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Convergence analysis of a BDF' finite element method for the resistive
magnetohydrodynamic equations
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Abstract

In this paper we propose and analyze a numerical scheme coupling a second-order backward differ-
ential formulation (BDF) and the finite element method (FEM) to solve the incompressible resistive
magnetohydrodynamic (MHD) equations. In the discrete scheme, the pressure variable in the fluid field
equation is computed through a Poisson equation, and a linear and decoupled method is adopted to
separate both the magnetic and the fluid field functions from the original system. As a result, the
original system is divided into several sub-systems for which the numerical solutions can be obtained
efficiently. We prove the unique solvability, the unconditional energy stability, and particularly optimal
error estimates for the proposed scheme. Numerical results are presented to validate the theory of the
scheme.

Keywords: Resistive MHD equations, finite element methods, BDF decoupled scheme, unconditional
energy stability, optimal error estimates.
MSC: 65M60, 65M12

1 Introduction

The MHD system describes the interaction between the conductive fluids and the electromagnetic
fields |16]. It has been widely applied to the industry production, such as liquid-metal processing, and
its numerical solutions are of great significance in science and engineering [45]. This model is governed
by the Navier—Stokes equations and the Maxwell equations through the Ohm’s law and the Lorentz force.
Physically, in order to consider the further effect of magnetic fields, one can introduce a fourth-order curl
operator on the magnetic fields into the standard incompressible MHD equations, arriving at the following
so-called incompressible resistive MHD system [65]

atH—vX(uxH)+M1vx(va)+Zlvx(vx(Vx(VxH)))zo, (1.1)
0 0
1
&gu—ku-Vu—,uAu—kV]DJrM—Hx(V><H)=07 (1.2)
0
V-u=0, (1.3)

over Q x (0,T], where Q is a bounded and convex polygonal domain in R? (polyhedral domain in R3), and
T is a constant representing the final time. Here, the unknowns w, H and p denote the velocity field, the
magnetic filed, and the pressure variable, respectively. The constant 7 represents the resistivity, 7o is the
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hyper-resistivity, u is the viscosity of the fluid and pg stands for the magnetic permeability of free space.
The initial and boundary conditions are given by

H|;_o = Hy, uli—o = uo, in Q,
Hxn=0 (Vx(VxH))xn=0 u=0, on 02 x (0,T].

It is assumed that the initial data satisfies
V~H0:V-u0:0. (16)

By taking the divergence of , we have ¢,V - H = 0, which together with the above divergence-free
initial condition indicates that V - H = 0 for any ¢ > 0.

Apparently, taking hyper-resistivity coefficient 7o = 0 would reduce the original system — into
the standard incompressible MHD system. There have been already many works dedicated to regularity
analysis of the incompressible MHD system [23}36[37,/48|. Concerning finite element methods for the MHD
system, many research efforts have been devoted to the use of the H'(£) conforming elements, since the
weak solutions of the system are located in H'(£2). In [22], Gunzburger et al. proposed a numerical scheme
and analyzed optimal error estimates for the stationary MHD system by H'(£2) conforming elements. The
similar results were obtained for the time-dependent MHD model in [24]. Li et al. developed a strongly
convergent finite element scheme based on the H!(Q) conforming elements in general domains, which may
be nonconvex, nonsmooth and multi-connected, without any mesh restriction [30]. Wang et al. designed a
second-order temporally accurate finite element scheme with the H'(£2) conforming elements, and provided
a rigorous proof on optimal error estimates [47]. More works about H'(£2) conforming elements are referred
to [25L47,52,58,60] and references therein. An apparent difference between the standard MHD system and
the resistive MHD system is the appearance of the fourth-order curl operator, for which many numerical
schemes have been proposed and analyzed. Zheng et al. utilized a non-conforming finite element involving
a small number of degrees of freedom for its solution [65]. Sun proposed a mixed finite element method
by introducing an intermediate variable ¢ = V x (V x H), and proved the unique solvability and the
convergence for the proposed scheme [43|. Discontinuous Galerkin (DG) methods with H (curl)-conforming
elements were adopted to solve the fourth-order curl operator problem in |26]. Both an interior penalty
DG method and a hybridizable discontinuous Galerkin (HDG) method were employed to discretize this
operator in |7] and |5,6], respectively. Most recently, Zhang et al. developed the two-dimensional H (curl?)-
conforming finite elements on both rectangles and triangles, and applied them to solve this operator, with
the convergence rates being proved [63]. In [27], three families of finite elements, among which the simplest
triangular or rectangular finite elements have only six or eight degrees of freedom, respectively, have been
constructed in two dimensions to solve this fourth-order curl operator problem.

On the design of fully discrete schemes for the time-dependent incompressible MHD system, there ex-
ist issues on treating both the divergence-free condition on the magnetic fields and the incompressibility
constraint. There are many works devoted to the construction of divergence-free schemes for the MHD equa-
tions, and interested readers are referred to such as [31H33|. Dealing with the incompressibility constraint,
a type of numerical schemes is based on the Stokes solver, which leads to a coupling of the pressure gradient
and the incompressibility constraint at each time step, for example in [20,24]. As a result, this method
will generate a non-symmetric system. Another type of approaches is to making use of the “decoupled”
technique. An advantage of this method, being friendly to the improvement on computational efficiency,
can be attained due to the fact that the resulting discrete system is symmetric. In [42], Pyo and Shen have
proposed a second-order decoupled BDF scheme for the incompressible Navier—Stokes equations, and also
see [46] for the decoupled fluid solver using the Gauge formulation. In 38|, Liu et al. designed a decoupled
scheme with the first-order temporally accuracy and unconditional energy stability for a phase-field model
of two-phase incompressible flows with variable density based on the “pressure-stabilized” formulation, in
which they treated the pressure term in the velocity equation explicitly and then computed the pressure by
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solving a Poisson equation. Zhao et al. proposed a decoupled, linear and first-order temporally accurate
scheme with the unconditional stability analysis for the phase field model of mixtures of nematic liquid
crystals and viscous fluids [64]. The emphasis of these works related to the “decoupled” technique was con-
centrated on the energy-preserving property but not on the convergence analysis. Meanwhile, there have
been some works devoted to the improvement on the computational efficiency through particularly dealing
with the nonlinear and coupled terms in the complex system. In addition to the general im-explicit tech-
nique, a novel approach being called the “zero-energy-contribution” property has been developed recently.
In [62], Zhang et. al. designed a fully decoupled scheme for the incompressible MHD with second-order
temporal accuracy and unconditional energy stability. More works applying the “zero-energy-contribution”
property could be found in [53-57,/61] and the references therein. However, the existing fully decoupled
schemes using the “zero-energy-contribution” property have only addressed the stability analysis, without
accuracy analysis being presented. Moreover, for the time-dependent problem, to improve the computa-
tional efficiency the various time step method, e.g. [9] and the SAV method e.g., [35] are also feasible. In
particular, the “zero-energy-contribution” method shares a little similar ideas of the SAV method, where
the primary difference is the definition of the nonlocal artificial variable.

