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Abstract

We present a second-order-in-time finite difference scheme for the Cahn-Hilliard-Hele-Shaw

equations. This numerical method is uniquely solvable and unconditionally energy stable. At

each time step, this scheme leads to a system of nonlinear equations that can be efficiently

solved by a nonlinear multigrid solver. Owing to the energy stability, we derive an `2(0, T ;H3
h)

stability of the numerical scheme. To overcome the difficulty associated with the convection term

∇ · (φu), we perform an `∞(0, T ;H1
h) error estimate instead of the classical `∞(0, T ; `2) one to

obtain the optimal rate convergence analysis. In addition, various numerical simulations are

carried out, which demonstrate the accuracy and efficiency of the proposed numerical scheme.

Keywords: Cahn-Hilliard-Hele-Shaw, Darcy’s law, convex splitting, finite difference method,

unconditional energy stability, Nonlinear Multigrid

1 Introduction

The Cahn-Hilliard-Hele-Shaw (CHHS) diffuse interface model has attracted a lot of attention be-

cause it describes two phase flows in a simple way [18, 19]. It has been used to model spinodal

decomposition of a binary fluid in a Hele-Shaw cell [15], tumor growth and cell sorting [12, 30], and

two phase flows in porous media [4]. It describes the process of the phase separation of a viscous,

binary fluid into domains. In this model, the Cahn-Hilliard (CH) energy of a binary fluid with a
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constant mass density is given by [2]:

E(φ) =

∫
Ω

{
1

4
φ4 − 1

2
φ2 +

ε2

2

∣∣∣∇φ∣∣∣2} dx, (1.1)

where Ω ⊂ Rd (d = 2 or 3), φ : Ω → R is the concentration field, and ε is a constant. The phase

equilibria are represented by the pure fluids φ = ±1. For simplicity, we assume that Ω = (0, Lx)×
(0, Ly) × (0, Lz) and that ∂nφ = 0 on ∂Ω, the latter condition representing local thermodynamic

equilibrium on the boundary. The dynamic equations of CHHS model [18, 19] are given by

∂tφ = ∆µ−∇ · (φu), in ΩT := Ω× (0, T ), (1.2)

u = −∇p− γφ∇µ, in ΩT , (1.3)

∇ · u = 0, in ΩT , (1.4)

where γ > 0 is related to surface tension and the chemical potential is defined as

µ := δφE = φ3 − φ− ε2∆φ; (1.5)

u is the advective velocity; and p is the pressure. We assume no flux boundary conditions, namely

u · n = 0 and ∂nµ = 0, with n the unit normal vector on ∂Ω:

∂φ

∂n
=
∂µ

∂n
=
∂p

∂n
= 0 on ∂ΩT := ∂Ω× (0, T ]. (1.6)

The system (1.2)-(1.4) is mass conservative and energy dissipative, and the dissipation rate is

readily found to be

dtE = −
∫

Ω
|∇µ|2dx− 1

γ

∫
Ω
|u|2dx ≤ 0. (1.7)

Another fundamental observation is that the energy (1.1) admits a splitting into purely convex and

concave parts, i.e., E = Ec − Ee:

Ec =

∫
Ω

{
1

4
φ4 +

ε2

2

∣∣∣∇φ∣∣∣2} dx, Ee =

∫
Ω

1

2
φ2 dx, (1.8)

where both Ec and Ee are convex. Based on this observation, a first order in time unconditionally

energy stable finite difference scheme for the CHHS equations was proposed in [29], and the detailed

convergence analysis has become available in a more recent work [3]. Meanwhile, Feng and Wise

presented a finite element analysis for the system (1.2)-(1.4), which arises as a diffuse interface

model for the two phase Hele-Shaw flow in [11]. Collins et al. proposed an unconditionally energy

stable and uniquely solvable finite difference scheme for the Cahn-Hilliard-Brinkman (CHB) system,

which is comprised of a CH-type diffusion equation and a generalized Brinkman equation modeling

fluid flow. The detailed convergence analysis for the first order convex splitting scheme to the

Cahn-Hilliard-Stokes (CHS) equation was provided in [5]. In [14], Guo et al. presented an energy
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stable fully-discrete local discontinuous Galerkin (LDG) method for the CHHS equations. And

Han proposed and analyzed a decoupled unconditionally stable numerical scheme for the CHHS

equations with variable viscosity in [15]. Some other energy stable approaches for the related models

could also be found in [20, 21, 23], etc.

Most of the existing schemes are of first oder accuracy in time. In this paper, we propose and

analyze a second order convex splitting scheme for the system (1.2)-(1.4), which turns out to be

uniquely solvable and unconditionally energy stable. A modified Crank-Nicholson approximation is

applied to the nonlinear part of the chemical potential, an explicit Adams-Bashforth extrapolation

is applied to the concave term, and an Adams-Moulton interpolation formula is applied to the high-

est order surface diffusion term. In more details, such an Adams-Moulton interpolation formula is

applied at the time steps tn+1 and tn−1 (instead of the standard one at tn+1 and tn), so that the

diffusion coefficient at tn+1 dominates the others. This subtle fact will greatly facilitate the con-

vergence analysis; see the related works for the pure CH flow: [13] with the finite difference spatial

approximation, [7] with the finite element version. In addition, a semi-implicit approximation is

applied to the nonlinear convection term, with the phase variable treated via extrapolation and the

velocity field is implicitly determined by the Darcy law at the numerical level. A careful analysis

reveals a rewritten form of the numerical scheme as the gradient of a strictly convex functional, so

that both the unique solvability and unconditional energy stability could be theoretically justified.

Meanwhile, it is noted that an optimal rate convergence analysis for the second order scheme

to the CHHS equation remains open. The main difficulty is associated with the high degree of

nonlinearity of the convection term, ∇ · (φu), with u the Helmholtz projection of −γφ∇µ. Also,

the Darcy law in the fluid equation has posed a serious challenge in the numerical analysis, in com-

parison with the CHS [5] or Cahn-Hilliard-Navier-Stokes (CHNS) model [6], in which a kinematic

diffusion is available for the fluid. For the CHHS equation, even the highest order linear diffusion

term could not directly control the error estimates for the nonlinear terms, due to the nonlinear

convection. For the first order numerical scheme, the methodology to overcome such a difficulty

was reported in a few recent works [3, 22]. However, these analysis techniques could not be directly

applied to the second order scheme. In this article, we present a detailed analysis to establish the

full order convergence of the proposed numerical scheme, with second order accuracy in both time

and space. In more details, a nonlinear energy estimate by taking an inner product with µk+1/2,

the numerical chemical potential at time instant tk+1/2, gives an unconditional numerical stabil-

ity. Moreover, a more careful analysis for the chemical potential gradient, in combination with the

Sobolev inequalities at the discrete level, leads to an `2(0, T ;H3
h) stability estimate of the numerical

solution. On the other hand, a subtle observation indicates that the estimate for the nonlinear error

associated with ∇· (φu) cannot be carried out in a standard way, due to a broken structure for this
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nonlinear error function. As a result, an `∞(0, T ;H1
h) error estimate has to be performed, instead

of the classical `∞(0, T ; `2) one, since the error term associated with the nonlinear convection has

a non-positive inner product with the appropriate error test function. In addition, the `2(0, T ;H3
h)

bound of the numerical solution plays a key role in the nonlinear error estimate, which enables us

to apply the discrete Gronwall inequality to obtain the desired convergence result.

The remainder of this paper is organized as follows. In Section 2, we present the fully-discrete

scheme for the CHHS equations. The `2(0, T ;H3
h) stability of the numerical scheme is further

established in Section 3. In Section 4, we present the optimal rate convergence analysis with

the help of an `∞(0, T ;H1
h) error estimate. In Section 5, we provide some numerical results to

validate our theoretical analysis and demonstrate the effectiveness of the proposed fully discrete

finite difference method. To solve the nonlinear equations at each time step, the nonlinear multigrid

solver is applied. Finally, we offer our concluding remarks in Section 6.

