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Abstract

A second order accurate in time, finite difference numerical scheme is proposed and analyzed
for the Cahn-Hilliard-Navier-Stokes system, with logarithmic Flory-Huggins energy potential.
In the numerical approximation to the chemical potential, a modified Crank-Nicolson approxi-
mation is applied to the singular logarithmic nonlinear term, while the expansive term is updated
by an explicit second order Adams-Bashforth extrapolation, and an alternate temporal stencil
is used for the surface diffusion term. Moreover, a nonlinear artificial regularization term is in-
cluded in the chemical potential approximation, which ensures the positivity-preserving property
for the logarithmic arguments, i.e., the numerical value of the phase variable is always between
-1 and 1 at a point-wise level. Meanwhile, the convective term in the phase field evolutionary
equation is updated in a semi-implicit way, with second order accurate temporal approxima-
tion. The fluid momentum equation is also computed by a semi-implicit algorithm. The unique
solvability and the positivity-preserving property of the second order scheme is proved, accom-
plished by an iteration process. A modified total energy stability of the second order scheme is
also derived. Some numerical results are presented to demonstrate the accuracy and the robust
performance of the proposed second order scheme.

Key words and phrases: Cahn-Hilliard-Navier-Stokes system, Flory-Huggins energy poten-
tial, second order accurate numerical scheme, Crank-Nicolson approximation, positivity preserv-
ing
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1 Introduction

For simplicity, we assume the domain under consideration is the unit square Q = (0,1)2, together
with periodic boundary condition. An extension to a rectangular domain, the 3-dimensional case,
or the case with homogeneous Neumann boundary condition, is straightforward.

The phase variable ¢ is assumed to have a point-wise bound, —1 < ¢ < 1. For any ¢ € H'(Q)
with such a bound, the Flory-Huggins free energy is formulated as
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in which € > 0, 6y > 0 are certain physical parameter constants associated with the diffuse interface
width and inverse temperature, respectively; see the related references [2,14,17,23].

For two phase flow problems, the fluid motion plays an important role in the physical process. A
well-known two phase flow model is the following Cahn-Hilliard-Navier-Stokes (CHNS) system [36]

w+u-Vu+ Vp—vAu = —y¢Vy, (1.2)
¢r+ V- (pu) = Ap, (1.3)
= 0sF =In(1+ ¢) — In(1 — ¢) — g — 2 A, (1.4)
V-u=0. (1.5)

in which u is the advective velocity, p is the pressure variable, and v > 0 is the kinematic viscosity.
The constant v > 0 is associated with surface tension, and term —y¢Vu is a diffuse interface
approximation of the singular surface force.

For such a coupled system, the following energy dissipation law can be derived:

14

1
total (1) = —/ |Vu|?dx — / |Vul?dx <0, Eipra = E(¢) + —|lul|. (1.6)
Q v Ja 2y

Many numerical works have been reported for various phase-field-fluid coupled system [3, 6,
7,26,27,34,35,41,42,47,48,53|, etc. In particular, the issue of second order accurate numerical
schemes have attracted great attentions [15,32,54], due to its long time simulation advantages. On
the other hand, most existing works of second order schemes have been based on the polynomial
approximation in the energy potential. With a singular energy potential (1.1), the analysis will
become much more challenging, because of the highly nonlinear, singular and coupled nature of the
physical system.

In this article, we propose and analyze a second order accurate numerical scheme for the CHNS
system (1.2)-(1.5), with three properties theoretically justified: positivity-preserving (for the loga-
rithmic arguments), unique solvability, and a modified energy stability. In fact, even for the pure
gradient model with singular energy potential, the works of second order accurate in time, energy
stable numerical schemes are still very limited. In the numerical approximation to the chemical
potential (1.4), we adopt a similar approach as in a recent work [6]: a modified Crank-Nicolson
temporal discretization. More specifically, a modified Crank-Nicolson (secant-like) approximation
is applied to the logarithmic nonlinear term, in the form of

F(1+¢™) — F(1£47)
¢n+1 _ ¢n ’

Such an approximation is convex in terms of ¢"*!, while the approximation is not singular as
PN, —1 or "t 7 1. The expansive linear term is updated by a second order Adams-Bashforth
explicit extrapolation formula, and an alternate temporal stencil, namely %Ahqﬁnﬂ + iAhqﬁn_l, is
used for the surface diffusion term. Since the singularity of the nonlinear approximation to the
logarithmic term is not available as ¢t N\, —1 or ¢"*! 7 1, a nonlinear artificial regularization
term has to be included in the chemical potential, namely At(In(1 & ¢"*1) — In(1 £ ¢")). This
regularization term ensures the positivity-preserving property for both 14+¢ and 1—¢ at a theoretical
level. In particular, the singular nature of the logarithmic terms around the values of —1 and 1
prevents the numerical solution reaching these limit values.

For the sake of unique solvability and energy stability properties, the other parts of the CHNS
system (1.2)-(1.4) have to be computed in a semi-implicit way. In the numerical approximation
to the convective term in the phase field evolution equation, explicit extrapolation formula for the

with F(z) =zlnx.



phase variable is combined with an implicit, Crank-Nicolson approximation to the velocity vector.
Similar methodology is applied to the fluid momentum equation: Crank-Nicolson algorithm for the
kinematic diffusion term and the fluid convection gradient term, explicit calculation for the pressure
gradient, along with Adams-Bashforth extrapolation for the convection velocity. Moreover, the
phase field coupled term is also updated in a semi-implicit fashion: Adams-Bashforth extrapolation
for the phase variable coefficient, and the modified Crank-Nicolson approximation to the chemical
potential part. As a result, an intermediate velocity field (at the next time step) is determined by
this semi-implicit algorithm, which could be represented as a linear velocity solver, with a fixed
chemical potential profile. Consequently, a Helmholtz projection into the divergence-free vector
field is taken, which in turn yields the velocity vector and the pressure variable at the next time
step. Since the Stokes solver is decoupled in this approach, the numerical efficiency is expected to
be greatly improved. Some related works could also be found in [29,37,55], etc.