In this work, we design a numerical scheme of the FEM approximation in spatial domain and a second-
order BDF discretization in time domain to solve the resistive MHD system. The scheme has a feature of
fully decoupling making use of both the “pressure-stabilized” formulation and the “zero-energy-contribution”
property. By defining an intermediate variable ¢ = V x (V x H), the original resistive MHD system (1.1)-
(1.3) can be reformulated, and the equivalence holds since we consider the problem only in convex domains.
In the discrete scheme, we employ the H!(f)-conforming elements, the “decoupled” method combined
with the second-order BDF scheme, and the “zero-energy-contribution” property dealing with the nonlinear
terms. This approach ensures the linear nature of the fully discrete system, and then the unique solvability
follows immediately from the fact that the corresponding homogeneous equation only admits a trivial
solution. We point out that the second order accurate temporal discretization has been applied to various
gradient flow models [10-12,/17}[19}:34,39,/51,59], with the energy stability and the convergence estimate
being theoretically proved. During the numerical implementation, we carry out the implementation step
by step, instead of solving the full system together, and consequently, the conjugate gradient method could
be applied to compute the velocity field, and the pressure is obtained by solving a Poisson-type equation.
In order to validate the analysis on the artificial velocity field, we introduce the corresponding artificial
projection operators and assume that the pressure field satisfies Vp = 0 on the boundary [47]. We carry
out a rigorous analysis on the unconditional energy stability, the unique solvability, and particularly the
optimal error estimate for the scheme. The numerical scheme has the feature of the optimal convergence
rate O(h" ! +72), in the £*([0, T'], L?)-norm, where r is the degree of the polynomial functions, and h and
T are the spatial and temporal sizes, respectively.

This paper is organized as follows. In Section [2] we present the variational formulation of the resistive
MHD system, and then discuss the numerical scheme and its the theoretical results, including the energy
stability and the unique solvability in Section [3] In Section [] the convergence analysis and the optimal
error estimates for the scheme are established, and finally some numerical results are presented in Section
to verify the theoretic results.

2 Variational formulation

We adopt the standard Sobolev space WP (Q) of functions defined on Q for k¥ > 0 and 1 < p < o0,
and denote LP(Q) = WP(Q) and H*(Q) = W*2(Q). Then we take the notation Wol’p(Q) as the space
of functions in WHP(Q) with zero traces on the boundary 0€), and naturally Hg(Q) := Wol’2(Q). The
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corresponding vector spaces are given by
LP(Q) = [LP(Q)), |
1, 1,2
Wo() = [y " (Q))%, H;(Q) = Wy (),
H*(Q) = {v e H*(Q) : v x n = 0},
where d denotes the dimension of space. As usual, (-,-) denotes the inner product in L?(£2).
We introduce an intermediate variable ¢ = V x (V x H) [43] in (1.1]) to reformulate the original system

(1.1)-(1.3), and additionally define another artificial nonlocal variable M, |62] satisfying the following initial
value problem

dM,
dt

Here, we define a trilinear operator b(-, -, -) as follows

—(ux H,V x H) + pob(u,u,u) + (H x (V x H),u), M(0)=1. (2.1)

b(u,v,w): = (u-Vo,w) + %((V cu)v,w)
1 (2.2)
= 5[(u~Vv,w)—(u~V'w,v)], Vu, v, w € HY(Q),

and obviously we have
b(u,v,v) =0, Yu,veH}). (2.3)

It can be easily seen that M, =1 for any ¢t > 0 by integration by parts with boundary conditions ([1.5]).
Turning to these new variables, we can reformulate the original system (|1.1))-(1.3)) into

atH—MevX(uxH)+MQV><(V><H)+Z—2Vx(de)):O,
0 0

Vx(VxH)= ¢,

M.
8tu+M6u-Vu—,uAu+Vp+lu—Hx(VXH)=O,
0

V-u=0,

which leads to the following variational formulation: find (H, ¢, u,p) € (H' (), H'(Q), H}(Q), L?(Q2)) such
that it holds
OH,w) — M(ux H,V x w) + Mﬂ(v x H,V x w) + Zi(v x ¢,V x w) = 0,
0 0
\Y XH,V X’U)-(¢,’U) :Oa

(

(

(Gyu,l) + Mb(uw,u,l) + p(Vu, V1) — (p, V- 1) + ]IZ)e(H x (V x H),l) =0,
(

v -u, Q) = 07
for any test functions (w,v,1,q) € (H(Q), H(Q), H}(Q), L2(2)).

Remark 2.1. The intermediate variable ¢ =V x (V x H) is an auziliary function served for computation
and analysis, and it is assumed that it also satisfies the boundary condition ¢ x n = 0. This assumption for
now does not contain the physical meaning, and we mainly focus on the theoretical analysis in this work, so
that the simple boundary conditions are discussed.

It is a well-known technique through introducing an artificial variable to reduce the order of the original
system in the process of designing numerical schemes, such as mized finite element methods [143,8,|15,40/
and local discontinuous Galerkin methods [15,(29,149,|50/. In this work we mainly focus on the theoretical
analysis, so that the simple boundary conditions are discussed.
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3 Numerical methods and stability analysis

3.1 Discrete scheme

We divide the domain 2 into triangles K (tetrahedrons Kj in R3), j = 1,2,..., N, denoted by 3y,
and the mesh size is defined as h = max;<;<n, {diamK;}. We utilize the Taylor-Hood finite element, given
by

Xy = {ln € Hy(Q) : Lilx; € Pr(K;)},
Qn = {an € L*(Q) : qn|x, € Pr—1(K;), §o qndx = 0},

for any integer r > 2, where P.(Kj) is the polynomial space with the degree being r on K for all K; € S,
and P, (K;) := [P, (K )]%. Additionally, we introduce the finite element space Sy,:

Si = {wp, € HY(Q) : wy |k, € P, (K;)}.

Let {t, = nT})_, be a uniform partition of the time interval [0, 7], and 7 = T/N denotes the temporal
step size. Furthermore, v™ represents the value of v(x,t,), and for any sequences {v" 1 we define

6n+1 _ 21) nfl.

Subsequently, based on and . ., we propose a fully discrete scheme for the incompressible
resistive MHD equations (1.1] . find I{"Jrl ¢”+1 "H '&Z“,pzﬂ) € (Sp, Sh, Xp, X, Qp) together
with M™*1 such that

3H'' —4H} + H !