2 The fully discrete scheme and a-priori stabilities

In this section, we propose a second order in time fully discrete scheme for the system (1.2)-(1.4)

with the discrete homogeneous Neumann boundary conditions (1.6). For simplicity, we consider

the cuboid Ω = (0, Lx)× (0, Ly)× (0, Lz), such that there are Nx, Ny, Nz ∈ N, with h = Lx/Nx =

Ly/Ny = Lz/Nz, for some h > 0. Let s = T
M > 0 for some M ∈ N , be the time step size and

tm = ms. We only consider the three-dimensional version of the fully discrete scheme for the

CHHS system since an extension to the two-dimensional case is trivial. For convenience, some of

the following notations are defined in Appendix A. For each integer m, 1 ≤ m ≤ M − 1, given

(φm−1, φm) ∈ [CΩ]2, find the cell-centered grid functions (φm+1, µm+1/2, pm+1/2) ∈ [CΩ]3, such that

φm+1 − φm

s
= ∆hµ

m+1/2 −∇h · (Ahφ
m+1/2
∗ um+1/2), (2.1)

µm+1/2 = χ
(
φm+1, φm

)
− φm+1/2

∗ − ε2∆h

(3

4
φm+1 +

1

4
φm−1

)
, (2.2)

um+1/2 = −∇hpm+1/2 − γAhφ
m+1/2
∗ ∇hµm+1/2, (2.3)

with the boundary conditions n · ∇hφm+1 = n · ∇hµm+1/2 = n · ∇hpm+1/2 = 0 (see (A.6)-(A.8))

on ∂Ω, where

φ
m+1/2
∗ :=

3

2
φm − 1

2
φm−1, χ (ϕ,ψ) :=

1

4

(
ϕ2 + ψ2

)
(ϕ+ ψ) , (2.4)

for any (ϕ,ψ) ∈ [CΩ]2. Note that the three component variables of the velocity vector um+1/2 ∈ ~EΩ

are located at the staggered grid points. Furthermore, this velocity vector is divergence-free at the

discrete level; see more detailed descriptions in Remark 2.3. To facilitate the unique solvability

analysis below, we could eliminate the velocity variable in the numerical scheme and rephrase it
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in terms of (φm+1, µm+1/2, pm+1/2) ∈ [CΩ]3. In more details, we introduce M(φ) := 1 + γφ2 and

rewrite (2.1)-(2.3) as

φm+1 − φm = s∇h ·
(
M(Ahφ

m+1/2
∗ )∇hµm+1/2

)
+ s∇h ·

(
Ahφ

m+1/2
∗ ∇hpm+1/2

)
, (2.5)

µm+1/2 = χ
(
φm+1, φm

)
− φm+1/2

∗ − ε2∆h

(3

4
φm+1 +

1

4
φm−1

)
, (2.6)

∆hp
m+1/2 = −γ∇h ·

(
Ahφ

m+1/2
∗ ∇hµm+1/2

)
. (2.7)

The symbolM(Ahφ
m+1/2
∗ )∇hµm+1/2 represents a discrete vector field. For instance, the y-component

at a generic y-face grid point is given as[
M(Ahφ

m+1/2
∗ )∇hµm+1/2

]y
i,j±1/2,k

=M(Ayφ
m+1/2
∗,i,j±1/2,k)Dyµ

m+1/2
i,j±1/2,k.

Hence,M(Ahφ
m+1/2
∗ )∇hµm+1/2 ∈ ~EΩ and similarly forAhφ

m+1/2
∗ ∇hpm+1/2 andAhφ

m+1/2
∗ ∇hµm+1/2.

The definitions of the discrete operators used above can be found in Appendix A.2 and are similar

to those found in [29].

We now define a fully discrete energy that is consistent with the continuous space energy (1.1)

as h→ 0. In particular, the discrete energy Eh : CΩ → R is

Eh(φ) :=
1

4
‖φ‖44 −

1

2
‖φ‖22 +

ε2

2
‖∇hφ‖22 . (2.8)

We also define an alternate numerical energy via

Fh(φ, ψ) = Eh(φ) +
1

4
‖φ− ψ‖22 +

1

8
ε2 ‖∇h(φ− ψ)‖22 . (2.9)

We can not guarantee that the energy Eh is non-increasing in time, but, we can guarantee the

dissipation of auxiliary energy Fh.

For our present and future use, we define the canonical grid projection operator Ph : C0(Ω)→ CΩ

via [Phv]i,j,k = v(ξi, ξj , ξk). Set uh,s := Phu(·, s). Then Fh(uh,0, uh,s) → Eh(u(·, t0)) as h → 0

and s → 0 for sufficiently regular u. The next theorem addresses the unique solvability and

unconditional energy stability of the numerical solutions to the scheme (2.5) – (2.7):

Theorem 2.1. Suppose that (φe, µe,ue) is the sufficiently regular exact solution to the CHHS

system (1.2)-(1.4). Take Φ`
i,j,k = Phφe(·, t`) and suppose that the initial profile φ0 := Φ0, φ1 :=

Φ1 ∈ CΩ satisfies homogeneous Neumann boundary conditions n · ∇hφ0 = 0 and n · ∇hφ1 = 0 on

∂Ω. Given any (φm−1, φm) ∈ [CΩ]2, there is a unique solution φm+1 ∈ CΩ to the scheme (2.5) –

(2.7). And also, the scheme (2.5) – (2.7), with starting values φ0 and φ1, is unconditionally energy

stable with respect to (2.9), i.e., for any s > 0 and h > 0, and any positive integer 1 ≤ ` ≤M − 1,

Fh(φ`+1, φ`) + s
∑̀
m=1

‖∇hµm+1/2‖22 +
s

γ

∑̀
m=1

‖um+1/2‖22 ≤ Fh(φ1, φ0) ≤ C0, (2.10)

where C0 > 0 is a constant independent of s, h, and `, and um+1/2 ∈ ~EΩ is given by (2.3).
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Proof. The unique solvability proof follows from the convexity analysis, as presented in [29] for the

first order convex splitting scheme applied to the CHHS equation. We define a linear operator L
as

L(µ) := −s∇h ·
(
M(Ahφ

m+1/2
∗ )∇hµ

)
− s∇h ·

(
Ahφ

m+1/2
∗ ∇hpµ

)
, (2.11)

in which

∆hpµ = −γ∇h ·
(
Ahφ

m+1/2
∗ ∇hµ

)
, (2.12)

with φ
m+1/2
∗ a known function, and homogeneous Neumann boundary conditions for both µ and pµ.

Following the arguments in [29], we are able to prove that L gives rise to a symmetric, coercive, and

continuous bilinear form when the domain is restricted to C̊Ω := {µ ∈ CΩ : (µ,1) = 0}; the details

are skipped for the sake of brevity and left to interested readers.

