the initial data satisfies

∇·H0=∇·u0=0. (1.3)

By taking the divergence of (1.1a), we have ∂t∇·H = 0, which together with the above
divergence-free initial condition indicates that ∇·H=0 for any t>0.

Apparently, taking hyper-resistivity coefficient η2 =0 would reduce the original sys-
tem (1.1a)-(1.1c) into the standard incompressible MHD system. There have been al-
ready many works dedicated to regularity analysis of the incompressible MHD sys-
tem [23, 36, 37, 48]. Concerning finite element methods for the MHD system, many re-
search efforts have been devoted to the use of the H1(Ω) conforming elements, since
the weak solutions of the system are located in H1(Ω). In [22], Gunzburger et al. pro-
posed a numerical scheme and analyzed optimal error estimates for the stationary MHD
system by H1(Ω) conforming elements. The similar results were obtained for the time-
dependent MHD model in [24]. Li et al. developed a strongly convergent finite element
scheme based on the H1(Ω) conforming elements in general domains, which may be
nonconvex, nonsmooth and multi-connected, without any mesh restriction [30]. Wang et
al. designed a second-order temporally accurate finite element scheme with the H1(Ω)
conforming elements, and provided a rigorous proof on optimal error estimates [47].
More works about H1(Ω) conforming elements are referred to [25,47,52,58,60] and refer-
ences therein. An apparent difference between the standard MHD system and the resis-
tive MHD system is the appearance of the fourth-order curl operator, for which many
numerical schemes have been proposed and analyzed. Zheng et al. utilized a non-
conforming finite element involving a small number of degrees of freedom for its so-
lution [65]. Sun proposed a mixed finite element method by introducing an intermediate
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variable φ=∇×(∇×H), and proved the unique solvability and the convergence for the
proposed scheme [43]. Discontinuous Galerkin (DG) methods with H(curl)-conforming
elements were adopted to solve the fourth-order curl operator problem in [26]. Both an
interior penalty DG method and a hybridizable discontinuous Galerkin (HDG) method
were employed to discretize this operator in [7] and [5, 6], respectively. Most recently,
Zhang et al. developed the two-dimensional H(curl2)-conforming finite elements on both
rectangles and triangles, and applied them to solve this operator, with the convergence
rates being proved [63]. In [27], three families of finite elements, among which the sim-
plest triangular or rectangular finite elements have only six or eight degrees of freedom,
respectively, have been constructed in two dimensions to solve this fourth-order curl op-
erator problem.

On the design of fully discrete schemes for the time-dependent incompressible MHD
system, there exist issues on treating both the divergence-free condition on the magnetic
fields and the incompressibility constraint. There are many works devoted to the con-
struction of divergence-free schemes for the MHD equations, and interested readers are
referred to such as [31–33]. Dealing with the incompressibility constraint, a type of nu-
merical schemes is based on the Stokes solver, which leads to a coupling of the pressure
gradient and the incompressibility constraint at each time step, for example in [20,24]. As
a result, this method will generate a non-symmetric system. Another type of approaches
is to making use of the “decoupled” technique. An advantage of this method, being
friendly to the improvement on computational efficiency, can be attained due to the fact
that the resulting discrete system is symmetric. In [42], Pyo and Shen have proposed
a second-order decoupled BDF scheme for the incompressible Navier–Stokes equations,
and also see [46] for the decoupled fluid solver using the Gauge formulation. In [38], Liu
et al. designed a decoupled scheme with the first-order temporally accuracy and uncon-
ditional energy stability for a phase-field model of two-phase incompressible flows with
variable density based on the “pressure-stabilized” formulation, in which they treated the
pressure term in the velocity equation explicitly and then computed the pressure by solv-
ing a Poisson equation. Zhao et al. proposed a decoupled, linear and first-order tempo-
rally accurate scheme with the unconditional stability analysis for the phase field model
of mixtures of nematic liquid crystals and viscous fluids [64]. The emphasis of these
works related to the “decoupled” technique was concentrated on the energy-preserving
property but not on the convergence analysis. Meanwhile, there have been some works
devoted to the improvement on the computational efficiency through particularly deal-
ing with the nonlinear and coupled terms in the complex system. In addition to the gen-
eral im-explicit technique, a novel approach being called the “zero-energy-contribution”
property has been developed recently. In [62], Zhang et. al. designed a fully decou-
pled scheme for the incompressible MHD with second-order temporal accuracy and un-
conditional energy stability. More works applying the “zero-energy-contribution” prop-
erty could be found in [53–57, 61] and the references therein. However, the existing
fully decoupled schemes using the “zero-energy-contribution” property have only ad-
dressed the stability analysis, without accuracy analysis being presented. Moreover, for
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the time-dependent problem, to improve the computational efficiency the various time
step method, e.g., [9] and the SAV method e.g., [35] are also feasible. In particular, the
“zero-energy-contribution” method shares a little similar ideas of the SAV method, where
the primary difference is the definition of the nonlocal artificial variable.

In this work, we design a numerical scheme of the FEM approximation in spatial do-
main and a second-order BDF discretization in time domain to solve the resistive MHD
system. The scheme has a feature of fully decoupling making use of both the “pressure-
stabilized” formulation and the “zero-energy-contribution” property. By defining an
intermediate variable φ =∇×(∇×H), the original resistive MHD system (1.1a)-(1.1c)
can be reformulated, and the equivalence holds since we consider the problem only in
convex domains. In the discrete scheme, we employ the H1(Ω)-conforming elements,
the “decoupled” method combined with the second-order BDF scheme, and the “zero-
energy-contribution” property dealing with the nonlinear terms. This approach ensures
the linear nature of the fully discrete system, and then the unique solvability follows
immediately from the fact that the corresponding homogeneous equation only admits a
trivial solution. We point out that the second order accurate temporal discretization has
been applied to various gradient flow models [10–12,17,19,34,39,51,59], with the energy
stability and the convergence estimate being theoretically proved. During the numerical
implementation, we carry out the implementation step by step, instead of solving the
full system together, and consequently, the conjugate gradient method could be applied
to compute the velocity field, and the pressure is obtained by solving a Poisson-type
equation. In order to validate the analysis on the artificial velocity field, we introduce
the corresponding artificial projection operators and assume that the pressure field sat-
isfies ∇p = 0 on the boundary [47]. We carry out a rigorous analysis on the uncondi-
tional energy stability, the unique solvability, and particularly the optimal error estimate
for the scheme. The numerical scheme has the feature of the optimal convergence rate
O(hr+1+τ2), in the `∞([0,T],L2)-norm, where r is the degree of the polynomial functions,
and h and τ are the spatial and temporal sizes, respectively.

This paper is organized as follows. In Section 2 we present the variational formu-
lation of the resistive MHD system, and then discuss the numerical scheme and its the
theoretical results, including the energy stability and the unique solvability in Section 3.
In Section 4, the convergence analysis and the optimal error estimates for the scheme are
established, and finally some numerical results are presented in Section 5 to verify the
theoretic results.

2 Variational formulation

We adopt the standard Sobolev space Wk,p(Ω) of functions defined on Ω for k≥ 0 and
1≤ p≤∞, and denote Lp(Ω)=W0,p(Ω) and Hk(Ω)=Wk,2(Ω). Then we take the notation
W1,p

0 (Ω) as the space of functions in W1,p(Ω) with zero traces on the boundary ∂Ω, and
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naturally H1
0(Ω) :=W1,2

0 (Ω). The corresponding vector spaces are given by

Lp(Ω)= [Lp(Ω)]d, Wk,p(Ω)= [Wk,p(Ω)]d,

W1,p
0 (Ω)= [W1,p

0 (Ω)]d, H1
0(Ω)=W1,2

0 (Ω),

H̊k(Ω)={v∈Hk(Ω) : v×n=0},
where d denotes the dimension of space. As usual, (·,·) denotes the inner product in
L2(Ω).

We introduce an intermediate variable φ=∇×(∇×H) [43] in (1.1a) to reformulate the
original system (1.1a)-(1.1c), and additionally define another artificial nonlocal variable
Me [62] satisfying the following initial value problem

dMe

dt
=−(u×H,∇×H)+µ0b(u,u,u)+(H×(∇×H),u), Me(0)=1. (2.1)

Here, we define a trilinear operator b(·,·,·) as follows

b(u,v,w) :=(u·∇v,w)+
1
2
((∇·u)v,w)

=
1
2
[
(u·∇v,w)−(u·∇w,v)

]
, ∀u,v,w∈H1

0(Ω), (2.2)

and obviously we have

b(u,v,v)=0, ∀u,v∈H1
0(Ω). (2.3)

It can be easily seen that Me ≡ 1 for any t > 0 by integration by parts with boundary
conditions (1.2b).