( = )+%(V><H”Jrl wah)+%(V~HZ“,V-wh)

+ %(V x )TV x wp) + ZZ( PRV ) — M (@Rt x "V wy) =0, (3.1)
(V x HPPV W xvp) + (V- HPPL V) = (9 vy) =0, (3:2)
(BT R 1) M@ @ ) 4 (T, V) - (.Y 1)

) o @

(M,rh) ;(p?{’“ —ph, V) =0, (3:4)

(V) =0, (3.5)
3M"“—42]‘T4"+M"_1 (A, % (V x H, ) ) + pob (gt aptt ap )

— (@t < Hy LV s HY), (3.6)

for any (whavh>lh7Th>Qh) € (Sh7 ShaXh7Xh7Qh) and n = 11 27 o 7N -1

Remark 3.1. We have added the stabilization terms, %(V CHPL VY -wy) and %(V PPtV ), to
(3.1), and (V-HZH, V-vh) to (3.2), which are consistent with the conditions that V-H =0 and V-¢ = 0.

This manipulation, which has also been discussed in many literatures, e.g., [18,|28], allows us to utilize the
H'-conforming elements to validate the analysis on the optimal error estimate for the magnetic field in the
convex domain. However, for the non-convex domains, one could use some advanced elements [41|] to obtain
the optimal rates, or other analysis techniques [30] to obtain the convergence results.
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Remark 3.2. The pressure ﬁeld appears explicitly in the velocity equation (|3 , and 1t could be updated by
solving the linear equation (3.4)). To this end, we also mtroduce an artificial varzable u”J’1 instead ofunJrl
(3.3), and then u”Jrl will be obtamed together with p”Jr1 in . This is the so- called ‘pressure-stabilized”
technique.

Remark 3.3. Note that the proposed scheme (3.1))-(3.6|) is a multi-step method, and we simply assume that
the initial values at t° and t* are given.

3.2 Discrete energy stability

In this subsection, the discrete energy stability of the numerical scheme (3.1)- (3.6 will be proven. We
define the discrete gradient operator Vj, : Qn — X, as

(Vn, Vian) = —(V - vn,qn), Yo € X, qn € Q. (3.7)
The energy stability estimate is stated in the following theorem.

Theorem 3.4. The numerical solution (H}y,u},pp) to the fully discrete scheme (3.1)-(3.6]) is uniquely
solvable and satisfies the following energy estimate

n+1 n
€ < Eh»

for 1 <n < N — 1, where the discrete energy function €}, is defined as

1 _ -
n = HRL: + |2HF = H 7 Ta + polluh|72 + pol2up — wi™ |7z + (M)

+(2Mn o Mnfl)Q)

Proof. Step 1: Setting w), = HZH in (3.1]) leads to
1 -1
(3H;;+ —AH} + H?
27

(VX LV ) H) (Vg VH) = M (@
0 0

Substituting v, = ¢Z+1 into (3.2)) gives
(Vx op™t,V x HptY + (V- op ™ V- Hi ™) = o7,

n n
HT) 4 IV G e I H

n-‘r

! VxH”H) =0.

which together with the identity

1 1
(ga 24 Je)a = ([0~ B + (20— )~ (2~ )’ + (a— 20 + o)

indicates that .
(HH”“Hm — |H} |72 + [2H}H - "\\%2 —[2H} — H 7 '72)

(3.8)
Step 2: Similarly, taking I, = uzﬂ in . 3.3)) yields
L, . _ .
(L ap | 7e — fupl7e + 1285t — wlie — [2u) —uh7e) - (0F. V- ap ™)
N N Mn+1 ~nt1 1
M (R wrt antt) + " (H," x (VxH, ), <0, (3.9)



173

174

175

176

177

178

179

180

181

182

184

185

186

187

188

where the non-negative terms have been eliminated.
Step 3: To control the terms containing thrl by the definition of . we rewrite (3.4) as

n+1 ~n+1

Up — — Uy 2 n+1 n
24—V, =0.
i 3 (ph ph)
This in turn leads to
lap 7. = |up 7. L HVh( P =7,

for which the equahty (u} ntl ,Vi(py el —p) =—(V- u"+1,p’,;”+1 p') = 0 has been applied.
In addition, is equlvalent to

(2un+1 u ) (2un+1 . un) 4
- Y SV - k) =0,

which further implies
167
|24+ —wup |72 = |2up™ —up|. + —— HVh( W =)
For the term — (ph, V- A"H), applying (3.10) again leads to

(ap*t, Vipr) =(up™, Vipl) + ( T = o), Vip))

.
=5 (IVaph ™ Ize — ”VhthL2 ~ Vi ™ = R 72)-

Step 4: Substituting (3.11)), (3.12]) and (3.13) into (3.8]) and (3.9), we obtain

(HH"”HLQ - HH |72 + |2H, ™ — HY |72 — |2H}, — H} 7' 72)

Ho
+E(Hu2+1\liz i IIVh( w = oh)7e — g7
1 -1
I\Vh( n = o) 7 — 12uh — w72

3Mn+1 —AM™ + Mnfl

+2uh ™ — g7 + =

ESE IV 2 = ¥kl = [Va @it = pi)IE2) + M7

2T
<0,

where we have used ({3.6]).

(3.10)

(3.11)

(3.12)

(3.13)

By the discrete energy function €} defined in Theorem@ the energy stability follows immediately. The
unconditional energy stability indicates that the corresponding homogeneous equations only admit trivial
solutions, and this leads to the unique solvability immediately. This completes the proof of the theorem. [

3.3 Numerical implementation

In the practical implementation, we introduce more variables H, il ,¢"+1 and u”H, i = 1,2, instead
of computing H} ntl ¢"+1 and u"Jrl directly. wvyp is obtained by terms without M while wvoy is solved by

terms Containing M, v=H,0o, 11. In specific, we write HZH, qbZ’H and '&Z“ as

n+1 _ n+1 n+1 gFn+1 ~n+1 ~n+1 n+1n+1 n+1 n+1 n+1 n+1
H,” =H},  +M"""Hy ", u, "~ =uy, +M""uy, ", ¢, =¢),  + M ¢y

(3.14)
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and carry out the simulation of the discrete system (3.1))-(3.6)) in the following four steps.

Step 1: By (3.14]), we write (3.1)) and (3.2]) into the following equivalent forms

3
2T

U n U n 1
+ ;TZ(V x @V x wy) +;§(V-¢1J1,V-wh) =

Ho

(V x HLV <o) + (9

and

2T

—i—@(Vx

Ho

1
b5 s

7(H?h+17wh) + i(v X H?}jl,v X 'wh) + %(V'H?}:rl,v~’wh)

7(4H;§ — H} L wy,),

-H?}Tl,v~vh) — ((ﬁ?}j_lavh) =0,

E(Hg,fl,’wh) +%(V X H;L;l,v X 'wh) —I—%(V-Hg;l,v-wh)

~n+1

Voxwn) £ 2V V) = (@7 < HYLV xwn),
0

(VxHSﬁrl,vah) + (V-H;l,fl,v-vh) — (qbg,:rl,vh) =0.