Subsequently, an inner product on C̊Ω is introduced using L: let fµ and fν ∈ C̊Ω and suppose

µ, ν ∈ H̊1
h are the unique solutions to L(µ) = fµ and L(ν) = fν . Then we define

(fµ, fν)L−1 := s(∇hµ,∇hν) +
s

γ

(
∇hfµ + γAhφ

m+1/2
∗ ∇hµ,∇hfν + γAhφ

m+1/2
∗ ∇hν

)
. (2.13)

The purpose of such a definition is to introduce the (·, ·)L−1 inner product, which will be used in

the convexity analysis below. In fact, it is straightforward to verify that

(fµ, fν)L−1 =
(
fµ,L−1fν

)
=
(
L−1fµ, fν

)
. (2.14)

Furthermore, a direct calculation shows that

(fµ, fν)L−1 = (L(µ), ν) = s(∇hµ,∇hν) + s
(
Ahφ

m+1/2
∗ ∇hµ,Ahφ

m+1/2
∗ ∇hν

)
− s

γ
(∇hpµ,∇hpν),

(2.15)

due to the fact that L(µ) = fµ and L(ν) = fν . Next, we consider the following functional:

G(φ) =
1

2
(φ− φm, φ− φm)L−1 + Fc(φ)− (φ, ge(φ

m, φm−1)), (2.16)

with

Fc(φ) =
1

16
‖φ‖44 +

1

12
(φm, φ3) +

1

8
((φm)2, φ2) +

3

8
ε2‖∇hφ‖22, (2.17)

ge(φ
m, φm−1) = −1

4
(φm)3 + φ

m+1/2
∗ +

1

4
ε2∆hφ

m−1. (2.18)

The convexity of Fc follows from the convexity of gc(φ) := 1
16φ

4 + 1
12φ

mφ3 + 1
8(φm)2φ2 (in terms of

φ). And also, (·, ·)L−1 is an inner product. Therefore, we conclude that G is convex. Moreover, G

is coercive over the set of admissible functions

A = {φ ∈ CΩ : (φ− φm,1) = 0} . (2.19)
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Therefore it has a unique minimizer, and in particular the minimizer of G, which we denote as

φ = φm+1, satisfied the discrete equation

L−1(φm+1 − φm) + δφFc(φ
m+1)− ge(φm, φm−1) = C, (2.20)

in which C is a constant and φm+1 satisfies the homogeneous Neumann boundary condition. In

other words, φm+1 is a solution of

φm+1 − φm + L
(
δφFc(φ

m+1)− ge(φm, φm−1)
)

= 0, (2.21)

which is equivalent to the numerical scheme (2.5) – (2.7). The proof of unique solvability is complete.

For the energy stability analysis, we look at the numerical scheme in the original formulation

(2.1)-(2.3). Taking an inner product with µm+1/2 (given by (2.6)) by (2.1) yields(
φm+1 − φm, µm+1/2

)
−s
(

∆hµ
m+1/2, µm+1/2

)
+s
(
∇h · (Ahφ

m+1/2
∗ um+1/2), µm+1/2

)
= 0. (2.22)

In more detail, the leading term has the expansion(
φm+1 − φm, µm+1/2

)
=
(
φm+1 − φm, χ

(
φm+1, φm

))
− 1

2

(
φm+1 − φm, 3φm − φm−1

)
− 1

4
ε2
(
φm+1 − φm,∆h

(
3φm+1 + φm−1

))
:= I1 + I2 + ε2I3. (2.23)

The estimate for I1, a convex term, is straightforward:

I1 =
1

4

(
φm+1 − φm,

(
(φm+1)2 + (φm)2

)(
φm+1 + φm

))
=

1

4

((
(φm+1)2 − (φm)2

)
,
(

(φm+1)2 + (φm)2
))

=
1

4

(∥∥φm+1
∥∥4

4
− ‖φm‖44

)
. (2.24)

For the second term I2 of (2.23), a concave term, we see that

I2 = −
(
φm+1 − φm, φm

)
− 1

2

(
φm+1 − φm, φm − φm−1

)
= −1

2

(∥∥φm+1
∥∥2

2
− ‖φm‖22

)
+

1

2

∥∥φm+1 − φm
∥∥2

2
− 1

2

(
φm+1 − φm, φm − φm−1

)
(2.25)

≥ −1

2

(∥∥φm+1
∥∥2

2
− ‖φm‖22

)
+

1

4

∥∥φm+1 − φm
∥∥2

2
− 1

4

∥∥φm − φm−1
∥∥2

2
,

where the Cauchy inequality was utilized in the last step.

The third term I3 of (2.23), also a convex term, can be analyzed with the help of summation

by parts:

I3 =
1

4

(
∇h
(
φm+1 − φm

)
,∇h

(
3φm+1 + φm−1

))
=

1

2

(
∇h
(
φm+1 − φm

)
,∇h

(
φm+1 + φm

))
+

1

4

(
∇h
(
φm+1 − φm

)
,∇h

(
φm+1 − 2φm + φm−1

))
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:= I3,1 + I3,2. (2.26)

The evaluation of I3,1 is straightforward:

I3,1 =
1

2

(
∇h
(
φm+1 − φm

)
,∇h

(
φm+1 + φm

))
=

1

2

(∥∥∇hφm+1
∥∥2

2
− ‖∇hφm‖22

)
. (2.27)

The estimate of the I3,2 can be carried out in the following way:

I3,2 =
1

4

∥∥∇h(φm+1 − φm)
∥∥2

2
− 1

4

(
∇h(φm+1 − φm),∇h(φm − φm−1)

)
≥ 1

8

(∥∥∇h(φm+1 − φm)
∥∥2

2
−
∥∥∇h(φm − φm−1)

∥∥2

2

)
, (2.28)

in which the Cauchy inequality was applied in the last step. Consequently, substituting (2.27) and

(2.28) into (2.26) yields

I3 ≥
1

2

(∥∥∇hφm+1
∥∥2

2
− ‖∇hφm‖22

)
+

1

8

(∥∥∇h(φm+1 − φm)
∥∥2

2
−
∥∥∇h(φm − φm−1)

∥∥2

2

)
. (2.29)

Finally, a combination of (2.23), (2.24), (2.25) and (2.29) results in(
φm+1 − φm, µm+1/2

)
≥ Eh(φm+1)− Eh(φm) +

1

4

(∥∥φm+1 − φm
∥∥2

2
−
∥∥φm − φm−1

∥∥2

2

)
+

1

8
ε2
(∥∥∇h(φm+1 − φm)

∥∥2

2
−
∥∥∇h(φm − φm−1)

∥∥2

2

)
. (2.30)

For the second term of (2.22), the boundary condition n·∇hµm+1/2 |∂Ω= 0 leads to the following

summation by parts:(
∆hµ

m+1/2, µm+1/2
)

= −
(
∇hµm+1/2,∇hµm+1/2

)
= −

∥∥∥∇hµm+1/2
∥∥∥2

2
. (2.31)

The third term of (2.22) can be analyzed in a similar way. With the reformulated form of the

second equation (2.3)

Ahφ
m+1/2
∗ ∇hµm+1/2 =

1

γ

(
−um+1/2 −∇hpm+1/2

)
, (2.32)

we have (
∇h · (Ahφ

m+1/2
∗ um+1/2), µm+1/2

)
= −

(
um+1/2, Ahφ

m+1/2
∗ ∇hµm+1/2

)
=

1

γ

∥∥∥um+1/2
∥∥∥2

2
+
(
∇h · um+1/2, pm+1

)
(2.33)

=
1

γ

∥∥∥um+1/2
∥∥∥2

2
, (2.34)

in which the last step comes from ∇h · um+1/2 = 0 and um+1/2 · n = 0 on ∂Ω.

As a result, a substitution of (2.30), (2.31) and (2.34) into (2.22) becomes

Eh(φm+1)− Eh(φm) +
1

4

(∥∥φm+1 − φm
∥∥2 −

∥∥φm − φm−1
∥∥2

2

)
+

1

8
ε2
(∥∥∇h(φm+1 − φm)

∥∥2

2
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−
∥∥∇h(φm − φm−1)

∥∥2

2

)
+ s

∥∥∥∇hµm+1/2
∥∥∥2

2
+
s

γ

∥∥∥um+1/2
∥∥∥2

2
≤ 0. (2.35)

By the definition of the alternative numerical energy, we arrive at

Fh(φm+1, φm)− Fh(φm, φm−1) + s
∥∥∥∇hµm+1/2

∥∥∥2

2
+
s

γ

∥∥∥um+1/2
∥∥∥2

2
≤ 0. (2.36)

This in turn shows that the modified energy is non-increasing in time. Summing over time for

(2.36) yields

Fh(φ`+1, φ`) + s
∑̀
m=1

‖∇hµm+1/2‖22 +
s

γ

∑̀
m=1

‖um+1/2‖22 ≤ Fh(φ1, φ0) ≤ C0, ∀` ≥ 1. (2.37)

Then we obtain the unconditional energy stability for the second order scheme (2.5)-(2.7).