Turning to these new variables, we can reformulate the original system (1.1a)-(1.1c)
into

∂tH−Me∇×(u×H)+
η

µ0
∇×(∇×H)+

η2

µ0
∇×(∇×φ)=0,

∇×(∇×H)=φ,

∂tu+Meu·∇u−µ∆u+∇p+
Me

µ0
H×(∇×H)=0,

∇·u=0,

which leads to the following variational formulation: find (H,φ,u,p)∈ (H̊1(Ω),H̊1(Ω),
H1

0(Ω),L2(Ω)) such that it holds

(∂tH,w)−Me(u×H,∇×w)+
η

µ0
(∇×H,∇×w)+

η2

µ0
(∇×φ,∇×w)=0, (2.4a)

(∇×H,∇×v)−(φ,v)=0, (2.4b)

(∂tu,l)+Meb(u,u,l)+µ(∇u,∇l)−(p,∇·l)+ Me

µ0
(H×(∇×H),l)=0, (2.4c)

(∇·u,q)=0, (2.4d)
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for any test functions (w,v,l,q)∈ (H̊1(Ω),H̊1(Ω),H1
0(Ω),L2(Ω)).

Remark 2.1. The intermediate variable φ=∇×(∇×H) is an auxiliary function served for
computation and analysis, and it is assumed that it also satisfies the boundary condition
φ×n=0. This assumption for now does not contain the physical meaning, and we mainly
focus on the theoretical analysis in this work, so that the simple boundary conditions are
discussed.

It is a well-known technique through introducing an artificial variable to reduce the
order of the original system in the process of designing numerical schemes, such as mixed
finite element methods [1–3,8,13,40] and local discontinuous Galerkin methods [15,29,49,
50]. In this work we mainly focus on the theoretical analysis, so that the simple boundary
conditions are discussed.

3 Numerical methods and stability analysis

3.1 Discrete scheme

We divide the domain Ω into triangles Kj (tetrahedrons Kj in R3), j=1,2,··· ,Nx, denoted
by =h, and the mesh size is defined as h =max1≤j≤Nx{diamKj}. We utilize the Taylor-
Hood finite element, given by

Xh ={lh∈H1
0(Ω) : lh|Kj ∈Pr(Kj)},

Qh =

{
qh∈L2(Ω) : qh

∣∣∣∣
Kj

∈Pr−1(Kj),
∫

Ω
qhdx=0

}
,

for any integer r≥2, where Pr(Kj) is the polynomial space with the degree being r on Kj

for all Kj∈=h and Pr(Kj) :=[Pr(Kj)]
d. Additionally, we introduce the finite element space

Sh:

Sh ={wh∈H̊1(Ω) : wh|Kj ∈Pr(Kj)}.

Let {tn=nτ}N
n=0 be a uniform partition of the time interval [0,T], and τ=T/N denotes the

temporal step size. Furthermore, vn represents the value of v(x,tn), and for any sequences
{vn}N

n=1 we define

ṽn+1 :=2vn−vn−1.

Subsequently, based on (2.1) and (2.4a)-(2.4d), we propose a fully discrete scheme
for the incompressible resistive MHD equations (1.1a)-(1.1c): find (Hn+1

h ,φn+1
h ,un+1

h ,
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ûn+1
h ,pn+1

h )∈ (Sh,Sh,Xh,Xh,Qh) together with Mn+1 such that(
3Hn+1

h −4Hn
h +Hn−1

h
2τ

,wh

)
+

η

µ0

(
∇×Hn+1

h ,∇×wh
)

+
η

µ0

(
∇·Hn+1

h ,∇·wh
)
+

η2

µ0

(
∇×φn+1

h ,∇×wh
)

+
η2

µ0

(
∇·φn+1

h ,∇·wh
)
−Mn+1(ũn+1

h × H̃n+1
h ,∇×wh

)
=0, (3.1a)(

∇×Hn+1
h ,∇×vh

)
+
(
∇·Hn+1

h ,∇·vh
)
−
(
φn+1

h ,vh
)
=0, (3.1b)(

3ûn+1
h −4un

h+un−1
h

2τ
,lh

)
+Mn+1b

(
ũn+1

h ,ũn+1
h ,lh

)
+µ
(
∇ûn+1

h ,∇lh
)
−
(

pn
h ,∇·lh

)
+

Mn+1

µ0

(
H̃n+1

h ×(∇× H̃n+1
h ),lh

)
=0, (3.1c)(

un+1
h −ûn+1

h
τ

,rh

)
− 2

3
(

pn+1
h −pn

h ,∇·rh
)
=0, (3.1d)(

∇·un+1
h ,qh

)
=0, (3.1e)

3Mn+1−4Mn+Mn−1

2τ
=
(

H̃n+1
h ×(∇× H̃n+1

h ),ûn+1
h

)
+µ0b

(
ũn+1

h ,ũn+1
h ,ûn+1

h

)
−
(
ũn+1

h × H̃n+1
h ,∇×Hn+1

h

)
, (3.1f)

for any (wh,vh,lh,rh,qh)∈ (Sh,Sh,Xh,Xh,Qh) and n=1,2,··· ,N−1.

Remark 3.1. We have added the stabilization terms,

η

µ0
(∇·Hn+1

h ,∇·wh) and
η2

µ0
(∇·φn+1

h ,∇·wh)

to (3.1a), and
(
∇·Hn+1

h ,∇·vh
)

to (3.1b), which are consistent with the conditions that ∇·
H=0 and∇·φ=0. This manipulation, which has also been discussed in many literatures,
e.g., [18, 28], allows us to utilize the H1-conforming elements to validate the analysis on
the optimal error estimate for the magnetic field in the convex domain. However, for the
non-convex domains, one could use some advanced elements [41] to obtain the optimal
rates, or other analysis techniques [30] to obtain the convergence results.

Remark 3.2. The pressure field appears explicitly in the velocity equation (3.1c), and it
could be updated by solving the linear equation (3.1d). To this end, we also introduce an
artificial variable ûn+1

h instead of un+1
h in (3.1c), and then un+1

h will be obtained together
with pn+1

h in (3.1d). This is the so-called “pressure-stabilized” technique.

Remark 3.3. Note that the proposed scheme (3.1a)-(3.1f) is a multi-step method, and we
simply assume that the initial values at t0 and t1 are given.
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3.2 Discrete energy stability

In this subsection, the discrete energy stability of the numerical scheme (3.1a)-(3.1f) will
be proven. We define the discrete gradient operator ∇h : Qh→Xh as

(vh,∇hqh)=−(∇·vh,qh), ∀vh∈Xh,qh∈Qh. (3.2)

The energy stability estimate is stated in the following theorem.

Theorem 3.1. The numerical solution (Hn
h ,un

h ,pn
h) to the fully discrete scheme (3.1a)-(3.1f) is

uniquely solvable and satisfies the following energy estimate

εn+1
h ≤ εn

h

for 1≤n≤N−1, where the discrete energy function εn
h is defined as

εn
h =

1
4
(
‖Hn

h ‖2
L2+‖2Hn

h−Hn−1
h ‖2

L2+µ0‖un
h‖2

L2+µ0‖2un
h−un−1

h ‖2
L2+(Mn)2

+(2Mn−Mn−1)2)+ µ0τ2

3
‖∇h pn

h‖2
L2 .

Proof. Step 1: Setting wh =Hn+1
h in (3.1a) leads to(

3Hn+1
h −4Hn

h +Hn−1
h

2τ
,Hn+1

h

)
+

η

µ0
‖∇×Hn+1

h ‖2
L2

+
η

µ0
‖∇·Hn+1

h ‖2
L2+

η2

µ0
(∇×φn+1

h ,∇×Hn+1
h )

+
η2

µ0
(∇·φn+1

h ,∇·Hn+1
h )−Mn+1(ũn+1

h × H̃n+1
h ,∇×Hn+1

h

)
=0.

Substituting vh =φn+1
h into (3.1b) gives

(∇×φn+1
h ,∇×Hn+1

h )+(∇·φn+1
h ,∇·Hn+1

h )=‖φn+1
h ‖2

L2 ,

which together with the identity(
3
2

a−2b+
1
2

c
)

a=
1
4
[a2−b2+(2a−b)2−(2b−c)2+(a−2b+c)2]

indicates that

1
4τ

(‖Hn+1
h ‖2

L2−‖Hn
h ‖2

L2+‖2Hn+1
h −Hn

h ‖2
L2−‖2Hn

h−Hn−1
h ‖2

L2)

−Mn+1(ũn+1
h × H̃n+1

h ,∇×Hn+1
h

)
≤0. (3.3)
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Step 2: Similarly, taking lh = ûn+1
h in (3.1c) yields

1
4τ

(‖ûn+1
h ‖2

L2−‖un
h‖2

L2+‖2ûn+1
h −un

h‖2
L2−‖2un

h−un−1
h ‖2

L2)−
(

pn
h ,∇·ûn+1

h

)
+Mn+1b

(
ũn+1

h ,ũn+1
h ,ûn+1

h

)
+

Mn+1

µ0

(
H̃n+1

h ×(∇× H̃n+1
h ),ûn+1

h

)
≤0, (3.4)

where the non-negative terms have been eliminated.