Because of the coupled and non-symmetric feature of the numerical system, the unique solv-
ability and positivity-preserving analysis for the proposed second order scheme is expected to be
much more challenging than the one for the pure phase field gradient flow. In more details, the pro-
posed numerical system could not be represented as a minimization of a discrete energy functional,
which comes from the non-symmetric nature of the fluid convection term in the Navier-Stokes equa-
tion. As a result, many well-established techniques to deal with singular energy potential gradient
flows [6,10] are not directly applicable. On the other hand, the Browder-Minty lemma [1,43] has
been a well-known tool to deal with nonlinear, monotone, while non-symmetric systems. However,
a direct application of this analysis is not feasible, since the singularity of the logarithmic terms
destroys the coercivity condition for the phase variable. To overcome these subtle difficulties, we
have to construct an iteration process to accomplish the theoretical analysis. First, it is observed
that the intermediate velocity vector could be represented as a non-symmetric, linear operator in
terms of a fixed chemical potential profile. The convection-diffusion nature of this linear operator
implies its monotonicity property. Therefore, a substitution into the numerical algorithm for the
phase variable evolutionary equation leads to an alternate representation of the chemical potential
variable: a non-symmetric, linear operator of the discrete temporal derivative of the phase variable.
A combination with the modified Crank-Nicolson approximation for the chemical potential results
in a closed system for the phase variable. This nonlinear system is monotone in terms of the phase
variable, while the logarithmic terms prevent a direct application of the Browder-Minty analysis.
Instead, a nonlinear iteration is constructed: at each iteration stage, the non-symmetric, linear
operator of the discrete temporal derivative part is explicitly treated as a source term, while all
other terms are implicitly solved. In addition, a relaxation algorithm is included at each iteration
stage. Since all the implicit terms in the iteration stage, including the singular logarithmic terms,
have symmetric Jacobian matrix, a discrete energy minimization approach is available, so that the
proposed iteration process creates a unique solution satisfying the positivity-preserving property
at each iteration stage; also see the related works [6,10]. Combined with the monotonicity analy-
sis for the linear operator of the discrete temporal derivative, a contraction mapping estimate of
this nonlinear iteration could be carefully derived. Consequently, a fixed point argument would be
available, and the unique solvability /positivity-preserving property (for the logarithmic arguments)
could be proved.

With a unique solution to the proposed numerical system available, preserving a point-wise
positivity, the total energy stability analysis of the second order scheme turns out to be more
straightforward. By taking discrete inner product with the evolutionary equation for the phase
field variable and the momentum equation by the associated test variables, we are able to obtain
a dissipation law for the discrete functional of the total energy, combined with a few numerical
correction terms. These correction terms come from the second order temporal approximation, as



well as the decoupled Stokes solver. In the analysis for the fully discrete scheme, the summation
by parts formulas for different physical variables, combined with the staggered location of these
variables, will play an important role.

The rest of the article is organized as follows. In Section 2 we review the finite difference spatial
approximation, and propose the second order numerical scheme. The unique solvability and the
positivity-preserving analysis is provided in Section 3. A modified total energy stability estimate
is established in Section 4. Some numerical results are presented in Section 5, and the concluding
remarks are given in Section 6.

2 Numerical scheme

2.1 The finite difference spatial discretization

For simplicity, we only consider the two dimensional domain Q = (0,1)2. The three dimensional
case can be similarly extended.

Let N be a positive integer and define the uniform spatial grid size h = % We now introduce the
standard marker and cell (MAC) grid [33], where the phase variable ¢, the chemical potential x and
the pressure field p are defined on the cell-centered mesh points ((2 + %) h, (j + %h)) ,0<4, 7<N.
Meanwhile, given a velocity field u = (u®, u¥), the z-component of the velocity will be defined at
the east-west cell edge points (z'h, (j + %h)) , 0<i<N+1, 0<je <N, while the y-component
of the velocity is located at the north-south cell edge points ((z + %) h, jh).

For a function f(z,y), denote fi+%7j+% as the value of f ((z + %) h, (j + %) h). The notations
fit 15 fl.’ i+l could be similarly introduced. Then the following difference operators are defined:

fi+l j+E T fi_l j+2 fi-l-l i+: fi‘l'l i-3
(Dgf)i,jJr% — T35 - 2ty (D;f)i+%,j _ "5 J%s - 2J73 (2.1)

fi—l—l T i j4x i G+ fi j—1
(D figs jog = L (D) = (2.2)

i1 fi+l,j+1_fi+l,j
(D2 f)ij = 2L TR (D) gy = (2.3)

Such definitions may vary on the boundary, if implemented with different boundary conditions.
Specifically, with periodic boundary condition, (2.1) becomes

fl j+l - fN_l j+l
(D:Cef)o7j+% = (D;cxf)NJ_F% = 22 ez, (2.4)

. . firy 3
(Dyf)i—i—%,o = (Dyf)i—&—%,N -

For (2.2)-(2.3), the formula can be analogously derived. As for homogeneous Neumann boundary
condition, (2.1) becomes

(D;:;f)o,]q_% = (Dgf)]v,]q_% = (Dgc/f)zq_%,o = (quf)i_g_%,]v =0. (2.6)

Finally, with the homogeneous Neumann boundary condition, a ghost point is needed and and will
be eliminated using linear interpolation of the boundary conditions, so that (2.2)-(2.3) become

: (2.5)

;N}_ub“
|

fiv—=[fi_1  2fi1 fingr —Jin-1 2f; -1
(Dy“fijo = ———==—= (Dflin= — = (27)

Jrio—f_r s 2f1 Ingl = In_1s 2fn_1
(Dp*floj = 5—20 = =25, (D f)n = — 20— = ——— 2 (28)



We also introduce the long stencil difference operator, defined on the east-west cell edge points
and north-south cell edge points:

~ fi+1 j+i _fifl il ~ f 1 _f‘ 1
_ ) 2 yJt5 o i+35,j+1 it+5,j—1
(Dxf)idur% = o ) (Dyf)i+%,j - 2% : (2.9)