Solving (3.15) and (3.16]) gives H

n+1 n+1 n+1 n+1
1 > Hayp s @7, and ¢y

Step 2: Again by (3.14), we could reformulate (3.3)) as

2 (an+l
27_(u1h )

and

2T

Then we get the values of ]}

S (a1 + p(vag!

n+1

Vi) = —b(aptt aptt )

1
) + p(Vayt, vi,) = o (4uh — u) ) + (PR V)

1 ~n+1 ~n-+1

/_LO(Hh X(VXHh ),lh)

n+1

and wy;" in this step.
Step 3: Substituting (3.14]) into (3.6)) leads to
3MHL —4aM™ 4+ ML ~n+l ~n+l

This in turn yields

2T

=(H, x(VxH, )ajt+m*anth)

~n+l ~n+l ~n+l n+1n+1
+ pob (@™, BT Ay + M g, )

~n+1
— (@ < Hy LV x (HY + MUTUHE)

=T + M" "I,

2M™ — fM™ ! + 71

3
Q—TIQ

Mn+1 _

I

where we have already obtained all the values on the right hand side. Here, we denote

~n+1

~n+1

~n+l. N N . N
L = (H, x(VxHZ ),u’f,:rl)+uob(u2+1,uz+1,u’1‘;1)—(uﬁ“><Hh ,VXH?hH),

~n+1

~n+1 ~n+1

~n+1_ ~ ~ .
Iy=(H, x(VxH, ),ug}fl)—i—ugb(uzﬂ,uzﬂ,ug,jl)—(uh x H) ,VXHS;[I).

Therefore, by adopting wj, = Hg;{l, vy = ¢Z+1 in (3.16) and 1, = '&721;1 in (3.18)), we have

3
L =—(|H
Al

+

72
—|¢
19}

n+1
2h

n}:ﬂH%Q + MMOHvugh H%z = 0,

. U
172 + pollisgy 172) + gV > Hy g + V- Hy22)

~n+1

which guarantees that % — 71 > 0. As a conclusion, (3.19) is always solvable for M™*1,

R 1
Step 4: Finally, uZJr

and p

n+1
h

could be obtained by solving (3.4) and (3.5]).

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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Remark 3.5. [t easy to see that by (3.14]), the whole system (3.1))-(3.6]) consists of four separate sub-systems
(13-1)-(3.2)), (3.3), (3.4)-(3.5) and (3.6)). Therefore, solving the whole system together is exactly algebraically

equivalent to solving it step by step as stated in subsection3.3. In the practical implementation, Step 2
generates an elliptic equation with constant coefficients, so that we could employ the conjugate gradient
algorithm to solve it efficiently. Step 3 is just a direct algebraic calculation, and Step 4 corresponds to a
Poisson-type equation. The main computational cost of the proposed scheme comes from Step 1.

4 Optimal rate error estimate

We make the following regularity assumption for the solution of continuous system ([L.1f)-(|L.3):
IH tit | oo 0,112y + [ H ttll oo 0.1, 10) + 1 H ]| oo (0,7, mm+1y + [H || Lo 0,0, 1m+3) + [ et || Lo 0,722
+ wee]| Lo 0,751y + |wtl oo 0,1 m57+1y + [l oo 0,051y + [Petll oo 0,122y + |Pell oo o,y < K (41)

Here, vy denotes the derivative of function v with respective to t. The optimal error estimate is stated in
the following theorem.

Theorem 4.1. Suppose that the classic solution (H ,w,p) to the equations (1.1)-(1.3) satisfies the reqularity
assumption (4.1)), and additionally Vp|oq = 0. Then there exist positive constants 19 and hg such that the
numerical solution (Hjy,uy,pit),2 < n < N, obtained from the scheme (3.1)-(3.6) satisfies, as 7 < 79,
h < ho and 7 = O(h),

max (|Hj — H"| 2 + |ujy — w"|2) < Co(r* + A7), (4.2)

2<n<N

where Cy is a positive constant independent of T and h.

4.1 Projections

We first introduce in this subsection several types of projections and their properties. For v €
L3() (or v € L*(Q)), we denote by P, the L? projection as

(v— Ppu,qn) =0, Ygn € Qp (or (v — Ppv,qp) =0, Vg, € Xp,). (4.3)
For (u,p) € H}(Q) x L*(Q)/R, let (Ryu, Ryp) denote the Stokes projection

H(V(u — Rhu), Vvh) — (p - th, V- Uh) = 0, V’Uh € Xh, (4.4)
(V- (u— Rpu),qn) =0, Y qn € Qp. (4.5)

For H € ﬁl(Q), the Maxwell projection is given by
(V X (H—HhH),V th)—l-(v-(H—HhH),v-’wh) =0, VYw,€Sy. (46)

We present the results on the estimates of these projections, and the corresponding proofs are referred
to [21] and [44].

Lemma 4.2. We have the following inequalities: Form = 0,1, 0 < <r, 1 <s < w0,

| Prollwm.s < Clv|wms, (4.7)

v — Pyo| 2 < Ch o] gresa.
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227

228

229

230

231

232

233

234

235

238

239

240

241

For0</{i<r,1<s<o,

| Rpulyrs + | Rrplrs < C(lufwrs + lplze), (4.9
lu — Ryulps + hlu— Ryulyrs < CRH(Julyers + [plwes), (4.10
Ip = Ruplrs < Ch*(Julywesss + [plwes), (4.11
[0¢(w — Ryw) | s + h|2e(p — Ryp) | < OB (|0vulwesrs + [Oepliwe.s)- (4.12

For0< /i<,
|H — 11, H|| 2 + h|H — T, H || o < ChY H| geva. (4.13)
All constants C' in the above inequalities are positive and independent of h.
Moreover, we need the following inverse inequality ( |4]).
Lemma 4.3. For Vv, € Qp, Xy, or Sy, it holds that
n—m+2—4
thHWm,s < Ch s 4 H’Uh”Wn,q, (414)

foro<n<m<1,1<q<s< o, where d is the dimension of the space, and C is a positive constant
independent of h.

In addition, we give an estimate of the discrete gradient operator V), defined in .
Lemma 4.4. For Y g, € Qp, we have
IVranlre < Ch Y anl 2, (4.15)
where C is a positive constant independent of h.
Proof. Taking v = Vg in gives
IVhanlzz = (=V - Vian an) < |V - Vagn| 2 - lanlz < Ch™ Y Vaanlz2 - [anl 2,

where the Holder inequality and inverse inequality (4.14]) have been used. The proof is completed by
eliminating the term ||V,qs/ 12 on both sides of the above inequality.