Step 3: To control the terms containing ûn+1
h , by the definition of (3.2) we rewrite (3.1d) as

un+1
h −ûn+1

h
τ

+
2
3
∇h(pn+1

h −pn
h)=0. (3.5)

This in turn leads to

‖ûn+1
h ‖2

L2 =‖un+1
h ‖2

L2+
4τ2

9
‖∇h(pn+1

h −pn
h)‖2

L2 , (3.6)

for which the equality

(
un+1

h ,∇h(pn+1
h −pn

h)
)
=−

(
∇·un+1

h ,pn+1
h −pn

h
)
=0

has been applied.
In addition, (3.5) is equivalent to

(2un+1
h −un

h)−(2ûn+1
h −un

h)

τ
+

4
3
∇h(pn+1

h −pn
h)=0,

which further implies

‖2ûn+1
h −un

h‖2
L2 =‖2un+1

h −un
h‖2

L2+
16τ2

9
‖∇h(pn+1

h −pn
h)‖2

L2 . (3.7)

For the term −
(

pn
h ,∇·ûn+1

h

)
, applying (3.5) again leads to

(
ûn+1

h ,∇h pn
h
)
=
(
un+1

h ,∇h pn
h
)
+

(
2τ

3
∇h(pn+1

h −pn
h),∇h pn

h

)
=

τ

3
(‖∇h pn+1

h ‖2
L2−‖∇h pn

h‖2
L2−‖∇h(pn+1

h −pn
h)‖2

L2). (3.8)



10 L. Ma, C. Wang and Z. Xia / Adv. Appl. Math. Mech., xx (2025), pp. 1-30

Step 4: Substituting (3.6), (3.7) and (3.8) into (3.3) and (3.4), we obtain

1
4τ

(‖Hn+1
h ‖2

L2−‖Hn
h ‖2

L2+‖2Hn+1
h −Hn

h ‖2
L2−‖2Hn

h−Hn−1
h ‖2

L2)

+
µ0

4τ

(
‖un+1

h ‖2
L2+

4τ2

9
‖∇h(pn+1

h −pn
h)‖2

L2−‖un
h‖2

L2

+‖2un+1
h −un

h‖2
L2+

16τ2

9
‖∇h(pn+1

h −pn
h)‖2

L2−‖2un
h−un−1

h ‖2
L2

)
+

µ0τ

3
(‖∇h pn+1

h ‖2
L2−‖∇h pn

h‖2
L2−‖∇h(pn+1

h −pn
h)‖2

L2)

+Mn+1
(

3Mn+1−4Mn+Mn−1

2τ

)
≤0,

where we have used (3.1f).
By the discrete energy function εn

h defined in Theorem 3.1, the energy stability follows
immediately. The unconditional energy stability indicates that the corresponding homo-
geneous equations only admit trivial solutions, and this leads to the unique solvability
immediately. This completes the proof of the theorem.

3.3 Numerical implementation

In the practical implementation, we introduce more variables Hn+1
ih , φn+1

ih and ûn+1
ih , i=

1,2, instead of computing Hn+1
h , φn+1

h and ûn+1
h directly. v1h is obtained by terms without

M while v2h is solved by terms containing M, v=H,φ,û. In specific, we write Hn+1
h , φn+1

h
and ûn+1

h as

Hn+1
h =Hn+1

1h +Mn+1Hn+1
2h , ûn+1

h = ûn+1
1h +Mn+1ûn+1

2h , φn+1
h =φn+1

1h +Mn+1φn+1
2h , (3.9)

and carry out the simulation of the discrete system (3.1a)-(3.1f) in the following four steps.
Step 1: By (3.9), we write (3.1a) and (3.1b) into the following equivalent forms

3
2τ

(
Hn+1

1h ,wh
)
+

η

µ0

(
∇×Hn+1

1h ,∇×wh
)
+

η

µ0

(
∇·Hn+1

1h ,∇·wh
)

+
η2

µ0

(
∇×φn+1

1h ,∇×wh
)
+

η2

µ0

(
∇·φn+1

1h ,∇·wh
)
=

1
2τ

(
4Hn

h−Hn−1
h ,wh

)
, (3.10a)(

∇×Hn+1
1h ,∇×vh

)
+
(
∇·Hn+1

1h ,∇·vh
)
−
(
φn+1

1h ,vh
)
=0, (3.10b)

and
3

2τ

(
Hn+1

2h ,wh
)
+

η

µ0

(
∇×Hn+1

2h ,∇×wh
)
+

η

µ0

(
∇·Hn+1

2h ,∇·wh
)

+
η2

µ0

(
∇×φn+1

2h ,∇×wh
)
+

η2

µ0

(
∇·φn+1

2h ,∇·wh
)
=
(
ũn+1

h × H̃n+1
h ,∇×wh

)
, (3.11a)(

∇×Hn+1
2h ,∇×vh

)
+
(
∇·Hn+1

2h ,∇·vh
)
−
(
φn+1

2h ,vh
)
=0. (3.11b)
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Solving (3.10) and (3.11) gives Hn+1
1h , Hn+1

2h , φn+1
1h and φn+1

2h .
Step 2: Again by (3.9), we could reformulate (3.1c) as

3
2τ

(
ûn+1

1h ,lh
)
+µ
(
∇ûn+1

1h ,∇lh
)
=

1
2τ

(
4un

h−un−1
h ,lh

)
+
(

pn
h ,∇·lh

)
, (3.12a)

3
2τ

(
ûn+1

2h ,lh
)
+µ
(
∇ûn+1

2h ,∇lh
)
=−b

(
ũn+1

h ,ũn+1
h ,lh

)
− 1

µ0

(
H̃n+1

h ×(∇× H̃n+1
h ),lh

)
. (3.12b)

Then we get the values of ûn+1
1h and ûn+1

2h in this step.
Step 3: Substituting (3.9) into (3.1f) leads to

3Mn+1−4Mn+Mn−1

2τ

=
(

H̃n+1
h ×(∇× H̃n+1

h ),ûn+1
1h +Mn+1ûn+1

2h

)
+µ0b

(
ũn+1

h ,ũn+1
h ,ûn+1

1h +Mn+1ûn+1
2h

)
−
(
ũn+1

h × H̃n+1
h ,∇×(Hn+1

1h +Mn+1Hn+1
2h )

)
:= I1+Mn+1 I2.

This in turn yields

Mn+1=
2Mn− 1

2 Mn−1+τ I1
3
2−τ I2

, (3.13)

where we have already obtained all the values on the right hand side. Here, we denote

I1=
(

H̃n+1
h ×(∇× H̃n+1

h ),ûn+1
1h

)
+µ0b

(
ũn+1

h ,ũn+1
h ,ûn+1

1h

)
−
(
ũn+1

h × H̃n+1
h ,∇×Hn+1

1h

)
,

I2=
(

H̃n+1
h ×(∇× H̃n+1

h ),ûn+1
2h

)
+µ0b

(
ũn+1

h ,ũn+1
h ,ûn+1

2h

)
−
(
ũn+1

h × H̃n+1
h ,∇×Hn+1

2h

)
.

Therefore, by adopting wh =Hn+1
2h , vh =φn+1

h in (3.11) and lh = ûn+1
2h in (3.12b), we have

−I2=
3

2τ
(‖Hn+1

2h ‖
2
L2+µ0‖ûn+1

2h ‖
2
L2)+

η

µ0
(‖∇×Hn+1

2h ‖
2
L2+‖∇·Hn+1

2h ‖
2
L2)

+
η2

µ0
‖φn+1

2h ‖
2
L2+µµ0‖∇ûn+1

2h ‖
2
L2≥0,

which guarantees that 3
2−τ I2>0. As a conclusion, (3.13) is always solvable for Mn+1.

Step 4: Finally, un+1
h and pn+1

h could be obtained by solving (3.1d) and (3.1e).