Again, the definitions are slightly different on the boundary. When equipped with periodic bound-
ary condition, (2.9) becomes

~ ~ Figes = o el

(Deflosss = (Dely gy = 2 2RIt (2:10)
By t0 = Byl )syy = firin _2£¢+§,N1. 2.11)
With homogeneous Neumann boundary condition, (2.9) becomes

(Dxf)o,j% = diis ;hf_l’#é = fl’;fé, (2.12)
Do)yt = fN+1,j+§2_th_1,j+§ _ _fN_Zj—i_é’ (2.13)
([)yf>i+%70 _ fi—i—%,l ;hfz‘+;7—1 _ fi—i-h;,l, (2.14)
(Dyf)i+%,N _ fi+§,N+12_hfi+§,N—1 _ _fi—i-;];N—l' (2.15)

For a grid function f, the discrete gradient operator is defined as follows:
Vs = ((DLF), (D)) (216)

where ¢ = ¢, ew, ns may depend on the choice of f. The discrete divergence operator of a vector
gird function u, defined on the cell-centered points, is given by

(Vh . u)i-&-%,j—l-% = (D;wux)i_i_%’j_’_% + (D,Zsuy)z’—i-%,j-i-%‘ (2.17)
In turn, the five-point standard Laplacian operator is defined as

fr 1,s + frfl,s + fr,s 1+ fr,sfl - 4fr,s
(Ahf)r,s = a h2+ )

where (r, s) may refer to (i + 3, j + 1), (i + 3, j) and (i, j + 3).
For u = (u*, w¥)T, v = (v*, v¥)T, located at the staggered mesh points respectively, and the
cell centered variables ¢, u, the nonlinear terms are evaluated as follows:

(2.18)

T N T Y ) o\T
u? 1 Dgv? T vT
PR e B e T bty VThats (2.19)
" Agyu? , Dpv? 4! D '
xyquj 2V 1 .t w1 Dyv
27

Y
Z+§7] 7‘7j+§ 7‘+%7]

-szz",‘*'[)-Axyz",
Vi ) = (et Bt ) (220)
Dy (Azyu™v )H%’j—FDy(u v )i+%,j
(D Azd); i1
ApdVpp = . R 2.21
hPVh ( (Dyp-Ay(b)H%J ( )
Vi - (Apdu) = D§w<uxAm¢>i+%,j+% + DZS(uyAy¢)i+%7j+%7 (2.22)



where the following averaging operators have been introduced:

1
Ay =7 (uf sl ol ol ), (2.23)
1
Az‘bz‘,j-s-% = ) ((bi—%,j—f—% + ¢i+%,j+%> . (2.24)

A few other average terms, such as Amyu? it

We now prepare to give the definition of discrete inner product. Let f, g be two grid functions
defined on the cell-center points, the discrete 2 inner product is given by

L Ay, 1 could be similarly defined.

N N
(Fo@)e=h2Y D fiad ji19is it (2.25)

i=1 j=1

If f, g are evaluated on the east-west points, (2.25) becomes:

N N
P =03 fo 200t (2.26)

i=1 j=1

If f, g are evaluated on the north-south points, (2.25) shifts into:

N N
2
Fohns =D2D D firs 9515 (2.27)
i=1 j=1
Moreover, for two vector grid functions u = (u?, uy)T, v = (V" Uy)T whose components are defined
on east-west and north-south respectively, the vector inner product is introduced:

<u7 V>1 = <u$7 Uw)ew + <uy’ Uy>ns : (2'28)

In turn, the discrete £2 norms, ||-||2 can be naturally induced. Moreover, the discrete ¢ (1 < p < o0)
norms are needed in the later analysis. For (r, s) = (i + %, Jj+ %), (14 %, j)or (i, j+ %), we denote

1
N N P
1flloo = IE%XUT,SL ||f||p = <h2ZZ|fr,5|p> ; 1 <p<oo. (2.29)

r=0 s=0

Finally, the following summation by parts formula is recalled and will be useful in the later
analysis.

Lemma 2.1. For two discrete grid vector functions uw = (u®, u¥), v = (v*, v¥), where u*, u¥ and
v¥, VY are defined on east-west and north-south respectively, and two cell centered functions f, g,
the following identities are valid, if w, v, f, g are equipped with periodic boundary condition, or
u, v are implemented with homogeneous Dirichlet boundary condition and homogeneous Neumann

boundary condition is imposed for f and g:

(v, u- Vo), + (v, Vj - ('uuT)>1 =0, (2.30)
(u,Vf); =0, if Vi -u=0, (2.31)
~ (0, 80), = o2, (2.32)
— (. 8 f)e =1V fll3 (2.33)
=9, Vi - (Anfu)) . = (u, ApfVhg), - (2.34)



2.2 The proposed second order accurate numerical scheme

Here we propose the second order in time Crank-Nicolson scheme as follows. Given u” = ((u®)", (u¥)"),

u ! = ((u‘”)”_l, (uy)”_l) evaluated at the MAC staggered grid, and p”, ¢", ¢" ! located at the
cell-centered grid, with ||¢™|| ., Hgb”_lH <1, we aim to find a" ™!, u"t!, prtl, ¢t that satisfy

ﬁn+1 —u” 1/ .1 ~ntl “ntl opal “ntl
- + 5 (unJré . thnJr% 4 Vh X (un+2 (unJré)T)) + Vhp" _ VAhun+2
n+1 n _
PTG (Andm b d) = s, (2.36)
w1t G4 — G+ ¢") G —¢") —G(1 - ¢" _— il
prte = ( ¢n+3 _(bn( ) + ( ¢n+3 _(bn( ) — 009" "2 — "
+7 (In(1 +¢"™) —In(1 + ¢") — In(1 — ¢"*1) +In(1 — ¢")), (2.37)
n+l _ an+l 1
W ) =0, (2.38)
V- u =0, (2.39)
where
(5”+% — §¢n 1(23"*17 $n+% 1¢n+1 + 1¢n ¢n+— ¢n+1 + (an 1
R R (2:40)
a2 = §u" — iun_l, a'ta = 38 a4 §u", G(z) = zn(z),

for either periodic boundary condition, or the physical boundary condition:

=0, u"n=0, 96" | =" z|r = 0. (2.41)
Remark 2.1. The numerical method (2.36)-(2.39) doesn’t give a way on how to calculate the first
step value. In fact, the first step variable ¢', ul, p' can be either calculated using a ghost point
¢t =@ wt =4 (which is first order accurate in the initial step), or using other higher order
algorithm, such as Runge-Kutta method.