Remark 2.2. It is observed that data for two initial time steps, either (φ0, φ1) or (φ−1, φ0), are

needed for (2.5) – (2.7), since ours is a two-step scheme. In this article, we take φ0 = Φ0, φ1 = Φ1

for simplicity of presentation. Other initialization choices, such as φ−1 = φ0, or computing φ1 by

a first order temporal scheme, could be taken. Moreover, the energy stability and the second order

temporal convergence rate are also expected to be available for these initial data choices; see the

related works for the Cahn-Hilliard model [7, 13].

Remark 2.3. In order to assure the divergence-free property of the velocity vector at the discrete

level, we choose a staggered grid for the velocity field, in which the individual components of a

given velocity, say, v = (vx, vy, vz), are evaluated at the (x, y, and z face) mesh points (ih, (j +

1/2)h, (k + 1/2)h), ((i+ 1/2)h, jh, (k + 1/2)h), ((i+ 1/2)h, (j + 1/2)h, kh), respectively. This staggered

grid is also known as the marker and cell (MAC) grid and was first proposed in [16] to deal with the

incompressible Navier-Stokes equations. Also see [24] for related applications to the 3-D primitive

equations.

One key advantage of this staggered grid can be inferred from the following fact: the discrete

divergence of u (given by (2.3)), specifically, ∇h ·u = dxu+ dyv+ dzw, is identically zero at every

(cell-center) mesh points ((i + 1/2)h, (j + 1/2)h, (k + 1/2)h). Such a divergence-free property at the

discrete level comes from the special structure of the MAC grid and assures that the velocity field is

orthogonal to a corresponding discrete pressure gradient at the discrete level; see also reference [8].

3 `2(0, T ;H3
h) stability of the numerical scheme

The `∞(0, T ;H1
h) bound of the numerical solution could be derived based on the weak energy

stability (2.37). The following quadratic inequality is observed:

1

8
φ4 − 1

2
φ2 ≥ −1

2
, which in turn yields

1

8
‖φ‖44 −

1

2
‖φ‖22 ≥ −

1

2
|Ω|, (3.1)
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with the discrete H1
h norm introduced in (A.26). Then we arrive at the following bound, for any

φ ∈ CΩ:

Eh(φ) ≥ 1

8
‖φ‖44 +

ε2

2
‖∇hφ‖22 −

1

2
|Ω| ≥ 1

2
‖φ‖22 +

ε2

2
‖∇hφ‖22 − |Ω| ≥

1

2
ε2‖φ‖2H1

h
− |Ω|. (3.2)

Consequently, its combination with (2.37) yields the following estimate:

1

2
ε2
∥∥∥φ`+1

∥∥∥2

H1
h

+ s
∑̀
m=1

(∥∥∥∇hµm+1/2
∥∥∥2

2
+

1

γ

∥∥∥um+1/2
∥∥∥2

2

)
≤ C0 + |Ω| := C1, (3.3)

so that a uniform in time bound for φ in `∞(0, T ;H1
h) is available:

‖φm‖H1
h
≤ C2 := ε−1

√
2C1, for any m. (3.4)

Theorem 3.1. Let φm ∈ CΩ be the solution to the scheme (2.5) – (2.7), with sufficient regularity

assumption for Φ0 and Φ1, then for any 1 ≤ ` ≤M − 1, we have

1

16
ε4s

l∑
m=1

‖∇h∆hφ
m‖22 ≤ C11 + C10T, (3.5)

where C10 and C11, given by (3.14) and (3.15), respectively, only depend on Lx, Ly, Lz, ε and

several Sobolev embedding constants, and are independent of h, s and final time T .

Proof. We observe that∥∥∥∇hµm+1/2
∥∥∥ =

∥∥∥∥∇h(ε2∆h(
3

4
φm+1 +

1

4
φm−1)− χ

(
φm+1, φm

)
+ φ

m+1/2
∗

)∥∥∥∥
2

≥
∣∣∣∣ε2

∥∥∥∥∇h∆h(
3

4
φm+1 +

1

4
φm−1)

∥∥∥∥
2

−
∥∥∥∥∇h(χ (φm+1, φm

)
− (

3

2
φm − 1

2
φm−1)

)∥∥∥∥
2

∣∣∣∣, (3.6)

in which a triangle inequality was applied in the last step. Furthermore, motivated by the quadratic

inequality |a− b|2 ≥ 1
2a

2 − b2, we have∥∥∥∇hµm+1/2
∥∥∥2
≥ 1

2
ε4

∥∥∥∥∇h∆h(
3

4
φm+1 +

1

4
φm−1)

∥∥∥∥2

2

−
∥∥∥∥∇h(χ (φm+1, φm

)
− (

3

2
φm − 1

2
φm−1)

)∥∥∥∥2

2

≥ 1

32
ε4
∥∥∇h∆h(3φm+1 + φm−1)

∥∥2

2
−
(1

2

∥∥∇h(3φm − φm−1)
∥∥

2
+
∥∥∇hχ (φm+1, φm

)∥∥
2

)2

≥ 1

32
ε4
∥∥∇h∆h(3φm+1 + φm−1)

∥∥2

2
−
(

2C2 +
∥∥∇hχ (φm+1, φm

)∥∥
2

)2

≥ 1

32
ε4
∥∥∇h∆h(3φm+1 + φm−1)

∥∥2

2
− 2
(

4C2
2 +

∥∥∇hχ (φm+1, φm
)∥∥2

2

)
, (3.7)

in which the uniform in time estimate (3.4) was utilized in the third step and another quadratic

inequality (a+ b)2 ≤ 2(a2 + b2) was used in the last step. An application of the Cauchy inequality

gives an estimate of the leading term in (3.7):∥∥∇h∆h(3φm+1 + φm−1)
∥∥2

2
= 9

∥∥∇h∆hφ
m+1

∥∥2

2
+ 6

(
∇h∆hφ

m+1,∇h∆hφ
m−1

)
+
∥∥∇h∆hφ

m−1
∥∥2

2
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≥ 6
∥∥∇h∆hφ

m+1
∥∥2

2
− 2

∥∥∇h∆hφ
m−1

∥∥2

2
. (3.8)

For the last term in (3.7), by the definition of χ
(
φm+1, φm

)
in (2.4), a detailed expansion and

a careful application of discrete Hölder inequality shows that∥∥∇h (χ (φm+1, φm
))∥∥

2
≤ C3(

∥∥φm+1
∥∥2

∞ + ‖φm‖2∞)(
∥∥∇hφm+1

∥∥
2

+ ‖∇hφm‖2) (3.9)

≤ C4C2(
∥∥φm+1

∥∥2

∞ + ‖φm‖2∞), (3.10)

in which the uniform in time estimate (3.4) was used again in the last step. Moreover, the ‖ · ‖∞
bound of φk can be obtained with an application of a discrete Gagliardo-Nirenberg type inequality:

‖φk‖∞ ≤ C5

(
‖φk‖

3
4

H1
h
· ‖∇h∆hφ

k‖
1
4
2 + ‖φk‖H1

h

)
≤ C6C

3
4
2 ‖∇h∆hφ

k‖
1
4
2 + C6C2, k = m,m+ 1.

(3.11)

The detailed proof is given by [3], but we repeat it in Appendix B for completeness.