Remark 3.4. It easy to see that by (3.9), the whole system (3.1a)-(3.1f) consists of four
separate sub-systems (3.1a)-(3.1b), (3.1c), (3.1d)-(3.1e) and (3.1f). Therefore, solving the
whole system together is exactly algebraically equivalent to solving it step by step as
stated in subsection3.3. In the practical implementation, Step 2 generates an elliptic equa-
tion with constant coefficients, so that we could employ the conjugate gradient algorithm
to solve it efficiently. Step 3 is just a direct algebraic calculation, and Step 4 corresponds
to a Poisson-type equation. The main computational cost of the proposed scheme comes
from Step 1.
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4 Optimal rate error estimate

We make the following regularity assumption for the solution of continuous system
(1.1a)-(1.1c):

‖Httt‖L∞(0,T;L2)+‖Htt‖L∞(0,T;H1)+‖Ht‖L∞(0,T;Hr+1)

+‖H‖L∞(0,T;Hr+3)+‖uttt‖L∞(0,T;L2)+‖utt‖L∞(0,T;H1)

+‖ut‖L∞(0,T;Hr+1)+‖u‖L∞(0,T;Hr+1)+‖ptt‖L∞(0,T;L2)+‖pt‖L∞(0,T;Hr+1)≤K. (4.1)

Here, vt denotes the derivative of function v with respective to t. The optimal error
estimate is stated in the following theorem.

Theorem 4.1. Suppose that the classic solution (H,u,p) to Eqs. (1.1a)-(1.1c) satisfies the regu-
larity assumption (4.1), and additionally∇p|∂Ω=0. Then there exist positive constants τ0 and h0
such that the numerical solution (Hn

h ,un
h ,pn

h), 2≤n≤N, obtained from the scheme (3.1a)-(3.1f)
satisfies, as τ<τ0, h<h0 and τ=O(h),

max
2≤n≤N

(‖Hn
h−Hn‖L2+‖un

h−un‖L2)≤C0(τ
2+hr+1), (4.2)

where C0 is a positive constant independent of τ and h.

4.1 Projections

We first introduce in this subsection several types of projections and their properties. For
v∈L2(Ω) (or v∈L2(Ω)), we denote by Ph the L2 projection as

(v−Phv,qh)=0, ∀qh∈Qh (or (v−Phv,qh)=0, ∀qh∈Xh). (4.3)

For (u,p)∈H1
0(Ω)×L2(Ω)/R, let (Rhu,Rh p) denote the Stokes projection

µ(∇(u−Rhu),∇vh)−(p−Rh p,∇·vh)=0, ∀vh∈Xh, (4.4a)
(∇·(u−Rhu),qh)=0, ∀qh∈Qh. (4.4b)

For H∈H̊1(Ω), the Maxwell projection is given by

(∇×(H−ΠhH),∇×wh)+(∇·(H−ΠhH),∇·wh)=0, ∀wh∈Sh. (4.5)

We present the results on the estimates of these projections, and the corresponding proofs
are referred to [21] and [44].

Lemma 4.1. We have the following inequalities: For m=0,1, 0≤ `≤ r, 1≤ s≤∞,

‖Phv‖Wm,s≤C‖v‖Wm,s , (4.6a)

‖v−Phv‖L2≤Ch`+1‖v‖H`+1 . (4.6b)
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For 0≤ `≤ r, 1< s<∞,

‖Rhu‖W1,s +‖Rh p‖Ls≤C(‖u‖W1,s +‖p‖Ls), (4.7a)

‖u−Rhu‖Ls +h‖u−Rhu‖W1,s≤Ch`+1(‖u‖W`+1,s +‖p‖W`,s), (4.7b)

‖p−Rh p‖Ls≤Ch`(‖u‖W`+1,s +‖p‖W`,s), (4.7c)

‖∂t(u−Rhu)‖Ls +h‖∂t(p−Rh p)‖Ls≤Ch`+1(‖∂tu‖W`+1,s +‖∂t p‖W`,s). (4.7d)

For 0≤ `≤ r,

‖H−ΠhH‖L2+h‖H−ΠhH‖H1≤Ch`+1‖H‖H`+1 . (4.8)

All constants C in the above inequalities are positive and independent of h.

Moreover, we need the following inverse inequality ( [4]).

Lemma 4.2. For ∀vh∈Qh, Xh or Sh, it holds that

‖vh‖Wm,s≤Chn−m+ d
s−

d
q ‖vh‖Wn,q (4.9)

for 0≤n≤m≤1, 1≤q≤s≤∞, where d is the dimension of the space, and C is a positive constant
independent of h.

In addition, we give an estimate of the discrete gradient operator ∇h defined in (3.2).

Lemma 4.3. For ∀qh∈Qh, we have

‖∇hqh‖L2≤Ch−1‖qh‖L2 , (4.10)

where C is a positive constant independent of h.

Proof. Taking vh =∇hqh in (3.2) gives

‖∇hqh‖2
L2 =(−∇·∇hqh,qh)≤‖∇·∇hqh‖L2 ·‖qh‖L2≤Ch−1‖∇hqh‖L2 ·‖qh‖L2 ,

where the Hölder inequality and inverse inequality (4.9) have been used. The proof is
completed by eliminating the term ‖∇hqh‖L2 on both sides of the above inequality.

4.2 Error equations

To tackle the term ûn+1
h , we introduce an intermediate function R̂hun+1∈Xh satisfying

Rhun+1−R̂hun+1

τ
+

2
3
∇h(Rh pn+1−Rh pn)=0. (4.11)
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With the above function and the projections defined in the previous subsection, we could
rewrite (2.1) and (2.4a)-(2.4d) as(

3ΠhHn+1−4ΠhHn+ΠhHn−1

2τ
,wh

)
−Mn+1

e
(
ũn+1× H̃n+1,∇×wh

)
+

η

µ0

(
∇×ΠhHn+1,∇×wh

)
+

η

µ0

(
∇·ΠhHn+1,∇·wh

)
+

η2

µ0

(
∇×Πhφn+1,∇×wh

)
+

η2

µ0

(
∇·Πhφn+1,∇·wh

)
=T n+1

H (wh), (4.12a)(
∇×ΠhHn+1,∇×vh

)
+
(
∇·ΠhHn+1,∇·vh

)
−
(
Πhφn+1,vh

)
=T n+1

φ (wh), (4.12b)(
3R̂hun+1−4Rhun+Rhun−1

2τ
,lh

)
+µ
(
∇R̂hun+1,∇lh

)
+Mn+1

e b
(
ũn+1,ũn+1,lh

)
−
(

Rh pn,∇·lh
)
+

Mn+1
e

µ0

(
H̃n+1×(∇× H̃n+1),lh

)
=

3
2

(
R̂hun+1−Rhun+1

τ
,lh

)
+µ
(
∇(R̂hun+1−Rhun+1),∇lh

)
−
(

Rh(pn−pn+1),∇·lh
)
+T n+1

u (lh), (4.12c)(
∇·Rhun+1,qh

)
=0, (4.12d)

3Mn+1
e −4Mn

e +Mn−1
e

2τ
=µ0b(ũn+1,ũn+1,un+1)+

(
H̃n+1×(∇× H̃n+1),un+1)

−
(
ũn+1× H̃n+1,∇×Hn+1)+TM, (4.12e)

for any (wh,vh,lh,qh)∈(H̊1(Ω),H̊1(Ω),H1
0(Ω),L2(Ω)), where we have introduced an arti-

ficial variable ûn+1 :=un+1, and have combined (3.1c) with (3.1d) to obtain (4.12c). Here,
the truncation errors T n+1

H ,T n+1
φ , T n+1

u and T n+1
M are given by

T n+1
H (wh)=

(
3ΠhHn+1−4ΠhHn+ΠhHn−1

2τ
−∂tHn+1,wh

)
−Mn+1

e
(
un+1×Hn+1−ũn+1× H̃n+1,∇×wh

)
,

T n+1
φ (vh)=−

(
Πhφn+1−φn+1,vh

)
,

T n+1
u (lh)=

(
3Rhun+1−4Rhun+Rhun−1

2τ
−∂tun+1,lh

)
+Mn+1

e (b(ũn+1,ũn+1,lh)−b(un+1,un+1,lh))

+
Mn+1

e
µ0

(
H̃n+1×(∇× H̃n+1)−Hn+1×(∇×Hn+1),lh

)
,

TM =

[
3Mn+1

e −4Mn
e +Mn−1

e
2τ

−Mn+1
t

]
+µ0

[
b(un+1,un+1,un+1)−b(ũn+1,ũn+1,un+1)

]
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+
[(

Hn+1×(∇×Hn+1),un+1)−(H̃n+1×(∇× H̃n+1),un+1)]
−
[(

un+1×Hn+1,∇×Hn+1)−(ũn+1× H̃n+1,∇×Hn+1)].
Since the projection error estimates have been given in Lemma 4.1, we only need to ana-
lyze the errors generated by the following error functions, for n=1,2,··· ,N,

en
H =ΠhHn−Hn

h , en
φ =Πhφn−φn

h ,

en
u =Rhun−un

h , ên
u = R̂hun−ûn

h , en
p =Rh pn−pn

h .