Clearly, the phase variable satisfies the mass conservation property, i.e.,

Pl =gn = ... = ¢0. (2.42)
For simplicity, the following smooth function is introduced: for any a > 0,
Fo(z) == G(lz - Gla) v, 5. (2.43)

In turn, (2.37) can be rewritten as:
W3 = Fiign (14 6™ — Fi_gn(1— ¢"1) — 682 — 20,0"F2
+7(In(1+¢"*) —In(1+ ¢") —In(1 — ") +In(1 — ¢")) .
The following lemma is useful in the later analysis:

Lemma 2.2. [6] Let a > 0 be fized, then

(2.44)

1. Fl(z) = ¢le)(@=a)= (?(x) G@) >0, for any z > 0.

(z—a)?

2. Fy(x) is an increasing function of x, and Fy(x) < Fy(a) =lna+1 for any 0 < x < a.



3 The unique solvability and positivity-preserving property

The unique solvability and positivity preserving analysis is based on foulr steps.
Step 1: We first establish the connection between 0" and p"*2. Observe that (2.35) is
equivalent to

n+ _ n _ _ _
2077 —2ut % (ﬁ"Jr% VA" 4V, - (ﬁ”*%(ﬁ”*%)T)) + Vp" — v G2
-
= ARG IV 3, (3.1)
ot = 24"tz — " (3.2)

In other words, for a given field p, we could define v = £9(u) as the unique solution of the
following discrete convection-diffusion equation:

2v—2u" 1 ~

Vv au + 5 (ﬁnJr% v+ V- (V(ﬁnJr%)T)) + Vhpn — VA,V = —’yAhgb"+%th. (3_3)

T

Gtz = LN (u ”“'l), and 0" could be updated by the formula (3.2). In turn,
a" ! into dlvergence free space. -
n+3. A substitution of 4"tz =

Then we obtain G

u"*! becomes the discrete Helmholtz projection of @

Step 2: We next establish the connection between ¢"*! and pu
Lévs(un‘*'%) into (2.36) leads to

¢n+1 qbn

T

-

1

v, - (Ahq;n+%£hNS(un+%)> — Ahun+§. (34)
Define £§'1: (RV*)2 5 (RV)2 {0 be:
57 (n) = V- (And"™ 3L () — A (3.5)

Observe that EgH is a linear operator, with either periodic, or homogeneous Neumann boundary
condition imposed. Subsequently, (3.4) can be represented as

WlT N A T (3.6)

Step 3: To proceed the analysis, we rewrite (3.6) as

1

LY o) 4t =0, (37)

To make (3.7) well defined, we must show that the operator ﬁgH is invertible. Following the proof
of Lemma 3.2 and Proposition 3.1 in [5], we can derive the next two properties of EgH .

Proposition 3.1. [5] The linear operator EgH satisfies the monotonicity condition:

(LT (1) = L7 (p2), 1 — ), > Vi (pa — pa)|* > 0, (3.8)

for any p1, pa. In addition, equality is realized if and only if pw = pa, if we require iy = g = 0.
Therefore, the operator L'gH is inwvertible.



Proposition 3.2. [5] The linear operator (LSH)™1 also satisfies the monotonicity condition:

(L5 en), (L5 7 (02), = [V (L5 01 = 62) | = CILET) (o1 = a)l|” (3.9
for any ¢1, Pa, with ¢1 = ¢ = 0. The constant Cy with the discrete elliptic reqularity
IVLfll > CilIfIl, for any f with f =0, (3.10)

with Cy only dependent on Q). In addition, the equality is valid if and only if ¢1 =
A combination of (2.37) and (3.7) leads to

%(ﬁgH)il(d)nH —¢") + Frign(1+¢") + Fiygn(1— 9" - 00" T2 — APz
+ 7 (ln(l + ¢n+1) —In(1+¢") —In(1 — ¢n+1) +n(l— ¢n)) -0

(3.11)

For the unique solvability analysis, we also need a discrete £? and ¢> estimate for the operator
(LSH)~L. Notice that the (L) can be decomposed into

~ T
L5 () = Ly1(p) + Lp2, where L2 =V}, - (Ahﬁbm% (u" - §Vhpn>) , for any p =0, (3.12)

in which £y, 1 corresponds to the homogeneous linear operator. Since the non-homogeneous source
term only depends on the numerical solution in the previous two time steps, we see that

| Ln2|l < Co, where Cy depends on 7, ¢", é" 1 u™ and p". (3.13)
The following estimate could also be derived in a similar manner as in [5].

Proposition 3.3. [5] for any ¢ with ¢ =0, the following |- || and |- ||, bounds are valid:

[(e5™) @) < 12 (Igll + Co) (3.14)
12571 @)[|. < CT2h7% (6] + Co) - (3.15)

Step 4: We will establish the existence of ¢"*! in (3.11), which is also the key point to this
proof. Since (E}(ZJH )~! is not a symmetric operator, we can not directly apply the discrete energy
minimization technique. On the other hand, due to the singularity of In(1 + ¢) when ¢ — F1,
the Browder-Minty lemma is not directly applicable to this system, either. In turn, we seek to
construct a fixed point sequence to get the result.