Therefore, a substitution of (3.11) into (3.10) yields∥∥∥∇h(χ (φm+1, φm
))∥∥∥2

2
≤ C7C

5
2

(∥∥∇h∆hφ
m+1

∥∥
2

+ ‖∇h∆hφ
m‖2

)
+ C7C

6
2 . (3.12)

Motivated by the Young inequality a · b ≤ C8a
2 + αb2, ∀ a, b > 0, α > 0 with a = C7C

5
2 , b =∥∥∇h∆hφ

m+1
∥∥

2
+ ‖∇h∆hφ

m‖2, α = 1
128ε

4, (note that the values of a, b and α have been redefined),

we arrive at∥∥∥∇h(χ (φm+1, φm
))∥∥∥2

2
≤ C9C

10
2 +

1

128
ε4
(∥∥∇h∆hφ

m+1
∥∥

2
+ ‖∇h∆hφ

m‖2
)2

+ C7C
6
2

≤ C9C
10
2 + C7C

6
2 +

1

64
ε4
(∥∥∇h∆hφ

m+1
∥∥2

2
+ ‖∇h∆hφ

m‖22
)
. (3.13)

A combination of (3.7), (3.8) and (3.13) shows that∥∥∥∇hµm+1/2
∥∥∥2

2
≥ 5

32
ε4
∥∥∇h∆hφ

m+1
∥∥2

2
− 1

32
ε4 ‖∇h∆hφ

m‖22 −
1

16
ε4
∥∥∇h∆hφ

m−1
∥∥2

2
− C10, (3.14)

with C10 = 8C2
2 + 2(C9C

10
2 + C7C

6
2 ).

Going back to (3.3), we obtain

s

l∑
m=1

( 1

16
ε4 ‖∇h∆hφ

m‖22 − C10

)
≤ C1 +

3

32
ε4s
∥∥∇h∆hφ

1
∥∥2

2
+

1

16
ε4s
∥∥∇h∆hφ

0
∥∥2

2
≤ C11, (3.15)

in which C11 is independent on h, with a sufficient regularity assumption for φ0 := Φ0, φ1 := Φ1.

Inequality (3.15) is equivalent to

1

16
ε4s

l∑
m=1

‖∇h∆hφ
m‖22 ≤ C11 + C10T. (3.16)

This in turn gives the `2(0, T ;H3
h) bound of the numerical solution.
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Note that C10 and C11, given by (3.14) and (3.15), respectively, only depend on Lx, Ly, Lz, ε

and several Sobolev embedding constants, and independent of final time T , h and s.

Remark 3.2. We see that Lemma B.1 has played a crucial role in the discrete `2(0, T ;H3
h) deriva-

tion for the numerical solution. In fact, the discrete Gagliardo-Nirenberg type inequality (B.1) is a

3-D result. In 2-D, the corresponding inequality takes the form of∥∥φ− φ̄∥∥∞ ≤ C (‖∇hφ‖1−δ2 ‖∇h∆hφ‖δ2 + ‖∇hφ‖2
)
, ∀δ > 0. (3.17)

Since this inequality is valid for any δ > 0, we could take δ < 1
4 , so that the corresponding

`2(0, T ;H3
h) bound for the numerical solution could be derived in an easier way, and the optimal

convergence analysis is expected to be less involved than the one presented in this article.

4 Optimal rate convergence analysis

The convergence analysis is carried out in three steps. Firstly, in section 4.1, we obtain error

functions by using a standard consistency analysis. In the following, we provide an estimate for the

nonlinear error term in section 4.2. Finally, we recover an a-priori error assumption and present

the optimal rate error estimate in sections 4.3 and 4.4 , respectively.

4.1 Error equations and consistency analysis

The global existence of weak solution for the CHHS equation (1.2)-(1.4) has been established in [11].

The solution with higher order regularities was discussed in [28], using more advanced Littlewood-

Paley theory. In more details, the regularity of L∞(0, T ;Hs)∩L2(0, T ;Hs+2) for the phase variable,

assuming initial data in Hs (s > d
2 + 1), was established. The estimates are global-in-time for the

2-D CHHS system and local-in-time for the 3-D model. In fact, several blow-up criteria in the 3-D

case were also stated. Meanwhile, in another recent work [27], global-in-time classical solutions

were proven for the 3-D CHHS system, if the initial data is close to an energy minimizer or the

Péclet number is sufficiently small.

Based on existing theory, the regularity of the exact solution cannot be guaranteed based solely

on the regularity of the intial data. See the following lemma, excerpted from [28].

Lemma 4.1. [28] Given any initial data φ(·, t = 0) ∈ Hs, with s > d
2 + 1, there is a solution

φ ∈ L∞(0, T ;Hs)∩L2(0, T ;Hs+2) for the CHHS system (1.2)-(1.4). In addition, such an estimate

is global in time in 2-D, local in time in 3-D.

Therefore, with an initial data with sufficient regularity, we could assume that the exact solution

has regularity of class R:

φe ∈ R := H3(0, T ;C0) ∩H2(0, T ;C4) ∩ L∞(0, T ;C6). (4.1)

12



To facilitate our error analysis, we need to construct an approximate solution to the chemical

potential via the exact solution φe. In addition, we note that the exact velocity ue is not divergence-

free at the discrete level (∇h · ue 6= 0). To overcome this difficulty, we must also construct an

approximate solution to the velocity vector (again through the exact solution), which satisfies the

divergence-free conditions at the discrete level. Therefore, we define the cell-centered grid functions

Γm+1/2 :=χ
(
Φm+1,Φm

)
− Φ

m+1/2
∗ − ε2∆h

(
3

4
Φm+1 +

1

4
Φm−1

)
, (4.2)

Um+1/2 := − Ph
(
γAhΦ

m+1/2
∗ ∇hΓm+1/2

)
, (4.3)

Φ
m+1/2
∗ :=

3

2
Φm − 1

2
Φm−1, (4.4)

for 1 ≤ m ≤ M , where Ph is the discrete Helmholtz projection defined in equations (3.2), (3.3) in

[3]. We need to enforce the discrete homogeneous Neumann boundary conditions for the chemical

potential: n · ∇hΓm+1/2 = 0, for all 1 ≤ m ≤M , so that, in particular, Ph
(
AhΦ

m+1/2
∗ ∇hΓm+1/2

)
is well defined.

With the assumed regularities, the constructed approximations Γm+1/2 and Um+1/2 obey the

following estimates:

‖∇hΓm+1/2‖∞ ≤ C12, ‖Um+1/2‖∞ ≤ C12, (4.5)

for 0 ≤ m ≤M , where the constant C12 > 0 is independent of h > 0 and s > 0.

It follows that (Φ,Γ,U) satisfies the numerical scheme with an O(s2 + h2) truncation error:

Φm+1 − Φm

s
= ∆hΓm+1/2 −∇h ·

(
AhΦ

m+1/2
∗ Um+1/2

)
+ τm+1/2, (4.6)

Γm+1/2 = χ
(
Φm+1,Φm

)
− Φ

m+1/2
∗ − ε2∆h

(
3

4
Φm+1 +

1

4
Φm−1

)
, (4.7)

Um+1/2 = −Ph
(
γAhΦ

m+1/2
∗ ∇hΓm+1/2

)
, (4.8)

where the local truncation error satisfies∥∥∥τm+1/2
∥∥∥

2
≤ C13(s2 + h2), (4.9)

with s ·M = T , and C13 independent of h and s.

The numerical error functions are denoted as

φ̃m := Φm − φm, µ̃m+1/2 := Γm+1/2 − µm+1/2, ũm+1/2 := Um+1/2 − um+1/2. (4.10)

Subtracting (4.6) – (4.8) from (2.1) – (2.3) yields

φ̃m+1 − φ̃m

s
= ∆hµ̃

m+1/2 −∇h ·
(
Ahφ̃

m+1/2
∗ Um+1/2+Ahφ

m+1/2
∗ ũm+1/2

)
+ τm+1/2, (4.11)

µ̃m+1/2 = Nm+1/2 − φ̃m+1/2
∗ − ε2∆hφ̃

m+1/2
I , (4.12)
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where

φ̃
m+1/2
∗ =

3

2
φ̃m − 1

2
φ̃m−1, φ̃

m+1/2
I =

3

4
φ̃m+1 +

1

4
φ̃m−1,

Nm+1/2 = χ
(
Φm+1,Φm

)
− χ

(
φm+1, φm

)
,

ũm+1/2 = −γPh
(
Ahφ̃

m+1/2
∗ ∇hΓm+1/2 +Ahφ

m+1/2
∗ ∇hµ̃m+1/2

)
, (4.13)

for 1 ≤ m ≤M − 1.