O]
4.2 Error equations
To tackle the term ﬂZH, we introduce an intermediate function R/h’uTH € Xy, satisfying
Ryu"™! — Rpuntl 2
: ; : + 3 Va(Bap™*" = Ryp") = 0. (4.16)

10



22 With the above function and the projections defined in the previous subsection, we could rewrite (2.1]) and

e (227 as

(3HhH”+1 — AT, H" + I, H" !
2T

+ Mi(v > Hth-‘rl’v % wh) + ,ui(v . HhHTH_l,V . wh)
0 0

+ %(v x ",V o wy,) + %(V g™,V ) = T (wn), (4.17)
0 0

,wh) — Mg“(ﬁ"“ X INInH,V X wh)

(V x T, H"!,V x 'vh> + (v ILHMLY o) — (g™ o) = T3 (wy), (4.18)

(3Rhu”+1 —4Rpu™ + Rpu™™
2T

1 JE———
) + (VR Y, V) + MP o (@ a 1,)

B (thn,v . lh) N M50+1 (ﬁnﬂ < (V ﬁnﬂ),lh) _ g(RhunH ; Rhunﬂ,lh)

+ u(V(Rpur !t — Ryu™ ), Vi) — (Ru(p™ — p™), V- 1) + T2 (), (4.19)

(V- Ryu™t,q,) =0, (4.20)

3MPHL — AMP + MY
27

— @ < BV < HY) + Ty, (4.21)

~n+1 ~n+1
n+17ﬁn+1’un+1) + (Hn+ x (V x Hn+ )’un-&-l)

= fiob(@

s for any (wp,vp,lp,qn) € (Iill(Q),Iill(Q),Hé(Q),LQ(Q)), where we have introduced an artificial variable
us "l = 4! and have combined (3.3)) with (3.4)) to obtain (#.19)). Here, the truncation errors T;‘IH, 72)”1,

us T2! and T, are given by

3, H™ Y — 4T, H™ + T, H" !
27
~n+1
— M (um T o HYP gt x H'" VX wy),
T(;LJFI(vh) == (Hh¢n+1 - ¢Tl+1’ vh)a
3Rhu”+1 —4Rpu™ + Rhu"_l

T;_}—H(wh) :( o atHn-&-l’,wh)

En+1(lh) :( o o atun-i-l’lh)
+ Men+1(b(,ﬁn+1’ ﬁn-&-l’ lh) _ b(un+17 unJrl7 lh))
Mn+1 ~n —~n
+oe o (H P (U HTY S H X (Vo HY L),
3MITY —AM + M

_ Mtn+1] + L0 [b(un+17un+17un+1) _ b(ﬁn+1, ﬁn+1,un+1)]

n+

T :[ 2T

+ [(Hn-H x (V x Hn+1)’un+1) _ (?I 1 x (V x IN_In"'l)?un-&-l)]
_ [(unJrl x H™1 ¥ x Hn+1) _ (an+1 « I’?"“,v « Hn+1)]_

247 Since the projection error estimates have been given in Lemma we only need to analyze the errors
2 generated by the following error functions, for n = 1,2, ...V,

ey =1L, H" — Hy, eg =1,¢" — ¢y,

Ryu™ —ay , e, = Rpp" —pj,

n _
u =

249 Subtracting the numerical scheme (3.1))-(3.5) from the projection system (4.17)-(4.20), and applying

n n n 5
en = Rpu" —uy, €

11



20 ([4.16]), we have
(36”};r1 —dey + et
2T
+%(v x LV x wy) + %(V'e?fl,v-wh)

swp) — [MIFH (@ x ﬁn+1»v x wp) — M (@t x ﬁZ+1,V x wp) |

n n Ui n
+ /T(QJ(V X e¢+1,V X wp) + /Tz(v ' e¢+1’v ~wp) = Tgr™ (wa), (4.22)
(V X e;‘;l, V x vh) + (V . e’ﬁrl,v . vh) — (eg)ﬂ,vh) = ’7;‘“('0;1), (4.23)
3eptt —dep +en?

)+ p(VERT Vi) + (M2 (@t am L) — M (gt aptt L))

2T
~n+ ~n+ ~n+1

—(ep, V- ln) + ;O[MQ“(H ' x (V x ﬁnﬂ)?lh) - M"'(H), ' x (VxHy, ),l)]

= %(RET“ — Ry 1) + p(V(Rpu™ ! — Ryu™), Vi) — (Rap” — Rup™ ',V - 1)
+ T (W), (4.24)
(M, rh) — ;(eg“ —ep, V1) =0, (4.25)
(V-ertt qn) =0, (4.26)

51 for any (wp, vp, ly, 7, qn) € (Sh, Sk, Xn, Xn, Qp), and n =1,2,...N — 1.

s 4.3 Proof of Theorem [4.1]

253 We give the following estimates needed in the later proof.
s Lemma 4.5. Under the reqularity assumption (4.1), the following are valid that
HVhPhatp — thatpHLQ < Ch, (427)
IVi(Rap™ ! = Rup™)| 2 < O, (4.28)

x5 where C' is a positive constant independent of h and T.
6 Proof. For vy, € Xy, we have
(ViProp — PV oep, vp)
=(ViProwp — Vo, vp)
= — (Pnowp — 0ip, V - )
<||Phop — Ol 2|V - vp[z2 (by (4.8) and (4.14))
<Ch% - Ch7Y|vy|| 2 = Ch|lvy] 2.
257 Consequently, using the duality of L?(Q) itself gives (4.27).
8 For (4.28)), we see that
[Vi(Rrp"*t = Rip™) |2
=C7|ViRposp| 2 + C1* (by Taylor expansions and p for p"*! in short)
<COT(|ViRiow — VaProwl| 2 + |VaProwp — VPoip| 12 + [V Phop|2) + CT2

2!

o1

/

<C7(Ch™ (| Rnésp — 0spll 2 + |0cp — Pudipl2) + Ch + C) + C7* (by @ET5), (@27 and [@7))
<O7(Ch™'h*+C) + Cr* (by ([#E12) and [{3J))
<C'T,

250 where the regularity assumption (4.1]) has been used frequently. This completes the proof. O
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264

265

266

267

268

269

270

We will establish the error estimates by using the mathematical induction, and then make the assumption
at the previous time step that

eyl 2 + e g2 < b5 + 73, form <. (4.29)

This induction will be recovered at the next step t" !, as will be demonstrated later. Remark indicates
that the induction assumption (4.29) is valid for m = 0,1, and then for m < n we have

lwr e <Clug |y

<O(leg lwra + |Rau™ — u™ [y + |u™|y1a)

d
<Ch™ a7 (|uf! — Rpu™|2) + C| Rpu™ — u™ |y + |u™| = (by (£.14))
<Ch™i7Y(h5 + 75 + h?) + K (by (E29) and (L.10))

<K*, (4.30)
< C|H} [y
< O(leflwra + [T H™ = ILH™ |ywa + [T H™ | y14)
< Chi ey + Ch 3 [T H™ — [H™ |1 + C|TH™ |y (by (@14))
< Chs™5 + Ch™ ([ H™ — H™ |0 + |ILH™ — H™| ;) + CK (by (E29))
<CK +Ch™i(h? +1?) (by [E13))
< K*, (4.31)

where I;, denotes the standard Lagrange interpolation, and we have utilized its stability and error estimates
from [14] in the last second inequality. Also, we have used the Sobolev inequality twice to control the
L®-norm by Wh%-norm.