Define the nonlinear iteration:

Gn(@™ D) = Frypgn (14 ¢0H1)) = Fi_gn(1 — ¢ty — 2, <i¢(m+1) n i¢n1>

7 (In(1 + 6" ) = (14 6") — In(1 = ¢ ) + In(1 - ¢"))

_Qoq;nJr% 1 Ap(m+D)

=~ (L) 9™ — ") + A6, with 60 = g7,

(3.16)

where A > 0 is a constant. The following proposition ensures the existence of the solution ¢(™+1)
in (3.16) at every iteration. The proof follows similar ideas as in [10]; the technical details are
skipped for the sake of brevity.



Proposition 3.4. Given cell-centered functions ¢™, ¢"~L, ¢\™) with 160™]] o s HQS"*1H00 < 1,
and ¢" = ¢on—1 = W = By < 1, then there exists a unique solution ¢ to (3.16), with
Hqﬁ(mH)HOO < 1, and ¢m*tY) = By. Moreover, since ¢", ¢"~' are discrete variables, there exists
0 < dp-1, On, d(m) < %, such that ||¢" ||, <1 — 6y, qun_lHoo <1—0p_1 and qu(m)Hoo <1 =60
Then ¢™tD) satisfies ‘ ¢(m+1)HOO < 1= b(ny1), where 8,11y = min(z, 8) and & satisfies the fol-
lowing equality:

) 1
T (m 0 it 50) +4€°h72(1 = 6,_1) 4 460 + 47| In b, |
2 (3.17)

G(/BO) - G(2 - 6n) G(ﬁO) - G(2 - 5n) *
C*"=0
Boton—1 G- 1-h ’
where C* = 7_10f2h_%(00 + H¢(m) - Cf)nH) + A
The main result of this section is stated below.

Theorem 3.1. Given cell-centered functions ¢", ¢~ 1, with ||¢".., ‘qﬁ”_lHoo < 1 and ¢ =

¢"1 = By < 1, then there exists a unique cell-centered solution ¢"' to (2.35)-(2.39), with
"] < 1, and ¢ = fq.

Proof. Clearly, given ¢ = ¢", ¢(1) generated by (3.16) satisfies the equality (3.17). Since
Hqﬁ(l)Hoo < 1, we see that

)+ A< IO (Co+2|Q7) + A= C". (3.18)

C* =1 Gy + [0 — o7

An induction application implies that Hgb(m)Hoo < 1,V¥m > 0. Then we can replace C* by C*,

and obtain a modified equality of (3.17), in which 5 is independent of m. Thus, if the sequence
generated by (3.16) has a limit, say ¢"*!, then it must satisfy (3.17), with C* replaced by C*.

Then qu"HHOO < 1—6p41, where 41 = min(%, 9).

The rest work is focused on determining A to make Gy, a contraction mapping, and the existence
proof could be accomplished by taking m — 4o0o0 on both sides of (3.16). Define the difference
function between two consecutive iteration stages by:

¢ = () — g(m=1) " for m > 1. (3.19)

Since ¢p(m) = p(m=1) = B4, we infer that ((™) = 0.
Taking a difference of (3.16) between the m'" and (m + 1), we get
gh(é(erl)) _ gh(¢(m))
= Frign(L+ 6" ) = Frign(1+¢)) = Fiogn(1 = ¢ D) 4 F_gn (1 - 6)

47 <ln(1 + ¢(m+1)) —In(1+ d)(m)) —1In(1 - ¢(m+1)) +1In(1 — ¢(m))> (3.20)

+ AC(erl) o Z€2Ah<(m+1)

= —2(LE) ) + A¢t.
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Taking a discrete inner product with (3.20) by ¢V yields

<F1+¢"(1 + ) — B e (14 ¢™)) — Fi_gn(1 — ™) £ By jn (1 — ™), C(m+1)>

+7 <ln(1 + ¢(m+1)) —In(1+ ¢(m)) —In(1— ¢(m+1)) +n(l — ¢(m))’ C(m+1)>

[

3.21
LA <<(m+l)’ ¢lm+1) _ <(m)> i §€2 (3.21)
c 4

— =2 (€)Y

C

e

By Lemma 2.2, as well as the monotonicity of In(1 + ) — In(1 — z), the first two terms of (3.21)
on the left side are always non-negative:

(Fuion (14 601)) = Frugn(1+6)
~Fiogn(1 = 9" D) 4 Fi_gn(1 = (™), (") >0, (3.22)
<ln(1 + M) —In(1 + ¢™) — In(1 — ¢+ £ In(1 — ¢™), <<m+1>> > 0. (3.23)

For the iteration relaxation term, an application of polarization identity leads to

1
(gD, ¢lmst) — gm) = = (D2 — ¢+ gD — ¢ ) (3.24)

The right hand side of (3.21), namely the term related to asymmetric operator ([,gH )~1, could be
analyzed as

((£F)TH¢tm), ¢omet) — ¢tmy.

[

A\

> — || (g™ |- et = ¢, (3.25)
> —CR|IC™ g - |¢m D — ¢t
2 -6
7€ o m)y2 © m+1 m) |12
Z—TCHHC( )"2—77_62 HC( +)—<( )HQ‘

A combination of (3.22)-(3.25), along with the discrete elliptic regularity (3.10) to the higher order
viscosity term, leads to

(3 fere el o e -

2
< (5 + 316 e[+ S e - o

(3.26)

By taking A > Ay = 2C| 67=2¢=2 a constant that may depend on 7, € and Q, we are able to
obtain the following mequahty

(3 +3ete) ko= (3t el o

Thus the nonlinear iteration (3.16) is assured to be a contraction mapping, and the proof is com-
plete. ]
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Remark 3.1. At each nonlinear iteration, the asymmetric operator (EgH)*l(d”“) is replaced by
a linear operator A¢™T1, so that the energy minimization technique can be used in the analysis. In
fact, such a technique has been widely used in various gradient flows, including the Cahn-Hilliard
equation with Flory-Huggins potential [6, 10, 18, 19, 50, 51], the liquid film droplet model [52], the
Poisson-Nernst-Planck system [39, 40, 44], the reaction-diffusion system [38], etc. The convex na-
ture of the singular energy part prevents the numerical solution approach the singular limit values
of £1, which turns out to be the key point in the analysis.