Subtracting the numerical scheme (3.1a)-(3.1e) from the projection system (4.12a)-
(4.12d), and applying (4.11), we have

(3en+1
H −4en

H+en−1
H

2τ
,wh

)
−
[
Mn+1

e
(
ũn+1× H̃n+1,∇×wh

)
−Mn+1(ũn+1

h × H̃n+1
h ,∇×wh

)]
+

η

µ0

(
∇×en+1

H ,∇×wh
)
+

η

µ0

(
∇·en+1

H ,∇·wh
)

+
η2

µ0

(
∇×en+1

φ ,∇×wh
)
+

η2

µ0

(
∇·en+1

φ ,∇·wh
)
=T n+1

H (wh), (4.13a)(
∇×en+1

H ,∇×vh
)
+
(
∇·en+1

H ,∇·vh
)
−
(
en+1

φ ,vh
)
=T n+1

φ (vh), (4.13b)(
3ên+1

u −4en
u+en−1

u
2τ

,lh

)
+µ
(
∇ên+1

u ,∇lh
)
+
(

Mn+1
e b(ũn+1,ũn+1,lh)−Mn+1b(ũn+1

h ,ũn+1
h ,lh)

)
−
(
en

p,∇·lh
)
+

1
µ0

[
Mn+1

e
(

H̃n+1×(∇× H̃n+1),lh
)
−Mn+1(H̃n+1

h ×(∇× H̃n+1
h ),lh

)]
=

3
2τ

(
R̂hun+1−Rhun+1,lh

)
+µ
(
∇(R̂hun+1−Rhun+1),∇lh

)
−
(

Rh pn−Rh pn+1,∇·lh
)

+T n+1
u (lh), (4.13c)(

en+1
u − ên+1

u
τ

,rh

)
− 2

3
(
en+1

p −en
p,∇·rh

)
=0, (4.13d)(

∇·en+1
u ,qh

)
=0, (4.13e)

for any (wh,vh,lh,rh,qh)∈ (Sh,Sh,Xh,Xh,Qh), and n=1,2,··· ,N−1.

4.3 Proof of Theorem 4.1

We give the following estimates needed in the later proof.

Lemma 4.4. Under the regularity assumption (4.1), the following are valid that

‖∇hPh∂t p−Ph∇∂t p‖L2≤Ch, (4.14a)

‖∇h(Rh pn+1−Rh pn)‖L2≤Cτ, (4.14b)

where C is a positive constant independent of h and τ.
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Proof. For vh∈Xh, we have(
∇hPh∂t p−Ph∇∂t p,vh

)
=
(
∇hPh∂t p−∇∂t p,vh

)
=−

(
Ph∂t p−∂t p,∇·vh

)
≤‖Ph∂t p−∂t p‖L2‖∇·vh‖L2 (by (4.6b) and (4.9))

≤Ch2 ·Ch−1‖vh‖L2 =Ch‖vh‖L2 .

Consequently, using the duality of L2(Ω) itself gives (4.14a). For (4.14b), we see that

‖∇h(Rh pn+1−Rh pn)‖L2

=Cτ‖∇hRh∂t p‖L2+Cτ2 (by Taylor expansions and p for pn+1 in short)

≤Cτ
(
‖∇hRh∂t p−∇hPh∂t p‖L2+‖∇hPh∂t p−∇Ph∂t p‖L2+‖∇Ph∂t p‖L2

)
+Cτ2

≤Cτ
(
Ch−1(‖Rh∂t p−∂t p‖L2+‖∂t p−Ph∂t p‖L2)+Ch+C

)
+Cτ2 (by (4.10), (4.14a) and (4.6a))

≤Cτ
(
Ch−1h2+C

)
+Cτ2 (by (4.7d) and (4.6b))

≤Cτ,

where the regularity assumption (4.1) has been used frequently. Thus, we complete the
proof.

We will establish the error estimates by using the mathematical induction, and then
make the assumption at the previous time step that

‖em
H‖L2+‖em

u ‖L2≤h
9
5 +τ

9
5 for m≤n. (4.15)

This induction will be recovered at the next step tn+1, as will be demonstrated later. Re-
mark 3.3 indicates that the induction assumption (4.15) is valid for m=0,1, and then for
m≤n we have

‖um
h ‖L∞≤C‖um

h ‖W1,4≤C(‖em
u ‖W1,4+‖Rhum−um‖W1,4+‖um‖W1,4)

≤Ch−
d
4−1(‖um

h −Rhum‖L2)+C‖Rhum−um‖W1,4+‖um‖L∞ (by (4.9))

≤Ch−
d
4−1(h

9
5 +τ

9
5 +h2)+K (by (4.15) and (4.7b))

≤K∗, (4.16)

and

‖Hm
h ‖L∞≤C‖Hm

h ‖W1,4≤C(‖em
H‖W1,4+‖ΠhHm− IhHm‖W1,4+‖IhHm‖W1,4)

≤Ch−
d
4−1‖em

H‖L2+Ch−
d
4 ‖ΠhHm− IhHm‖H1+C‖IhHm‖W1,4 (by (4.9))

≤Ch
4
5−

d
4 +Ch−

d
4 (‖ΠhHm−Hm‖H1+‖IhHm−Hm‖H1)+CK (by (4.15))

≤CK+Ch−
d
4 (h2+h2) (by (4.8))

≤K∗, (4.17)
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where Ih denotes the standard Lagrange interpolation, and we have utilized its stabil-
ity and error estimates from [14] in the last second inequality. Also, we have used the
Sobolev inequality twice to control the L∞-norm by W1,4-norm.

Thus we obtain the bound of the numerical solutions

‖Hm
h ‖L∞ +‖um

h ‖L∞≤K∗, m≤n. (4.18)

Now we proceed with the proof of Theorem 4.1.

Proof. Step 1: Taking wh = en+1
H in (4.13a) and vh = en+1

φ in (4.13b), we have

1
4τ

(‖en+1
H ‖2

L2−‖en
H‖2

L2+‖2en+1
H −en

H‖2
L2−‖2en

H−en−1
H ‖2

L2)

+
η

µ0
(‖∇×en+1

H ‖2
L2+‖∇·en+1

H ‖2
L2)+

η2

µ0
‖en+1

φ ‖2
L2

=
[
Mn+1

e
(
ũn+1× H̃n+1,∇×en+1

H
)
−Mn+1(ũn+1

h × H̃n+1
h ,∇×en+1

H
)]

+T n+1
H (en+1

H )− η2

µ0
T n+1

φ (en+1
φ ) :=

3

∑
i=1

I1,i. (4.19)

The nonlinear terms I1,1 could be analyzed as follows, due to the fact that Me≡1,

I1,1=
(
ũn+1×(H̃n+1−ΠhH̃n+1),∇×en+1

H
)
+
(
ũn+1× ẽn+1

H ,∇×en+1
H
)

+
(
(ũn+1−Rhũn+1)× H̃n+1

h ,∇×en+1
H
)
+
(
ẽn+1

u × H̃n+1
h ,∇×en+1

H
)

+(Mn+1
e −Mn+1)

(
ũn+1

h × H̃n+1
h ,∇×en+1

H
)

≤‖ũn+1‖L∞‖H̃n+1−ΠhH̃n+1‖L2‖∇×en+1
H ‖2

L2+‖ũn+1‖L∞‖ẽn+1
H ‖L2‖∇×en+1

H ‖L2

+‖ũn+1−Rhũn+1‖L2‖H̃n+1
h ‖L∞‖∇×en+1

H ‖L2+‖ẽn+1
u ‖L2‖H̃n+1

h ‖L∞‖∇×en+1
H ‖L2

+|Mn+1
e −Mn+1|‖ũn+1

h ‖L∞‖H̃n+1
h ‖L2‖∇×en+1

H ‖L2

≤C(h2r+2+‖ẽn+1
H ‖2

L2+‖ẽn+1
u ‖2

L2+(Mn+1
e −Mn+1)2)+

η

4µ0
‖∇×en+1

H ‖2
L2 , (4.20)

where we have utilized the regularity assumption (4.1), the bound of numerical solutions
(4.18), the Cauchy inequality and the Hölder inequality.