Thus we obtain the bound of the numerical solutions

Now we proceed with the proof of Theorem [£.1]
Proof. Step 1: Taking wy, = e”“ in (4.22) and vy, = erl in (4.23), we have

1

E(He?fll\p — llefrl7e + 2¢3 " — 6"11“%2 — |2¢kr — € 72
n

+ %(HV x e e + IV e Ta) + H ey 17
n+1(~n+1 N"Jrl n+1 n+1 ~n+1 ”+1 n+1

=M@ x H 7,V x el )—M (T ,Vox el h]

Tn+1( n+1) 2 Tn-i—l n+1 ZII’L (4.33)

Ko

13



71 The nonlinear terms /7 1 could be analyzed as follows, due to the fact that M, =1,

~n+1 ~n+1
Ill :(,anJrl % (Hn+ _HthJr ) V x 67};_1) + (,anJrl « e;l’v « 67;;-1)

b

1 1
+ (@ = Ryt x Hy LV x el + (B x H LV x el
b Mn+1)(~n+1 N"“ Y x n+1)
<@ e |H" — T, H ||L2HV < e 3 + W o el 2 IV x e e

~ ~ ~n+1 ~n+1
+ @t = Ry@ 2 [Hy, o |V x € e+ (B0 [ H e |V x el e

~n-+1
M= M i e [H 2V x e
SO 4 (23 7 + IR e + (MEH = M%) 4 ]9 e (4.34)

272 where we have utilized the regularity assumption (4.1]), the bound of numerical solutions (4.32)), the Cauchy
73 inequality and the Holder inequality.

274 The truncation error terms could be bounded as
L < C(W 2+ 7 + e |72) + %%HV x €5 7, (4.35)
a5 and
Iis = %(th)nﬂ _ ¢n+lveg>+1) < Oh2r+2 o 2 H n+1HL2' (4.36)

276 where the Cauchy inequality and the projection estimate (4.13) have been used.
217 Thus by using (4.34)), (4.35) and (4.36), (4.33]) could be rewritten as

e B —\krﬂhp-+H2e"+1-e%ﬂ@z-—H2e%{-€?{1H%£
+ fI\V x ey t7s + *HV el t5 - H ent 72
<O 7+ g e B + O — a0 (437
278 Step 2: Adopting I, = é2t! in gives
%(Héﬁﬂl\iz lewllzz + 1260 — enll7a — 12e — en ' 72) + plVeERT7. — (e, V- épt)
<— [Mewrlb(an-i-l’an-&-l én+1) Mn+1b(~n+1 aZHa AZH)] T H(V(Rﬁﬁﬂ . Rhu”H),VéZ“)
_ :O[ME"H(I?M (V< B ety e @ S < (v B, et

3, — R
+ on (B = Ryu et 4 T et

6
— Z I (4.38)
=1

_ (thn _ _th’rl-i-l7 AV é’Z-‘rl)

14



279

281

282

283

284

2

o)
2]

By the definition ([2.2), we get

1271 _7[Mn+1 (~n+1 V~n-&-17 An+1) _ M;1+1 (an+1 . Vﬁn+1,éz+l)]

- DM e ) - @ vert )]
AR CAREAD FRCHRCESES S RS NEAS
+(enttvarth et + (@ - Ryttt - vartt ent]
-l Ve ) + (@ ver @ - Rt
+(entovert gt ¢ (@ - Ryttt - ventt antt)
S A [ v et - @t et apt)]
<%[(ﬁZ“-V(””H Ry, ety + et o | Var oo et |

T R T o g 0 e VL a0~ R
e [V e[ o 4+ 0 = Ry Ve o o
M = Mg e [ e e+ g IV e i 1)

C[h2r+2 + 7_ + ||en+1HL2 + (Mn-i-l Mn+1) ] + gHVéZ-HHL2
1 i ~ ~ N

<O+ 78+ eyt 7e + (MEF! = M1 + HVA”“HLz- (4.39)

In the last inequality, we have used (4.1)), (4.10)), (4.32), the Cauchy inequality, Holder inequality, Poincaré
inequality and the following facts
(ﬁ?}:-ﬁ-l V(an+1 R ~n+1) énJrl)
:((v . ~Z+1)(~n+1 R ~n+1) én+1) + (~Z+1 ven+1 ~n+1 R ~n+1)
<[V - ap s At = Rp@ et e + @5 e[ VERT @ = Rpa"

<Ch¥ 2 + va“rlp (by (£9)),

where by ([#30) we have |V - @y s < Cay ™ |14 < O, and using the interpolation inequality that for
any v € W P

- d
[vlze < Clolz[vlf, 1<p<g<o, a= ST S b (4.40)

pe. y|én+1HL6 < Ol 1 < C|Vent!| 2 is valid.

By we have

2ur

3
<Cr|V(TnBup™ = VaRup")3: + L1V 2

Ly === (V(VRup" ! — Vi Ryp™), Vertt)

<Cr + %Hvtaz“\@, (4.41)

15



286 where the term |V(V,Rpp™ ™! — Vi Rpp™)| 12 is controlled by

IV(ViRap™ ™ = Vi Rap"™)| 2

CT|V(ViRLop)| 2 (by Taylor expansion and p for p™*! in short)

CT(HV(V}LRhﬁtp — Vi Prow)| 2 + IV(VaProwp — PoNowp) |2 + \|VPhV§tp)HL2)
Ct(Ch™2|Rpéwp — Proip| 2z + Ch™ |V Phoip — PoNowp| 2 + |PaVow|m) (by and (4.15))
Ct(Ch™?|Rpéip — owpl| 2 + Ch™ 2| Puep — 0up| 2 + Ch™'Ch' + C|Voip| ) (by and (4.27))
CT( h2h* + Ch™?h* + C + C) (by and (£12))

NN N A A
9

(4.42)

257 The regularity assumption (4.1)) has been used frequently in the derivation.
288 Another nonlinear term could be analyzed as

~ 1 ~ 1 ~ 1 1
Ly =(H" —H" ) x (VxH" ), et (@5 < (Vx H' ), enth)

YU rru

+1 +1 +1
~n ~n ~n (V % ~n+1)7é7&+1)

+( T < (v @ —mETY), et + (H))

) ’LL

n n yntl £ LN
(M +1 - M +1)(Hh (v Hh ) +1)

) u

~n+1 ~mn+1
<|[H" -mHE" 2|V x H HLwHe”“HLz + He”“HLzHV x H" e e o

+( < (vx @ —mETY), A”“) (Hy™ (v x 2, ent)

n ’Mn+1 _ Mn+1H|Hh “LQHV X Hh HLBHéZHHL6

<C(h™ + HenﬂﬂLz + [MPE - M) VertY 2 (by (@13) and Poincaré inequality)