Remark 3.2. Following similar ideas as in [6], we use a second order approrimation nonlinear
term in (2.36) to obtain energy stability, as will be demonstrated in the later section. Meanwhile, a
nonlinear regularization term 7 (In(1 + o)) —1In(1 4 ¢™) — In(1 — D) 4 In(1 — ¢")) is added
in (2.36) to ensure the positivity preserving property (for the logarithmic arguments).

Remark 3.3. Though we derive a strict distance 6,1 between the phase variable ¢"t and +1,
On+1 may depend on the following two distance oy, dp—1 and so could converge to zero as n — 0.
Therefore, a strict separation property of the numerical solution is not guaranteed in the positivity
preserving analysis (for the logarithmic arguments). In other words, we do not obtain a uniform
distance § independent on n.

Remark 3.4. The existence of the numerical solution to (2.35)-(2.39) is unconditional, and there
18 no time step restriction for the existence. In more details, the existence and uniqueness for the
iteration solution to (3.16) is unconditional, independent on the time step size T, by Proposition 3.4.
In turn, by taking m — 400, the analysis presented in Theorem 3.1 reveals that, such an iteration
is a contraction mapping, independent on the time step size 7. As a result, by passing the limit,
the existence of the numerical solution to (2.35)-(2.39) is unconditional, without any time step
restriction.

4 Total energy stability analysis

Denote the discrete energy by

62
B,(6) = (L4 &) (1 +6) + (1~ ) (1~ 6).1), ~ L ol3 + S IVsl}, ()

1
Entotar(@, 1) = En(@) + o a3 (4.2)

Then the main energy dissipation law is demonstrated in the following theorem.
Theorem 4.1. For the proposed numerical scheme (2.35)-(2.39), the following inequality holds for
alln > 0:

2 ~
LS B o), (43)

~ _ 2
Eh(¢n+17 ¢n’ un—l—l, pn+1) + % thﬁn—‘r% 9 +7 HVh:U’n—F%

where

~ 2
B, 6% w0, ) = B (6" ) 4 T [ 4+ g — )
v (4.4)

L N ]
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Proof. Taking a discrete inner product with (2.35) by Gt = (@ +un) gives

"3 — a3
2T

[a

_ _ 2 ~ _
+ (Vi ) v [V |y (A VTR ) =0, (45)

1

in which the summation-by-parts formula (2.30) has been applied:

<an+%,ﬁn+% V"I 4V, - (ﬁ”*é(ﬁ"%)T) >1 =0 (4.6)

Taking a discrete inner product with (2.38) by u"*! leads to

R . el 1
[a™ o — @™ 4 [[u T — a5 = o™ — a2 )5 + 172“Vh(p"+1 -p3=0, (47)

in which the summation by part formula (2.31) was used. In turn, a combination of (4.5) and (4.7)
results in

2

2 (4.8)

[u" 113 = [Ju"|3
2T

~pal 1 =gl
+<Vhpn,un+%>1+§THVh(pn+l—pn)H%-‘rI/Hthn—i_;

o (e @) <0

For the pressure gradient term <Vhp", ants >1, we make use of (2.38) and (2.39), so that V,-a" ™! =

LrAp(pt! — p™). This in turn results in
2

o 1
<Vhp”, ﬁn+%> —— <pn7 Vh . ﬁn+%> N <pn’ Vh . ﬁn+1>c
1 c 2

1 1
— 17_ <pn7 Ah(pn+l . pn)>c — ZT <vhpn7 vh(pn-i-l . pn)>1 (4.9)

T ‘s n T ‘3 7
:g(thP THE = IVap™3) — gHVh(P ™3

As a consequence, a substitution of (4.9) into (4.8) yields

2

un+1 2 _ u” 2 T — .1
” ||2 H H2 (thpn—i-lug _ than%> +V“thn+2 ,

2T +§
+ <Ah¢3”+%th”+%, ﬁ”+5> =0.

(4.10)

-

For the CH system, taking inner product with (2.36) by Tu’”%, and with (2.37) by (¢"*! — ¢"),
we get
(G(1+ ") + G(1—¢") = G(1+¢") — G(1 - ¢"), 1), — g <¢3n+%,¢n+1 _ ¢n>
- - _ 2
+ 52 <Vh¢n+%,vh(¢n+1 _ ¢n)>1 7 <Ah¢n+%vhﬂn+%aﬁn+%>l 4T thun—i-% ) (4.11)
+7(In(1+¢") —In(14¢") —In(1 — ¢"*') +In(1 — ¢"),¢" ! — ¢")_=0,

with summation-by-parts formula (2.34) recalled. The linear expansive and surface diffusion terms
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could be analyzed as follows:
— (g9 - <2¢“—2¢,¢+1—¢>
1 n n 1 3 n n n—
> = (6™ M1 = 16"113) + 3 (1™ = ™[5 l6" = 6" [13), (4.12)

(T2 T = 61), = (TG + 10, Tl - )
1

4
(Tl 4 67), Va6 = 67), + (Va6 — 26"+ 6", V(6 — 67)),

1
(V0" 2 = 1V0"[13) + 5 (IV(6" " = @™l = V(8" — 6" )lI3) - (4.13)

l\D\l—'l\D\H

Using the monotonicity of In(1 4+ z) — In(1 — x), we obtain
(In(1+4¢™") —In(1 + ¢") —In(1 — ¢"*") + In(1 — ¢"), ¢"' — ¢")_> 0. (4.14)

As a consequence, a substitution of (4.12)-(4.14) into (4.11) yields

(GA+¢" ) +G(1L—¢"™) =G +¢") = G(1=¢"), 1), — = |!¢"+1||2 1" (13)
62 n n bo n n n n— n 2
+ 5 (190" B = 11900" 13) + (6" = 6" 15— ll¢" — & 1|| |G| (s)
62 n n n n— In+i n+i EZn4i
S (190 = 63— V(0" — 6" DIB) — 7 (A3 o s &) <o,
Finally, a combination of (4.10) and (4.15) results in the following energy estimate:
prtl _ pn 72 v, ol v, " |2 bo n+1 n||2 n n—1(|2
h,CH hCH+ (|| W TS = [ Vap ||2)+Z H¢ — ¢ HQ— H¢ - H2
n 2 182
S (Hw R NGl (416)
2
% et e o
This completes the proof of Theorem 4.1. O
With the above energy estimate, an induction application implies that
Ep(¢",u") < Ep(¢", 6"~ u", p") < Bu(¢, 071w, p71) = By (¢ ), (4.17)

by taking the initial extrapolation ¢~ = ¢°, p~! = p’. Then we obtain the following result.