The truncation error terms could be bounded as

I1,2≤C(h2r+2+τ4+‖en+1
H ‖2

L2)+
η

4µ0
‖∇×en+1

H ‖2
L2 , (4.21)

and

I1,3=
η2

µ0

(
Πhφn+1−φn+1,en+1

φ

)
≤Ch2r+2+

η2

2µ0
‖en+1

φ ‖2
L2 . (4.22)

where the Cauchy inequality and the projection estimate (4.8) have been used.
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Thus by using (4.20), (4.21) and (4.22), (4.19) could be rewritten as

1
4τ

(‖en+1
H ‖2

L2−‖en
H‖2

L2+‖2en+1
H −en

H‖2
L2−‖2en

H−en−1
H ‖2

L2)

+
η

2µ0
‖∇×en+1

H ‖2
L2+

η

µ0
‖∇·en+1

H ‖2
L2+

η2

2µ0
‖en+1

φ ‖2
L2

≤C[h2r+2+τ4+‖ẽn+1
H ‖2

L2+‖ẽn+1
u ‖2

L2+(Mn+1
e −Mn+1)2]. (4.23)

Step 2: Adopting lh = ên+1
u in (4.13c) gives

1
4τ

(‖ên+1
u ‖2

L2−‖en
u‖2

L2+‖2ên+1
u −en

u‖2
L2−‖2en

u−en−1
u ‖2

L2)+µ‖∇ên+1
u ‖2

L2−
(
en

p,∇· ên+1
u
)

≤−
[
Mn+1

e b(ũn+1,ũn+1, ên+1
u )−Mn+1b(ũn+1

h ,ũn+1
h , ên+1

u )
]
+µ
(
∇(R̂hun+1−Rhun+1),∇ên+1

u
)

− 1
µ0

[
Mn+1

e
(

H̃n+1×(∇× H̃n+1), ên+1
u
)
−Mn+1(H̃n+1

h ×(∇× H̃n+1
h ), ên+1

u
)]

−
(

Rh pn−Rh pn+1,∇· ên+1
u
)
+

3
2τ

(
R̂hun+1−Rhun+1, ên+1

u
)
+T n+1

u (ên+1
u ) :=

6

∑
i=1

I2,i. (4.24)

By the definition (2.2), we get

I2,1=
1
2
[
Mn+1(ũn+1

h ·∇ũn+1
h , ên+1

u
)
−Mn+1

e
(
ũn+1 ·∇ũn+1, ên+1

u
)]

− 1
2
[
Mn+1(ũn+1

h ·∇ên+1
u ,ũn+1

h

)
−Mn+1

e
(
ũn+1 ·∇ên+1

u ,ũn+1)]
=

1
2
[(

ũn+1
h ·∇ẽn+1

u , ên+1
u
)
+
(
ũn+1

h ·∇(ũn+1−Rhũn+1), ên+1
u
)

+
(
ẽn+1

u ·∇ũn+1, ên+1
u
)
+
(
(ũn+1−Rhũn+1)·∇ũn+1, ên+1

u
)]

− 1
2
[(

ũn+1
h ·∇ên+1

u , ẽn+1
u
)
+
(
ũn+1

h ·∇ên+1
u ,(ũn+1−Rhũn+1)

)
+
(
ẽn+1

u ·∇ên+1
u ,ũn+1)+((ũn+1−Rhũn+1)·∇ên+1

u ,ũn+1)
+

1
2
(Mn+1−Mn+1

e )
[(

ũn+1
h ·∇ũn+1

h , ên+1
u
)
−
(
ũn+1

h ·∇ên+1
u ,ũn+1

h

)]
≤1

2
[(

ũn+1
h ·∇(ũn+1−Rhũn+1), ên+1

u
)
+‖ẽn+1

u ‖L2‖∇ũn+1‖L∞‖ên+1
u ‖L2

+‖ũn+1−Rhũn+1‖L2‖∇ũn+1‖L∞‖ên+1
u ‖L2+‖ũn+1

h ‖L∞‖∇ên+1
u ‖L2‖ũn+1−Rhũn+1‖L2

+‖ẽn+1
u ‖L2‖∇ên+1

u ‖L2‖ũn+1‖L∞ +‖ũn+1−Rhũn+1‖L2‖∇ên+1
u ‖L2‖ũn+1‖L∞

+|Mn+1
e −Mn+1|(‖ũn+1

h ‖L∞‖∇ũn+1
h ‖L2‖ên+1

u ‖L2+‖ũn+1
h ‖L2‖∇ên+1

u ‖L2‖ũn+1
h ‖L∞)

]
≤C[h2r+2+τ4+‖ẽn+1

u ‖2
L2+(Mn+1

e −Mn+1)2]+
µ

8
‖∇ên+1

u ‖2
L2

+
1
2
(
ũn+1

h ·∇(ũn+1−Rhũn+1), ên+1
u
)

≤C[h2r+2+τ4+‖ẽn+1
u ‖2

L2+(Mn+1
e −Mn+1)2]+

µ

4
‖∇ên+1

u ‖2
L2 . (4.25)
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In the last inequality, we have used (4.1), (4.7b), (4.18), the Cauchy inequality, Hölder
inequality, Poincaré inequality and the following facts(

ũn+1
h ·∇(ũn+1−Rhũn+1), ên+1

u
)

=
(
(∇·ũn+1

h )(ũn+1−Rhũn+1), ên+1
u
)
+
(
ũn+1

h ·∇ên+1
u ,ũn+1−Rhũn+1)

≤‖∇·ũn+1
h ‖L3‖ũn+1−Rhũn+1‖L2‖ên+1

u ‖L6+‖ũn+1
h ‖L∞‖∇ên+1

u ‖L2‖ũn+1−Rhũn+1‖L2

≤Ch2r+2+
µ

8
‖∇ên+1

u ‖2
L2 (by (4.7a)),

where by (4.16) we have

‖∇·ũn+1
h ‖L3≤C‖ũn+1

h ‖W1,4≤C,

and using the interpolation inequality that for any v∈W1,p,

‖v‖Lq≤C‖v‖1−α
Lp ‖v‖α

W1,p , 1< p≤q<∞, α=
d
p
− d

q
≤1, (4.26)

i.e.,
‖ên+1

u ‖L6≤C‖ên+1
u ‖H1≤C‖∇ên+1

u ‖L2

is valid. By (4.11), we have

I2,2=
2µτ

3
(
∇(∇hRh pn+1−∇hRh pn),∇ên+1

u
)

≤Cτ2‖∇(∇hRh pn+1−∇hRh pn)‖2
L2+

µ

4
‖∇ên+1

u ‖2
L2

≤Cτ4+
µ

4
‖∇ên+1

u ‖2
L2 , (4.27)

where the term ‖∇(∇hRh pn+1−∇hRh pn)‖L2 is controlled by

‖∇(∇hRh pn+1−∇hRh pn)‖L2

≤Cτ‖∇(∇hRh∂t p)‖L2 (by Taylor expansion and p for pn+1 in short)

≤Cτ
(
‖∇(∇hRh∂t p−∇hPh∂t p)‖L2+‖∇(∇hPh∂t p−Ph∇∂t p)‖L2+‖∇Ph∇∂t p)‖L2

)
≤Cτ

(
Ch−2‖Rh∂t p−Ph∂t p‖L2+Ch−1‖∇hPh∂t p−Ph∇∂t p‖L2

+‖Ph∇∂t p‖H1

)
(by (4.9) and (4.10))

≤Cτ
(
Ch−2‖Rh∂t p−∂t p‖L2+Ch−2‖Ph∂t p−∂t p‖L2+Ch−1Ch1

+C‖∇∂t p‖H1

)
(by (4.6a) and (4.14a))

≤Cτ
(
Ch−2h2+Ch−2h2+C+C

)
(by (4.6b) and (4.7d))

≤Cτ. (4.28)

The regularity assumption (4.1) has been used frequently in the derivation.
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Another nonlinear term could be analyzed as

I2,3=
(
(H̃n+1−ΠhH̃n+1)×(∇× H̃n+1), ên+1

u
)
+
(
ẽn+1

H ×(∇× H̃n+1), ên+1
u
)

+
(

H̃n+1
h ×(∇×(H̃n+1−ΠhH̃n+1)), ên+1

u
)
+
(

H̃n+1
h ×(∇× ẽn+1

H ), ên+1
u
)

+(Mn+1
e −Mn+1)

(
H̃n+1

h ×(∇× H̃n+1
h ), ên+1

u
)

≤‖H̃n+1−ΠhH̃n+1‖L2‖∇× H̃n+1‖L∞‖ên+1
u ‖L2+‖ẽn+1

H ‖L2‖∇× H̃n+1‖L∞‖ên+1
u ‖L2

+
(

H̃n+1
h ×(∇×(H̃n+1−ΠhH̃n+1)), ên+1

u
)
+
(

H̃n+1
h ×(∇× ẽn+1

H ), ên+1
u
)