We also observe that φ̃0 = φ̃1 ≡ 0, due to our initial value choices φ0 = Φ0, φ1 = Φ1. This fact

will facilitate the convergence analysis in later sections.

4.2 Stability of the error functions

Note that both the CHHS equation (1.2)-(1.4) is mass conservative at the continuous level:
∫

Ω φ(t)dx =∫
Ω φ(0)dx, ∀t > 0, while the numerical scheme (2.5)-(2.7) is mass conservative at the discrete level:

(φk,1) = (φ0,1), ∀k ≥ 1. Consequently, the following estimate is available; the detailed proof could

be read in a recent work [3].

Lemma 4.2. Assume the exact solution is of regularity class R. Then, for any 1 ≤ m ≤M ,

‖φ̃m‖2 ≤ C14

(
‖∇hφ̃m‖2 + h2

)
, (4.14)

‖φ̃m‖∞ ≤ C14

(
‖∇hφ̃m‖

3
4
2 · ‖∇h∆hφ̃

m‖
1
4
2 + ‖∇hφ̃m‖2 + h2

)
. (4.15)

for some constant C14 that is independent of s, h, and m.

Before we carry out the stability analysis for the numerical error functions, we assume that the

exact solution Φ and the constructed solutions Γ, U have the following regularity:

‖Φ‖
`∞(0,T ;W 1,∞

h )
≤ C12,

∥∥∥∇hΓm+1/2
∥∥∥
∞
≤ C12,

∥∥∥Um+1/2
∥∥∥
∞
≤ C12, ∀ 1 ≤ m ≤M−1. (4.16)

In addition, we also set the ‖·‖∞ and H3
h norms (introduced by (A.23) and (A.27)) for the numerical

solution φm as

Mm
0 := ‖φm‖∞ , Mm

3 := ‖φm‖H3
h
. (4.17)

Note that we have an `∞(0, T ;H1
h) and `2(0, T ;H3

h) bound for the numerical solution, as given

by (3.3), (3.16), respectively. Meanwhile, its `∞(0, T ; `∞) bound is not available at present. This

bound will be justified by later analysis.

The following theorem states the stability of the numerical error functions satisfying the error

equations by (4.11) – (4.13).
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Theorem 4.3. Assume the exact solution is of regularity class R. Then the error function φ̃m

obeys the following discrete energy stability law: for any 1 ≤ m ≤M − 1,

‖∇hφ̃m+1‖22 − ‖∇hφ̃m‖22 +
1

4
(‖∇h(φ̃m+1 − φ̃m)‖22 − ‖∇h(φ̃m − φ̃m−1)‖22) +

11

64
ε2s‖∇h∆hφ̃

m+1‖22

≤ ε2s

16
‖∇h∆hφ̃

m‖22 +
5ε2s

64
‖∇h∆hφ̃

m−1‖22 + 2s‖τm+1/2‖22 + sC28D
m+1
3 h4

+s(C29D
m+1
1 + C30D

m+1
2 )(‖∇hφ̃m+1‖22 + ‖∇hφ̃m‖22 + ‖∇hφ̃m−1‖22), (4.18)

where

Dm+1
1 = ((Mm

0 )16/3 + (Mm−1
0 )16/3)((Mm+1

0 )8/3 + (Mm
0 )8/3 + 1) + 1, (4.19)

Dm+1
2 = ((Mm

0 )4 + (Mm−1
0 )4 + 1)((Mm+1

0 )4 + (Mm
0 )4 + 1), (4.20)

Dm+1
3 = Mm+1

0 +Mm
0 + 1. (4.21)

and the constants C28, C29, C30 are given by (4.60)-(4.62), respectively.

Proof. Taking inner product of (4.11) with −2∆hφ̃
m+1/2
I = −∆h(3

2 φ̃
m+1 + 1

2 φ̃
m−1) gives

I4 :=
∥∥∥∇hφ̃m+1

∥∥∥2

2
−
∥∥∥∇hφ̃m∥∥∥2

2
+

1

4

(∥∥∥∇h(φ̃m+1 − φ̃m)
∥∥∥2

2
−
∥∥∥∇h(φ̃m − φ̃m−1)

∥∥∥2

2

+
∥∥∥∇h(φ̃m+1 − 2φ̃m + φ̃m−1)

∥∥∥2

2

)
= −2s

(
τm+1/2,∆hφ̃

m+1/2
I

)
+ 2s

(
∇h∆hφ̃

m+1/2
I ,∇hµ̃m+1/2

)
−2s

(
∇h∆hφ̃

m+1/2
I , Ahφ̃

m+1/2
∗ Um+1/2

)
− 2s

(
∇h∆hφ̃

m+1/2
I , Ahφ

m+1/2
∗ ũm+1/2

)
:= 2s(I4,1 + I4,2 + I4,3 + I4,4). (4.22)

The term associated with the local truncation error term I4,1 in (4.22) can be bounded in a straight-

forward way:

I4,1 ≤
∥∥∥τm+1/2

∥∥∥2

2
+

1

4

∥∥∥∆hφ̃
m+1/2
I

∥∥∥2

2
,

≤
∥∥∥τm+1/2

∥∥∥2

2
+

1

4

∥∥∥∇hφ̃m+1/2
I

∥∥∥
2
·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2

≤
∥∥∥τm+1/2

∥∥∥2

2
+

1

ε2

∥∥∥∇hφ̃m+1/2
I

∥∥∥2

2
+
ε2

16

∥∥∥∇h∆hφ̃
m+1/2
I

∥∥∥2

2
. (4.23)

The regular diffusion term I4,2 in (4.22) has the following decomposition:

I4,2 =
(
∇h∆hφ̃

m+1/2
I ,∇hµ̃m+1/2

)
=
(
∇h∆hφ̃

m+1/2
I ,∇h

(
Nm+1/2

))
−
(
∇h∆hφ̃

m+1/2
I ,∇hφ̃

m+1/2
∗

)
− ε2

∥∥∥∇h∆hφ̃
m+1/2
I

∥∥∥2

2

:= I4,2,1 + I4,2,2 + I4,2,3. (4.24)
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The concave term I4,2,2 in (4.24) can be controlled by

I4,2,2 = −
(
∇h∆hφ̃

m+1/2
I ,∇hφ̃

m+1/2
∗

)
≤ 4

ε2

∥∥∥∇hφ̃m+1/2
∗

∥∥∥2

2
+
ε2

16

∥∥∥∇h∆hφ̃
m+1/2
I

∥∥∥2

2
. (4.25)

For the nonlinear error term I4,2,1 in (4.22), we start from the following expansion

Nm+1/2 =
1

4

((
(φm+1)2 + (φm)2

)
(φ̃m+1 + φ̃m)

+
(

(φm+1 + Φm+1)φ̃m+1 + (φm + Φm)φ̃m
)

(Φm+1 + Φm)
)
. (4.26)

An application of discrete Hölder’s inequality to its gradient shows that∥∥∥∇hNm+1/2
∥∥∥ ≤ C15

(∥∥φm+1
∥∥2

∞ +
∥∥Φm+1

∥∥2

∞ + ‖φm‖2∞ + ‖Φm‖2∞
)

(‖∇hφ̃m+1‖2 + ‖∇hφ̃m‖2)