Corollary 4.1. For every positive integer n, the solutions "1, u"™t of (2.36)-(2.39) satisfy the
following estimate:

Vg™ Ml <€, ], < € (4.18)
where C only depends on the 0y, €, v, |Q| and the initial value ¢°, u°

Remark 4.1. The first order numerical scheme has been reported in [5], with the established
theoretical properties. Meanwhile, a direct extension to the second order numerical accuracy, such
as the BDF2 approach analyzed in [10] for the pure Cahn-Hilliard equation, would face a serious
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difficulty in the theoretical analysis. The modified BDF2 algorithm has its advantage to deal with
the nonlinear logarithmic terms, associated with the singular and convex nature of these terms. In
turn, the positivity-preserving analysis of the BDF2 method, for the pure phase field equation, follows
essential the same ideas as in the first order scheme. However, for the BDF2 approach to the Cahn-
Hilliard-Navier-Stokes system, the energy stability analysis would face a serious theoretical difficulty.
Instead, we use a modified Crank-Nicolson approach, in which the second order approximation to
the logarithmic terms does not preserve the singularity as the phase variables approach the singular
limit values of +1, while the nonlinear artificial reqularization term preserves a singular nature.
In turn, the positivity-preserving analysis is accomplished with the help of this nonlinear artificial
reqularization term, while the total energy stability analysis is derived on the Crank-Nicolson format,
for the proposed second order scheme (2.35)-(2.39).

Remark 4.2. In the chemical potential expansion (2.37) of the proposed numerical scheme, a
modified Crank-Nicolson approrimation, namely %cﬁ”“ + iqﬁ"‘l, is applied in the surface diffusion
part. Such an alternate Crank-Nicolson approzimation greatly enhances the numerical stability for
nonlinear equations, in comparison with the standard Crank-Nicolson version, %(gf)"“'l + ¢™). This
fact was first reported in [28] to deal with viscous Burgers’ equation, and it has been extensively
applied to various gradient flow [6,9,12, 15, 16, 30, 31] and fluid [11,49] models, etc. This stability
advantages have been verified by extensive numerical evidences, as well as the theoretical analyses.
Such an improved numerical stability is expected to facilitate the convergence analysis of the proposed
numerical scheme, as will be considered in future works.

Remark 4.3. The convergence analysis of the proposed numerical scheme (2.35)-(2.39) is expected
to be highly challenging, due to the highly nonlinear and coupled nature of the numerical system.
In addition, the singular feature of the phase variable as its value approaches to the singular limit
values of £1 makes the analysis even more complicated. A theoretical justification of the convergence
analysis and error estimate will be considered in our future works; some technical ideas in the related
works [3,4,7,15,39, 41] could be similarly applied.

5 Numerical test

In this section, we perform some numerical tests to demonstrate the robustness of the proposed
numerical scheme. For the weak velocity-phase coupled numerical algorithm, a Picard iteration
technique is used to accelerate the computational program. Meanwhile, the preconditioned steepest
descent (PSD) method [25] is used to solve the Cahn-Hilliard system. Specifically, a linear operator

1 3
L[p] = — — 20}, + A7
0] = =3 €A
is implemented to replace the original nonlinear equation. In turn, the operator is fixed at each
iteration, and we can use the Fast Fourier Transform (FFT) to solve the system. For more details
of the PSD iteration, see the related work of [5,6,8,24,52], etc.

5.1 Convergence test

To check the accuracy of the proposed scheme (2.35)-(2.39), we present two examples for both
boundary conditions, either periodic or physical one. For simplicity, we take the kinematic viscosity
as v = 0.5, surface diffusion parameter ¢ = 0.5, and the expansive coefficient 6 is set as 3. For the

15



periodic case, the exact solutions are chosen to be
d(x,y,t) = 0.58in(2wx) cos(2my) cos(t) + 0.1, (5.1)
_ <— cos(t) cos(2mx) sm(27ry)> ’ (5.2)

cos(t) sin(2mx) cos(2my)
p = sin(t) sin(27x). (5.3)

Since the solution does not satisfy the original system (1.2)-(1.5), two artificial source terms have to
be added to the right hand side of the Navier-Stokes equation (1.2) and the Cahn-Hilliard equation
(1.3). We take 7 = h to observe both the temporal and spatial accuracy orders, with h = 27k
k=4,56,7,8 9. We choose the final time T" = 1 and compare the exact and the computational
solutions. Figure 1 (left) plots the numerical error of the phase variable, velocity and the pressure
respect to the spatial size. A clear second order convergence is illustrated in this picture.

On the other hand, a slightly different result has been observed with physical boundary condi-
tion. In this case we choose the exact solutions as

o(x,y,t) = 1 COS(?TJZ) cos(my) cos(t), (5.4)

" — cos(t )s1n(7rm)2 sin(27my)
N ( cos(t) sin(27x) sin(my)? >’ (5:5)

p = cos(t) cos(2mz) sin(27y). (5.6)

The parameters along with the spatial and temporal are all given as the same above. The asso-
ciated convergence orders are reported in Figure 1 (right). It is clear that the velocity and phase
variables remain to be second order convergent, while the accuracy order for the pressure variable
is reduced to one. We remark that, by using pressure correction technique in (2.39) with boundary
condition (2.41), an artificial Neumann boundary condition 0, (p’”rl — p”) = 0 is implemented
n (2.38), which induces a numerical boundary layer that prevents the scheme to be fully second
order accurate; also see the related works of Shen [45,46], Guermond, Minev and Shen [29], E and
Liu [20-22], etc.