+|Mn+1
e −Mn+1|‖H̃n+1

h ‖L2‖∇× H̃n+1
h ‖L3‖ên+1

u ‖L6

≤C(hr+1+‖ẽn+1
H ‖L2+|Mn+1

e −Mn+1|)‖∇ên+1
u ‖L2 (by (4.8) and Poincaré inequality)

+|
(

H̃n+1
h ×(∇× ên+1

u ),H̃n+1−ΠhH̃n+1)|+|(ên+1
u ×(∇× H̃n+1

h ),H̃n+1−ΠhH̃n+1)|
+|
(

H̃n+1
h × ẽn+1

H ,∇× ên+1
u
)
|+|
(
ên+1

u × ẽn+1
H ,∇× H̃n+1

h

)
| (by integration inparts)

≤C(h2r+2+‖ẽn+1
H ‖2

L2+(Mn+1
e −Mn+1)2)+

µ

8
‖∇ên+1

u ‖2
L2

+‖H̃n+1
h ‖L∞‖∇× ên+1

u ‖L2‖H̃n+1−ΠhH̃n+1‖L2

+‖ên+1
u ‖L6‖∇× H̃n+1

h ‖L3‖H̃n+1−ΠhH̃n+1‖L2

+‖H̃n+1
h ‖L∞‖ẽn+1

H ‖L2‖∇× ên+1
u ‖L2+‖ên+1

u ‖L6‖ẽn+1
H ‖L2‖∇× H̃n+1

h ‖L3

≤C[h2r+2+‖ẽn+1
H ‖2

L2+(Mn+1
e −Mn+1)2]+

µ

4
‖∇ên+1

u ‖2
L2 , (4.29)

where in the last inequality we have utilized (4.17), (4.26) and the Poincaré inequality.
Similarly, by (4.11) we obtain

I2,4+ I2,5=−
3
2

(
Rhun+1−R̂hun+1

τ
, ên+1

u

)
−
(
∇hRh pn+1−∇hRh pn, ên+1

u
)
=0. (4.30)

Finally, the term associated with the truncation error T n+1
u could be bounded by

T n+1
u ≤C(h2r+2+τ4+‖en+1

u ‖2
L2)+

µ

8
‖∇ên+1

u ‖2
L2 . (4.31)

Thus, (4.24) is simplified by (4.25), (4.27), (4.29)-(4.31) as

1
4τ

(‖ên+1
u ‖2

L2−‖en
u‖2

L2+‖2ên+1
u −en

u‖2
L2−‖2en

u−en−1
u ‖2

L2)

+
µ

8
‖∇ên+1

u ‖2
L2−

(
en

p,∇· ên+1
u
)

≤C[h2r+2+τ4+‖ẽn+1
u ‖2

L2+‖ẽn+1
H ‖2

L2+(Mn+1
e −Mn+1)2+‖en+1

u ‖2
L2 ]. (4.32)

Step 3: A combination of (4.11), (4.13e) and (4.13d) indicates that

∇· ên+1
u =

2τ

3
∇·∇h(en+1

p −en
p),
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which leads to

−(en
p,∇· ên+1

u )=
τ

3
(‖∇hen+1

p ‖2
L2−‖∇hen

p‖2
L2−‖∇h(en+1

p −en
p)‖2

L2). (4.33)

Again by (4.13e), (4.13d) yields

‖ên+1
u ‖2

L2 =‖en+1
u ‖2

L2+
4τ2

9
‖∇h(en+1

p −en
p)‖2

L2 (4.34a)

‖2ên+1
u −en

u‖2
L2 =‖2en+1

u −en
u‖2

L2+
16τ2

9
‖∇h(en+1

p −en
p)‖2

L2 . (4.34b)

Step 4: Now we need to estimate Mn+1
e −Mn+1 := en+1

M . Subtracting (4.12e) from (3.1f)
yields

3en+1
M −4en

M+en−1
M

2τ

=µ0[b(ũn+1,ũn+1,un+1)−b(ũn+1
h ,ũn+1

h ,ûn+1
h )]+TM

+
[(

H̃n+1×(∇× H̃n+1),un+1)−(H̃n+1
h ×(∇× H̃n+1

h ),ûn+1
h

)]
−
[(

ũn+1× H̃n+1,∇×Hn+1)−(ũn+1
h × H̃n+1

h ,∇×Hn+1
h

)]
:=

4

∑
i=1

I4,i. (4.35)

The definition (2.2) implies that

I4,1=
µ0

2
[(

ũn+1 ·∇ũn+1,un+1)−(ũn+1
h ·∇ũn+1

h ,ûn+1
h

)]
− µ0

2
[(

ũn+1 ·∇un+1,ũn+1)−(ũn+1
h ·∇ûn+1

h ,ũn+1
h

)]
=

µ0

2
[(
(ũn+1−R̃hun+1)·∇ũn+1,un+1)+(ẽn+1

u ·∇ũn+1,un+1)
+
(
ũn+1

h ·∇(ũn+1−Rhũn+1),un+1)+(ũn+1
h ·∇ẽn+1

u ,un+1)
+
(
ũn+1

h ·∇ũn+1
h ,un+1−Rhun+1)+(ũn+1

h ·∇ũn+1
h ,en+1

u
)

+
(
ũn+1

h ·∇ũn+1
h ,un+1

h −ûn+1
h

)]
− µ0

2
[(
(ũn+1−Rhũn+1)·∇un+1,ũn+1)

+
(
ẽn+1

u ·∇un+1,ũn+1)+(ũn+1
h ·∇un+1,ũn+1−Rhũn+1)

+
(
ũn+1

h ·∇un+1, ẽn+1
u
)
+
(
ũn+1

h ·∇(un+1−Rhun+1),ũn+1
h

)
+
(
ũn+1

h ·∇en+1
u ,ũn+1

h

)
+
(
ũn+1

h ·∇(un+1
h −ûn+1

h ),ũn+1
h

)]
≤C(hr+1+τ2+‖ẽn+1

u ‖L2+‖en+1
u ‖L2+‖ên+1

u ‖L2), (4.36)

where we have used the Hölder inequality, integration by parts and the following esti-
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mate

‖un+1
h −ûn+1

h ‖L2≤‖un+1
h −Rhun+1‖L2+‖Rhun+1−ûn+1

h ‖L2+‖ûn+1
h −ûn+1

h ‖L2

≤‖en+1
u ‖L2+‖ên+1

u ‖L2+
2τ

3
‖∇h(Rh pn+1−Rh pn)‖L2 (by (4.11))

≤‖en+1
u ‖L2+‖ên+1

u ‖L2+Cτ2 (by (4.14b)). (4.37)

The truncation term could be controlled directly by

I4,2≤Cτ2. (4.38)

Next for I4,3 we have

I4,3=
(
(H̃n+1−ΠhH̃n+1)×(∇× H̃n+1),un+1)+(ẽn+1

H ×(∇× H̃n+1),un+1)
+
(

H̃n+1
h ×(∇×(H̃n+1−ΠhH̃n+1)),un+1)+(H̃n+1

h ×(∇× ẽn+1
H ),un+1)

+
(

H̃n+1
h ×(∇× H̃n+1

h ),un+1−Rhun+1)+(H̃n+1
h ×(∇× H̃n+1

h ),en+1
u
)

+
(

H̃n+1
h ×(∇× H̃n+1

h )un+1
h −ûn+1

h

)
≤C(hr+1+τ2+‖ẽn+1

H ‖L2+‖en+1
u ‖L2), (4.39)

where (4.37) has been utilized.
Similarly, the following inequality could be derived

I4,4≤C(hr+1+‖en+1
H ‖L2+‖en+1

u ‖L2), (4.40)

and we skip the proof for simplicity.
From (4.36), (4.38), (4.39) and (4.40), taking the inner product with en+1

M by (4.35) leads
to

1
4τ

[(en+1
M )2−(en

M)2+(2en+1
M −en

M)2−(2en
M−en−1

M )2]

≤C(h2r+2+τ4+‖ẽn+1
u ‖2

L2+‖ẽn+1
H ‖2

L2+‖en+1
u ‖2

L2+‖en+1
H ‖2

L2+(en+1
M )2)

+
µ

8
‖∇ên+1

u ‖2
L2 , (4.41)

where the Cauchy inequality and Poincaré inequality have been adopted.
Step 5: A combination of (4.23), (4.32)-(4.34b) and (4.41) leads to

1
4τ

[‖en+1
H ‖2

L2−‖en
H‖2

L2+‖2en+1
H −en

H‖2
L2−‖2en

H−en−1
H ‖2

L2+‖en+1
u ‖2

L2−‖en
u‖2

L2

+‖2en+1
u −en

u‖2
L2−‖2en

u−en−1
u ‖2

L2+(en+1
M )2−(en

M)2+(2en+1
M −en

M)2−(2en
M−en−1

M )2]

+
2τ

9
(‖∇hen+1

p ‖2
L2−‖∇hen

p‖2
L2)+

η

2µ0
‖∇×en+1

H ‖2
L2+

η

µ0
‖∇·en+1

H ‖2
L2+

η2

2µ0
‖en+1

φ ‖2
L2

≤C[(hr+1+τ2)2+‖ẽn+1
u ‖2

L2+‖ẽn+1
H ‖2

L2+‖en+1
u ‖2

L2+‖en+1
H ‖2

L2+(en+1
M )2], (4.42)
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for n=1,2,··· ,N.
An application of the discrete Gronwall’s inequality results in

‖en+1
H ‖2

L2+‖en+1
u ‖2

L2≤C(hr+1+τ2)2, (4.43)

for τ < τ0 and h < h0, where τ0 and h0 are positive constants. This has recovered the
induction assumption (4.15) when m=n+1.