+C15

(∥∥φm+1
∥∥
∞ +

∥∥Φm+1
∥∥
∞ + ‖φm‖∞ + ‖Φm‖∞

)
·
(∥∥∇hφm+1

∥∥+
∥∥∇hΦm+1

∥∥
2

+ ‖∇hφm‖2 + ‖∇hΦm‖2
)

(‖φ̃m+1‖∞ + ‖φ̃m‖∞)

≤ C15

(
2C2

12 + (Mm+1
0 )2 + (Mm

0 )2
)

(‖∇hφ̃m+1‖2 + ‖∇hφ̃m‖2)

+2C15

(
C12 +Mm+1

0 +Mm
0

)
(C2 + C12)(‖φ̃m+1‖∞ + ‖φ̃m‖∞), (4.27)

with the `∞(0, T ;H1
h) estimate (3.4) for the numerical solution, the regularity assumption (4.16)

for the exact solution and the a-priori set up (4.17) is used. Then we get

I4,2,1 =
(
∇h∆hφ̃

m+1/2
I ,∇hNm+1/2

)
≤ C15

(
2C2

12 + (Mm+1
0 )2 + (Mm

0 )2
) (∥∥∥∇hφ̃m+1

∥∥∥
2

+
∥∥∥∇hφ̃m∥∥∥

2

)
·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2

+C18

∥∥∥φ̃m∥∥∥
∞
·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2

+ C18

∥∥∥φ̃m+1
∥∥∥
∞
·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2
, (4.28)

with C16 = 2C12C15(C2 + C12), C17 = 2C15(C2 + C12) and C18 = C16 + C17(Mm+1
0 + Mm

0 ). The

first part in (4.28) can be controlled by Cauchy inequality:

C15

(
2C2

12 + (Mm+1
0 )2 + (Mm

0 )2
) (∥∥∥∇hφ̃m+1

∥∥∥
2

+
∥∥∥∇hφ̃m∥∥∥

2

)
·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2

≤ ε2

16

∥∥∥∇h∆hφ̃
m+1/2
I

∥∥∥2

2
+
C19

ε2

(∥∥∥∇hφ̃m+1
∥∥∥2

2
+
∥∥∥∇hφ̃m∥∥∥2

2

)
, (4.29)

with C19 = 8C2
15

(
2C2

12 + (Mm+1
0 )2 + (Mm

0 )2
)2

. For the second part in (4.28) , we observe that the

maximum norm of the numerical error can be analyzed by an application of Gagliardo-Nirenberg

type inequality in 3-D, similar to (3.11):∥∥∥φ̃m∥∥∥
∞
≤ C14

(
‖∇hφ̃m‖

3
4
2 ‖∇h∆hφ̃

m‖
1
4
2 + ‖∇hφ̃m‖2 + h2

)
. (4.30)

With an application of the Young inequality to the second part in (4.28), we arrive at

C18

∥∥∥φ̃m∥∥∥
∞
·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2
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≤ C14C18

(∥∥∥∇hφ̃m∥∥∥ 3
4

2
·
∥∥∥∇h∆hφ̃

m
∥∥∥ 1

4

2
+
∥∥∥∇hφ̃m∥∥∥

2
+ h2

)
·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2

≤ Cα,ε1 (C14C18)8/3
∥∥∥∇hφ̃m∥∥∥2

2
+ αε2

(∥∥∥∇h∆hφ̃
m
∥∥∥2/5

2
·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥8/5

2

)
+

16(C14C18)2

ε2

∥∥∥∇hφ̃m∥∥∥2

2
+

16(C14C18)2

ε2
h4 +

ε2

32

∥∥∥∇h∆hφ̃
m+1/2
I

∥∥∥2

2

≤ Cα,ε2 (C
8/3
18 + C2

18)
∥∥∥∇hφ̃m∥∥∥2

2
+
ε2

32

∥∥∥∇h∆hφ̃
m+1/2
I

∥∥∥2

2
+

16(C14C18)2

ε2
h4

+αε2

(∥∥∥∇h∆hφ̃
m
∥∥∥2/5

2
·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥8/5

2

)
, (4.31)

for any α > 0. Furthermore, the last term appearing in (4.31) can also be handled by Young’s

inequality:

αε2
∥∥∥∇h∆hφ̃

m
∥∥∥2/5

2
·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥8/5

2
≤ 1

5
αε2

∥∥∥∇h∆hφ̃
m
∥∥∥2

2
+

4

5
αε2

∥∥∥∇h∆hφ̃
m+1/2
I

∥∥∥2

2
. (4.32)

We can always choose an α, such that 1
5α ≤

1
64 and 4

5α ≤
1
32 , so that the following bound is

available:

C18

∥∥∥φ̃m∥∥∥
∞
·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2
≤ Cα,ε2 (C

8/3
18 + C2

18)
∥∥∥∇hφ̃m∥∥∥2

2
+
ε2

16

∥∥∥∇h∆hφ̃
m+1/2
I

∥∥∥2

2

+
ε2

64

∥∥∥∇h∆hφ̃
m
∥∥∥2

2
+

16(C14C18)2

ε2
h4. (4.33)

A similar estimate for the third part in (4.28) can also be derived as

C18

∥∥∥φ̃m+1
∥∥∥
∞
·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2
≤ Cα,ε2 (C

8/3
18 + C2

18)
∥∥∥∇hφ̃m+1

∥∥∥2

2
+
ε2

16

∥∥∥∇h∆hφ̃
m+1/2
I

∥∥∥2

2

+
ε2

64

∥∥∥∇h∆hφ̃
m+1

∥∥∥2

2
+

16(C14C18)2

ε2
h4. (4.34)

Consequently, a combination of (4.28), (4.29), (4.33) and (4.34) yields

I4,2,1 ≤
(
Cα,ε2 (C

8/3
18 + C2

18) + C19ε
−2
)

(‖∇hφ̃m+1‖22 + ‖∇hφ̃m‖22)

+
3ε2

16

∥∥∥∇h∆hφ̃
m+1/2
I

∥∥∥2

2
+
ε2

64
(‖∇h∆hφ̃

m‖22 + ‖∇h∆hφ̃
m+1‖22)

+
32(C14C18)2

ε2
h4, (4.35)

Note that C19 is involved with (Mm
0 )4 and (Mm+1

0 )4, while C18 is involved with Mm
0 and Mm+1

0 .

As a result, a combination of (4.24), (4.25) and (4.35) shows that

I4,2 ≤
(
Cα,ε2 (C

8/3
18 + C2

18) + C19ε
−2
)

(‖∇hφ̃m+1‖22 + ‖∇hφ̃m‖22 + ‖∇hφ̃m−1‖22)

−3ε2

4

∥∥∥∇h∆hφ̃
m+1/2
I

∥∥∥2

2
+
ε2

64
(‖∇h∆hφ̃

m‖22 + ‖∇h∆hφ̃
m+1‖22) +

32(C14C18)2

ε2
h4. (4.36)

Next we focus our attention on the terms associated with the convection term and the highest

order nonlinear diffusion. The analysis of this part is highly non-trivial.
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The I4,3 in (4.22) can be bounded by

I4,3 = −
(
∇h∆hφ̃

m+1/2
I , Ahφ̃

m+1/2
∗ Um+1/2

)
≤ ‖∇h∆hφ̃

m+1/2
I ‖2 · ‖φ̃m+1/2

∗ ‖2 · ‖Um+1/2‖∞

≤ C12‖∇h∆hφ̃
m+1/2
I ‖2 · ‖φ̃m+1/2

∗ ‖2

≤ ε2

16
‖∇h∆hφ̃

m+1/2
I ‖22 +

4C2
12

ε2
‖φ̃m+1/2
∗ ‖22

≤ ε2

16
‖∇h∆hφ̃

m+1/2
I ‖22 +

4C2
12C

2
20

ε2

(
‖∇hφ̃

m+1/2
∗ ‖22 + h4

)
≤ ε2

16
‖∇h∆hφ̃

m+1/2
I ‖22 +

18C2
12C

2
20

ε2
(‖∇hφ̃m‖22 + ‖∇hφ̃m−1‖22 + h4), (4.37)

in which C20 =
√

2C14, so that the inequality ‖φ̃m+1/2
∗ ‖22 ≤ C2

20(‖∇hφ̃
m+1/2
∗ ‖22 + h4) is a direct

consequence of estimate (4.14) in Lemma 4.2. Note that the regularity assumption (4.16) for the

constructed solution U is used in the derivation.