5.2 Buoyancy-driven flow

The Cahn-Hilliard-Navier-Stokes system can be used to simulate certain dynamics and observe the
associated physical phenomena. We follow the idea in [13] and consider a single bubble rising in
a box. An additional buoyancy force term b is added to the right hand side of the Navier-Stokes
equation (1.2), shifting the original system as follows:
u; + (u-V)u—vAu—Vp+¢Vu =b,
¢r+ V- (u) = Ap,
=In(1+¢)—In(1—¢)— 6o — A0,
V-u=0. (5.

AT
© 0o
ARG S

G~ o~ —

To be specific, B

b=(0,-b(¢)"), b(¢)=A(o—9),
and \ = M, where G is the gravitational force and p; and ps denote the densities of the
bubble and medium. We set the initial phase value as

#(2.7.0) — 0.0 tanh <\/(:r —05)2 1 (i/; —0.3)2 — 0.25d> | (5.11)
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Figure 1: Numerical error of the phase variable, velocity field and pressure field. Periodic boundary
case with initial value (5.1)-(5.3) is shown on the left, while the physical case with initial value
(5.4)-(5.6) is demonstrated on the right. In the first case all three variables have the second order
accuracy. In the physical boundary condition case, though the velocity and phase variables appear
to be second order convergent, the pressure variable does not preserve a full second order accuracy.
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where d controls the radius of the bubble and 7 represents the diffusive interfacial width. Here
we choose d = 0.5 and 7 = 0.01d. The physical parameters are given by 6y = 101%(19), so that
the double wells of the potential are located at —0.9 and 0.9, and A = 20, ¢ = 0.01. The spatial
and temporal sizes are set as 1/256 and 0.0001, respectively. We consider the bubble rising under
different viscosity parameters: v = 0.1, 0.01, 0.001, 0.0001. Figure 2 displays some snapshots in
the above four cases. As v becomes smaller, the convection term takes the lead and in turn the

bubble rises faster, and deforms when reaching the boundary of the top side.

|
O’ .
[ ‘
N N
(a) t =0.1 (b) t=0.2 (c)t=05 (d)t=08 (&)t =1 E
/\_/ e
i X
o R
S
I N
N 0.
(f)t=0.1 (g) t=0.3 )t =0.55 E
(e}
(@) X
S
I o
A -0.
(k) t=0.1 (1)t =0.18 )t=0.25 |
= \_/ — |N
()
S |
S
I K
N N
(p) t=0.15 (q) t =02 (r) t=0.4 (s) t=0.7 (t) t=1

Figure 2: Bubble rises under different viscosity parameters, with different time snapshots.

5.3 Numerical simulation of the coarsening process

In this section we present the simulation results of the coarsening process, which illustrates that the
proposed numerical scheme preserves the positivity property and total energy stability. A random
initial value is chosen:

Gust iy = 024 0.05 (2r0 11— 1)), (5.12)

i+1 ;1 are uniform random numbers in [0, 1]. We further set the initial velocity as u’ = 0.
27 2

The physical parameters are given by: v = 0.01, 6y = 3.6 and a sequence of €, ¢ = 0.01, 0.02, 0.03.

where r
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The spatial size is still set as h = 1/256. Since the phase separation process will encounter a fast
energy decay in the early time stage, we use a numerical strategy that slowly increases the time
step sizes in the time evolution. Specifically, we set 7 = 107° at the very beginning, and compute
1000 time steps, then use the time step size 27 and repeat this process, until 7 = 1.024 %« 1072, In
other words, the time interval [0,0.01] will be simulated using the time step size 7 = 1075, then
T =[0.01,0.03] with 7 =2 1072, T' = [0.03,0.07] with 7 = 4 % 1075, etc.

Figure 3 displays some pictures with different diffusion parameters, with its streamline plotted
for the phase variable. As e gets bigger, less topology structures are presented, and the separation
process finishes faster. In Figure 4 we give the energy decay plot with different e values, and an
O(t_%) dissipation rate is observed among these cases. It is noticed that, at the beginning time of
each process, the original energy E}, ;o141 may not decrease, due to the random data singularity, while
the modified energy E), always decreases over time, as proved in Theorem 4.1. Finally, Figure 6
presents the maximum and minimum values of ¢ in the time evolution. Of all three cases, the
maximum value is lower than 0.9687, while the minimum value remains larger than -0.9598, which
implies a strict separation property of the 2-D Cahn-Hilliard equation with logarithmic potential.

6 Conclusion

In this paper we have presented and analyzed a second order accurate numerical scheme for the
Flory-Huggins-Cahn-Hilliard-Navier-Stokes system, with logarithmic energy potential. A modified
Crank-Nicolson approximation is applied to the chemical potential, combined with a nonlinear
artificial regularization term. For the convective term in the phase field evolutionary equation, the
phase variable is evaluated by a second order extrapolation formula, while the velocity vector is
updated by the Crank-Nicolson approximation. The Navier-Stokes equation is also computed by
a similar semi-implicit method. The coupled numerical system creates a unique solution for the
intermediate velocity field and the phase variable. The unique solvability and positivity-preserving
analysis (for the logarithmic arguments) is accomplished by a nonlinear iteration process, in which
the monotonicity analysis and the singularity analysis (as the phase variable approaches the singular
limit values of —1 and 1) have played an essential role. After the intermediate velocity field is
determined, a Helmholtz projection into the divergence-free vector field yields the velocity vector
and the pressure variable at the next time step. As a result, the Stokes solver is decoupled, so that
the numerical efficiency is greatly improved. For the full numerical system, a modified total energy
stability of the proposed numerical scheme has been derived, with a few numerical correction
terms included in the modified energy functional. Some numerical results are displayed, which
demonstrate the robustness and efficiency of the proposed second order scheme.
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