~n+l ~n+1 1~ 1
H)H) T < (Ve BT - " )| et < (vx Hy ) BT —mET
+ ](IN{/ZJr x SV o ert) | [ (eptt x eV x H n+ )| (by integration inparts)

SO 2 + e e + (M = M) + gI\VéZ“HLz

VY e | x e B -
16 sl s H Y - mE
VB ol 22V €4 o+ e o | 1o |9 x B
<C[R¥+2 4 H~n+1”L2 (MO ) HVWHHL% (4.43)

250 where in the last inequality we have utilized (4.31]), (4.40) and the Poincaré inequality.
290 Similarly, by (4.16|) we obtain

3 R — Ryun+!
I 4+ I 5= 5( nu ntt ,éZ-H) - (Vthp — Vi Rpp™ ,€n+l) = 0. (4.44)
T
201 Finally, the term associated with the truncation error 7,7*! could be bounded by
Tt < O+ 4 7t + e ) + K v, (4.45)

2 Thus, (4.38) is simplified by (4.39)),(4.41)),(4.43)-(4.45) as

2!

©

1 . . _

(e e — leilFe + 2657 — ellFa — 2¢% — en"72)

+ SV g - (e, v et

C[hw +rt Y 2e 4 183 + (MEFY — M2 4 R3], (4.46)
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203 Step 3: A combination of (4.16]), (4.26) and (4.25)) indicates that

V- éZJrl 3 V \v4 ( n+1l 6”),
204 which leads to

) T
—(ep, V&t = g(HVheZHHiz — [ Vaepliz = [Va(ep™ = ep)l72)- (4.47)
295 Again by (4.26), (4.25) yields
len 72 = lew™ 7 I HV (ep™ —ep)|72 and (4.48)
|23t = eqle = H2€Z+1 —eulia + HV (gt —ep)l7e- (4.49)

206 Step 4: Now we need to estimate M+ — pnt! .= e?jl. Subtracting (4.21)) from (3.6|) yields

3 n+1 —4 + e 1
ey QiM €M _ [b(un+1 ﬁn+1 n+1) _ b(ﬁz+l7ﬁz+1 An+1)] + TM
(H (v xH™Y, u"tl) - (I?IZ x (Vx H Y, arth)
_ [('E”H « I"_I’ ,V x H") — (ﬁzﬂ ”“ 'V x H')]
4

= Z I4,i- (450)
i=1

297 The definition (2.2]) implies that

I :%[(ﬁn-‘rl . vﬁn+1’un+1) _ (ﬁzﬂ ) VﬁZ“ﬁZ“)]

. @[(ﬁn—kl ] V’u"Jrl,ﬁm_l) (~n+1 vun+1 ~Z+1)]

((ﬁn-i-l . ﬁhun+1) . V’lNLn-H, unJrl) + (g'nJrl . vﬁn+17un+1)

z+1 . V(ﬁ"“ _ Rhﬁn+1)’un+1) + (&n+1 v~n+1 un+1)
az-ﬁ-l . Vﬁz+17un+1 - R un+1) + (~n+1 V,u,n-&-l7 n+1)
h

+1 v~n+1 UZH a2+1)]_@[((~n+1 R, ~n+1) vun+17,an+1)

U
2
g’n-&-l . vun+1’ﬁn+1) + (ﬁZ-H . vun-&-l’ﬁn-i-l . Rhﬁn+1)
ﬁ}VZLJrl . Vun-&-l’gz-&-l) + (ﬁﬂ“rl . V( n+l Rhun+1) UZJrl)
,&Z-l—l . V€Z+l,1~iz+1) + (ﬁn+1 V( n+1 ,&2+1)’1~llz+1)]

SC 4+ 72 + @ e + e ™ e + Heu+1HL2)7 (4.51)

+ + + + 4+ + oF

208 where we have used the Holder inequality, integration by parts and the following estimate

e

”un+1 n+1HL2 <Hun+1 Rhun+1HL2 + HRhun +1 thrlHL + ”un+1 aZJrlHLQ
N 2T
<lew" e + €5 2 + gHVh(th’"”+ — Rpp"™)|lz2 (by (4.16))
<lew" e + €5+ 2 + C2 (by (@E29)). (4.52)
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The truncation term could be controlled directly by
Iy0 < cr2.

Next for I3 we have

n+1 ~n+1 ~n+1 +1

Iy3 =((ﬁ —I,H ) x(VxH )u™) + (&5 = (Vx T ), w1

+(H, < (vx (HT - HhH”“»,u”“) + (H, % (V x &y, untt
~n n+1 ~n n+1
+( T < (Vx Hy O umt - Rt + (B < (Vx H ), ent)

~n+l +1 .
+(Hy < (VxH, uptt —aptt)
<C+ 4+ 72 + |85 e + e o),

where (4.52)) has been utilized.
Similarly, the following inequality could be derived

Iig < C(W™ [l e + N z2),

and we skip the proof for simplicity

From (4.51)), (4.53)), (4.54) and ), taking the inner product with e}, by (&.50) leads to

1
LD = () + (el —eh)” = (2€h — € )]

)

SO 2 4 7+ et T + 185 e + e 122 + el M7 + (€37 H)) + HVA"“HLz,

where the Cauchy inequality and Poincaré inequality have been adopted.
Step 5: A combination of (4.37)), (4.46)-(4.49) and (4.56|) leads to

1
4r
4126 = bl — 26t — el B (€571 = (ehe)? + (2 — ) - (26l —

[H6n+1 n+1 n+1HL2 .

172 = ek 72 + 2e™ — erlZe — [2¢k — e I + e lewlz:

2
+ f(IIVhe”“Ilp — [Vrepl7) + 7IIV x ef e + ,THV eIz + 7|| ent 7
<C[(M* + 7% + én™™ 7. + | ~"“HLz + lent 3 + el 7 + (e,

forn=1,2,...N.
An application of the discrete Gronwall’s inequality results in

lef Hze + et 72 < C(h™ + 72)%,

)%]

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

for 7 < 19 and h < hg, where 79 and hg are positive constants. This has recovered the induction assumption

(4.29) when m =n+ 1.
Together with the projection estimates (4.7))-(4.13)), we finish the proof of Theorem

5 Numerical examples

The computations are carried out by using the software FreeFF EM++.
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5.1 Accuracy test

For the sake of brevity, we consider the incompressible resistive MHD equations

atH+M1vX(VXH)+%VX(VX(VX(VxH)))—vX(uxH):J, (5.1)
0 0
1
8tu+u-Vu—uAu+Vp+M—Hx(VxH)zf, (5.2)
0
V-H=0, V-u=0, (5.3)

in a two-dimensional domain [0, 27| x [0, 27], with the initial and boundary conditions (1.4)-(1.5). Here J
and f are the source terms, and are determined by the given exact solution

sin x sin(2y)>

— sin(2z) sin® y
—sinycosT

. b
sinx cosy

p = t°sin(2z) sin(2y).

u=t8(
H=t5(

(5.4)

Note that the above exact solutions w and H satisfy the divergence-free conditions.