Together with the projection estimates (4.6a)-(4.8), we finish the proof of Theorem
4.1.

5 Numerical examples

The computations are carried out by using the software FreeFEM++.

5.1 Accuracy test

For the sake of brevity, we consider the incompressible resistive MHD equations

∂tH+
η

µ0
∇×(∇×H)+

η2

µ0
∇×(∇×(∇×(∇×H)))−∇×(u×H)= J, (5.1a)

∂tu+u·∇u−µ∆u+∇p+
1
µ0

H×(∇×H)= f , (5.1b)

∇·H=0, ∇·u=0, (5.1c)

in a two-dimensional domain [0,2π]×[0,2π], with the initial and boundary conditions
(1.2a)-(1.2b). Here J and f are the source terms, and are determined by the given exact
solution

u= t8

(
sin2 xsin(2y)

−sin(2x)sin2 y

)
, H= t5

(
−sinycosx

sinxcosy

)
, p= t5sin(2x)sin(2y). (5.2)

Note that the above exact solutions u and H satisfy the divergence-free conditions.

Example 5.1. All the coefficients in (5.1a)-(5.1c) are chosen to be 1, and we take the final
time T=1. We first solve the MHD system (5.1a)-(5.1c) by the scheme (3.1a)-(3.1d) with a
quadratic finite element approximation for H and u, and a linear finite element approxi-
mation for p. To impose the boundary condition H×n=0, we make use of the definition
directly. For example, on the edge {(x,y) : 0≤ x≤2π,y=0}, n=(0,−1)T and denoted by
H :=(H1,H2)T, then we have H1 = 0. To emphasize the convergence rate in time, a suf-
ficiently small spatial mesh size h=2π/100 is chosen such that the spatial discretization
error can be relatively negligible. The time step is τ =T/N with N = 40,80,160,320. We
present the numerical results at time T=1 in Table 1(a), which indicate that the proposed
scheme is convergent at a second-order temporally accuracy.
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Table 1: η=η2 =µ=µ0 =1.

(a). Temporal convergence rates
τ ‖HN−HN

h ‖L2 Order ‖uN−uN
h ‖L2 Order

1/40 6.969×10−3 2.418×10−2

1/80 1.797×10−3 1.96 6.383×10−3 1.92
1/160 4.561×10−4 1.98 1.641×10−3 1.96
1/320 1.158×10−4 1.98 4.211×10−4 1.96

(b). Spatial convergence rates
h ‖HN−HN

h ‖L2 Order ‖uN−uN
h ‖L2 Order

2π/10 1.678×10−2 9.111×10−2

2π/20 2.153×10−3 2.96 9.570×10−3 3.25
2π/40 2.703×10−4 2.99 1.195×10−3 3.00
2π/80 3.388×10−5 3.00 1.502×10−4 2.99

Then we solve the problem (5.1a)-(5.1c) by the scheme (3.1a)-(3.1d) with a sufficiently
small temporal step τ=1/2000, to observe the spatial convergence rate. Take spatial size
as h=1/10,1/20,1/40,1/80. Again, a quadratic finite element approximation for H and u
is adopted, combined with a linear finite element approximation for p. Numerical results
at T=1 are displayed in Table 1(b). It is clearly seen that the spatial numerical errors are
approximately O(h3), which is consistent with the theoretical analysis in Theorem 4.1.

Next some experiments with small parameters are provided to verify the robustness
of the proposed scheme. We still consider the space domain [0,2π]×[0,2π]×[0,1] and use
the exact solution (5.2) to test the accuracy.

Example 5.2. Adopt the same parameters in Example 5.1 except the viscosity µ = 0.01
instead of µ=1, and then the numerical results are shown in Tables 2(a) and 2(b).

Table 2: µ=0.01, η=η2 =µ0 =1.

(a). Temporal convergence rates, h=2π/100
τ ‖HN−HN

h ‖L2 Order ‖uN−uN
h ‖L2 Order

1/40 6.825×10−3 4.007×10−2

1/80 1.757×10−3 1.96 1.056×10−3 1.92
1/160 4.457×10−4 1.98 2.756×10−3 1.94

(b). Spatial convergence rates, τ=1/2000
h ‖HN−HN

h ‖L2 Order ‖uN−uN
h ‖L2 Order

2π/10 1.601×10−2 6.358×10−1

2π/20 2.121×10−3 2.92 1.412×10−1 2.17
2π/40 2.691×10−4 2.98 1.545×10−2 3.19
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Example 5.3. Further, except for a small hyper-resistivity η2=0.01, we still take the same
parameters in Example 5.1, and then obtain the results in Tables 3(a) and 3(b).

Table 3: η2 =0.01, η=µ=µ0 =1.

(a). Temporal convergence rates, h=2π/100
τ ‖HN−HN

h ‖L2 Order ‖uN−uN
h ‖L2 Order

1/40 1.448×10−2 2.379×10−2

1/80 3.791×10−3 1.93 6.285×10−3 1.92
1/160 9.703×10−4 1.97 1.615×10−3 1.96

(b). Spatial convergence rates, τ=1/2000
h ‖HN−HN

h ‖L2 Order ‖uN−uN
h ‖L2 Order

2π/10 1.585×10−2 9.122×10−2

2π/20 2.109×10−3 2.91 9.571×10−3 3.25
2π/40 2.691×10−4 2.97 1.195×10−3 3.00

Example 5.4. Now we adopt η=0.1 and η2=0.001 and keep other parameters in Example
5.1 unchanged. Then the numerical results are shown in Tables 4(a) and 4(b) as follows.

Table 4: η=0.1, η2 =0.001, µ=µ0 =1.

(a). Temporal convergence rates, h=2π/100
τ ‖HN−HN

h ‖L2 Order ‖uN−uN
h ‖L2 Order

1/40 2.274×10−2 2.343×10−2

1/80 5.976×10−3 1.93 6.186×10−3 1.92
1/160 1.534×10−3 1.96 1.589×10−3 1.96

(b). Spatial convergence rates, τ=1/2000
h ‖HN−HN

h ‖L2 Order ‖uN−uN
h ‖L2 Order

2π/10 1.950×10−2 9.149×10−2

2π/20 2.164×10−3 3.17 9.573×10−3 3.26
2π/40 2.703×10−4 3.00 1.195×10−3 3.00

All the numerical results are consistent with the theoretical results proven in Theorem
4.1.

5.2 Energy stability test

Finally, we carry out the numerical experiment to verify the discrete energy stability, and
choose the initial data as

u1=u0=

(
sin2 xsin(2y)

−sin(2x)sin2 y

)
, H1=H0=

(
−sinycosx

sinxcosy

)
, p0=sin(2x)sin(2y).
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Figure 1: Discrete energy evolution of the incompressible resistive MHD system.

The time step size and the spatial resolution are given by τ=0.1 and h=1/20, respectively.
The discrete energy function is defined in Theorem 3.1. We still adopt the quadratic
elements for (H,u) and linear elements for p. The energy evolution curve is displayed in
Fig. 1, up to a final time T=10, which indicates a clear energy decay.

6 Conclusions

In this work we have designed a fully decoupled second-order BDF scheme, combined
with the mixed FEM spatial approximation, for the incompressible resistive MHD sys-
tem (1.1a)-(1.1c). The unconditional energy stability, unique solvability and optimal rate
error estimate have been established at a theoretical level. The fully decoupled method
adopted in this work is an efficient approach to deal with the incompressible constraint
and nonlinear terms, and therefore the technique could be applied to the other incom-
pressible flow system, for example, the multi-phase MHD system.
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