Example 1: All the coefficients in — are chosen to be 1, and we take the final time T" = 1. We first
solve the MHD system — by the scheme — with a quadratic finite element approximation
for H and u, and a linear finite element approximation for p. To impose the boundary condition H xn = 0,
we make use of the definition directly. For example, on the edge {(z,v): 0 < z < 27,y = 0}, n = (0, —1)T
and denoted by H := (Hy, H3)T, then we have H; = 0. To emphasize the convergence rate in time, a
sufficiently small spatial mesh size h = 27/100 is chosen such that the spatial discretization error can be
relatively negligible. The time step is 7 = T//N with N = 40, 80, 160, 320. We present the numerical results
at time T = 1 in Table (a), which indicate that the proposed scheme is convergent at a second-order

temporally accuracy.

(a) Temporal convergence rates

T |HY — HhNHLz Order | ||u” — uhNHLz Order
1/40 | 6.969 x 10~° 2.418 x 102
1/80 | 1797 x10™° | 1.96 | 6.383 x 10~ | 1.92
1/160 | 4.561 x 10~* | 1.98 | 1.641 x 107% | 1.96
1/320 | 1.158 x 10~* | 1.98 | 4.211 x 10~* | 1.96

(b) Spatial convergence rates

h | |HY —HJ|;> | Order | [u? —ulY|z2 | Order
2m/10 | 1.678 x 10~ 9.111 x 102
2m/20 | 2.153 x 1073 | 2.96 | 9.570 x 1073 | 3.25
2m/40 | 2.703 x 107* | 2.99 | 1.195 x 10=3 | 3.00
27/80 | 3.388 x 107° | 3.00 | 1.502 x 10~* | 2.99

Table 1: n =1y = p = pg = 1.

Then we solve the problem (j5.1)-(5.3) by the scheme (3.1)-(3.4) with a sufficiently small temporal step
s T = 1/2000, to observe the spatial convergence rate. Take spatial size as h = 1/10,1/20,1/40,1/80. Again,
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345

346

a quadratic finite element approximation for H and u is adopted, combined with a linear finite element

approximation for p. Numerical results at 7' = 1 are displayed in Table [1b).

It is clearly seen that

the spatial numerical errors are approximately O(h3), which is consistent with the theoretical analysis in

Theorem F.11

Next some experiments with small parameters are provided to verify the robustness of the proposed
scheme. We still consider the space domain [0, 27] x [0, 27] x [0, 1] and use the exact solution (5.4)) to test

the accuracy.

Example 2: Adopt the same parameters in Example 1 except the viscosity u = 0.01 instead of p = 1, and
then the numerical results are shown in Tables [2{(a) and [2|(b).

(a) Temporal convergence rates, h = 27/100

T |HY — H} |2 | Order | [u™ — )Y |2 | Order
1/40 | 6.825 x 1072 4.007 x 1072
1/80 | 1.757x 10=2 | 1.96 | 1.056 x 1073 | 1.92
1/160 | 4.457 x 10~% | 1.98 | 2.756 x 1072 | 1.94

(b) Spatial convergence rates, 7 = 1/2000

h | |HY —HY|;> | Order | [u? —ulY|z2 | Order
2w/10 [ 1.601 x 10~ 6.358 x 107!
27/20 | 2121 x 1073 | 2,92 | 1.412x 107! | 2.17
27/40 | 2.691 x 107% | 2.98 | 1.545 x 1072 | 3.19

Table 2: 4t =0.0l,n=m=py=1

Example 3: Further, except for a small hyper-resistivity 7o = 0.01, we
Example 1, and then obtain the results in Tables [3|(a) and [3|(b).

(a) Temporal convergence rates, h = 27/100

still take the same parameters in

7 | |HY — H} |z | Order | [u¥ — w2 | Order
1/40 | 1.448 x 1072 2.379 x 1072
1/80 | 3.791x 1073 | 1.93 | 6.285 x 1073 | 1.92
1/160 | 9.703 x 10~ | 1.97 | 1.615x 1073 | 1.96

(b) Spatial convergence rates, 7 = 1/2000

h |HY - HhNHLz Order | |u® —ul|z2 | Order
27/10 | 1.585 x 102 9.122 x 102
2m/20 [ 2.109 x 1073 | 2.91 [ 9571 x 1073 | 3.25
27/40 | 2.691 x 10~ | 2.97 | 1.195 x 10~2 | 3.00

Table 3: 92 =001, p=p=pp =1

Example 4: Now we adopt n = 0.1 and 7y = 0.001 and keep other parameters in Example 1 unchanged.
Then the numerical results are shown in Tables [|(a) and [g(b) as follows.
All the numerical results are consistent with the theoretical results proven in Theorem
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(a) Temporal convergence rates, h = 27/100

T |HY — H} |2 | Order | [u™ — )Y |2 | Order
1/40 | 2.274 x 1072 2.343 x 1072
1/80 | 5976 x 1073 | 1.93 | 6.186 x 1073 | 1.92
1/160 | 1.534 x 1073 | 1.96 | 1.589 x 103 | 1.96

(b) Spatial convergence rates, T = 1/2000

h |HY — H} |2 | Order | [u —ulY|;2 | Order
2m/10 [ 1.950 x 10~2 9.149 x 1072
2m/20 | 2.164 x 1073 | 3.17 | 9.573 x 1073 | 3.26
27/40 | 2.703 x 10~* | 3.00 | 1.195 x 1073 | 3.00

Table 4: n =0.1,72 = 0.001, p = pp =1

a7 5.2 Energy stability test

348 Finally, we carry out the numerical experiment to verify the discrete energy stability, and choose the

349 initial data as
sin? 2 sin(2y)
up = ug = . SR
—sin(2z) sin” y
—sinycosx
Hl = HO = . )
sin z cos y
po = sin(2x) sin(2y).
50 The time step size and the spatial resolution are given by 7 = 0.1 and h = 1/20, respectively. The discrete
351 energy function is defined in Theorem We still adopt the quadratic elements for (H,w) and linear

32 elements for p. The energy evolution curve is displayed in Figure [I| up to a final time T = 10, which
indicates a clear energy decay.

30} .

Energy
o

0 2 4 6 8 10
Time

Figure 1: Discrete energy evolution of the incompressible resistive MHD system
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6 Conclusion

In this work we have designed a fully decoupled second-order BDF scheme, combined with the mixed
FEM spatial approximation, for the incompressible resistive MHD system —. The unconditional en-
ergy stability, unique solvability and optimal rate error estimate have been established at a theoretical level.
The fully decoupled method adopted in this work is an efficient approach to deal with the incompressible
constraint and nonlinear terms, and therefore the technique could be applied to the other incompressible
flow system, for example, the multi-phase MHD system.
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