For the term I4,4 in (4.22), the expansion (4.13) for the velocity numerical error indicates that

I4,4 = −
(
Ahφ

m+1/2
∗ ∇h∆hφ̃

m+1/2
I , ũm+1/2

)
= γ

(
Ahφ

m+1/2
∗ ∇h∆hφ̃

m+1/2
I ,Ph

(
Ahφ̃

m+1/2
∗ ∇hΓm+1/2

))
+ γ

(
Ahφ

m+1/2
∗ ∇h∆hφ̃

m+1/2
I ,Ph

(
Ahφ

m+1/2
∗ ∇hµ̃m+1/2

))
:= I4,4,1 + I4,4,2. (4.38)

The first term I4,4,1 in (4.38) can be estimated in a standard way:

I4,4,1 ≤ γ
∥∥∥φm+1/2
∗

∥∥∥
∞
·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2
·
∥∥∥Ph (Ahφ̃m+1/2

∗ ∇hΓm+1/2
)∥∥∥

2

≤ C21γ(Mm
0 +Mm−1

0 )
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2
·
∥∥∥Ahφ̃m+1/2

∗ ∇hΓm+1/2
∥∥∥

2

≤ C21γ(Mm
0 +Mm−1

0 )
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2
·
∥∥∥φ̃m+1/2
∗

∥∥∥
2
·
∥∥∥∇hΓm+1/2

∥∥∥
∞

≤ C12C21γ(Mm
0 +Mm−1

0 )
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2
·
∥∥∥φ̃m+1/2
∗

∥∥∥
2

≤ C12C14C21γ(Mm
0 +Mm−1

0 )‖∇h∆hφ̃
m+1/2
I ‖2 · (‖∇hφ̃

m+1/2
∗ ‖2 + h2)

≤ C22

ε2
(‖∇hφ̃m‖22 + ‖∇hφ̃m−1‖22 + h4) +

1

16
ε2‖∇h∆hφ̃

m+1/2
I ‖22, (4.39)

where C22 = 72C2
12C

2
14C

2
21γ

2((Mm
0 )2 + (Mm−1

0 )2) in which we used the property ‖Phv‖2 ≤ ‖v‖2,

∀v ∈ L2, for the Helmholtz projection operator Ph, in the second step [3]. Note that (Mm
0 )2 and

(Mm−1
0 )2 are involved in the growth coefficient.

The second term I4,2,2 in (4.38) can be expanded as

I4,4,2 = γ
(
Ahφ

m+1/2
∗ ∇h∆hφ̃

m+1/2
I ,Ph

(
Ahφ

m+1/2
∗ ∇hµ̃m+1/2

))
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= γ
(
Ahφ

m+1/2
∗ ∇h∆hφ̃

m+1/2
I ,Ph

(
Ahφ

m+1/2
∗ ∇h

(
Nm+1/2

)))
−γ
(
Ahφ

m+1/2
∗ ∇h∆hφ̃

m+1/2
I ,Ph

(
Ahφ

m+1/2
∗ ∇hφ̃

m+1/2
∗

))
−γε2

(
Ahφ

m+1/2
∗ ∇h∆hφ̃

m+1/2
I ,Ph

(
Ahφ

m+1/2
∗ ∇h∆hφ̃

m+1/2
I

))
:= γ

(
I4,4,2,1 + I4,4,2,2 + ε2I4,4,2,3

)
. (4.40)

It is observed that the third term I4,4,2,3 in (4.40), which corresponds to the highest order nonlinear

diffusion, is always non-positive:

I4,4,2,3 = −
∥∥∥Ph (Ahφm+1/2

∗ ∇h∆hφ̃
m+1/2
I

)∥∥∥2

2
≤ 0, (4.41)

based on the identity (u,Phv) = (Phu,Phv) for any vector u,v ∈ L2. The above inequality is the

key reason for an `∞(0, T ;H1
h) error estimate instead of the standard `∞(0, T ; `2) one.

The analysis for the second term I4,4,2,2 in (4.40) is straightforward:

I4,4,2,2 = −
(
Ahφ

m+1/2
∗ ∇h∆hφ̃

m+1/2
I ,Ph

(
Ahφ

m+1/2
∗ ∇hφ̃

m+1/2
I

))
≤
∥∥∥Ahφm+1/2

∗ ∇h∆hφ̃
m+1/2
I

∥∥∥
2
·
∥∥∥Ph (Ahφm+1/2

∗ ∇hφ̃
m+1/2
∗

)∥∥∥
2

≤
∥∥∥Ahφm+1/2

∗ ∇h∆hφ̃
m+1/2
I

∥∥∥
2
·
∥∥∥Ahφm+1/2

∗ ∇hφ̃
m+1/2
∗

∥∥∥
2

≤
∥∥∥φm+1/2
∗

∥∥∥2

∞
·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2
·
∥∥∥∇hφ̃m+1/2

∗

∥∥∥
2

= C23((Mm
0 )2 + (Mm−1

0 )2)
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2
·
∥∥∥∇hφ̃m+1/2

∗

∥∥∥
2

≤ ε2

16γ

∥∥∥∇h∆hφ̃
m+1/2
I

∥∥∥2

2
+

18C2
23γ((Mm

0 )4 + (Mm−1
0 )4)

ε2
(‖∇hφ̃m‖22 + ‖∇hφ̃m−1‖22).(4.42)

Also note that (Mm
0 )4 and (Mm−1

0 )4 are involved in this growth coefficient.

For the first term I4,4,2,1 of (4.40), we start from an application of Cauchy inequality and discrete

Hölder’s inequality:

I4,4,2,1 =
(
Ahφ

m+1/2
∗ ∇h∆hφ̃

m+1/2
I ,Ph

(
Ahφ

m+1/2
∗ ∇h

(
Nm+1/2

)))
≤
∥∥∥Ahφm+1/2

∗ ∇h∆hφ̃
m+1/2
I

∥∥∥
2
·
∥∥∥Ph (Ahφm+1/2

∗ ∇h
(
Nm+1/2

))∥∥∥
2

≤
∥∥∥Ahφm+1/2

∗ ∇h∆hφ̃
m+1/2
I

∥∥∥
2
·
∥∥∥Ahφm+1/2

∗ ∇h
(
Nm+1/2

)∥∥∥
2

≤
∥∥∥φm+1/2
∗

∥∥∥2

∞
·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2
·
∥∥∥∇h (Nm+1/2

)∥∥∥
2

≤ C24((Mm
0 )2 + (Mm−1

0 )2)
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2
·
∥∥∥∇h (Nm+1/2

)∥∥∥
2
. (4.43)

The remaining estimates are very similar to those for the regular diffusion. The inequality (4.27)

shows that

C24((Mm
0 )2 + (Mm−1

0 )2)
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2
·
∥∥∥∇h (Nm+1/2

)∥∥∥
2
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≤ C15C24((Mm
0 )2 + (Mm−1

0 )2)
(
2C2

12 + (Mm+1
0 )2 + (Mm

0 )2
)
·

(‖∇hφ̃m+1‖2 + ‖∇hφ̃m‖2) ·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2

+C25‖φ̃m‖∞ ·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2

+ C25‖φ̃m+1‖∞ ·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2
, (4.44)

where

C25 = C24((Mm
0 )2 + (Mm−1

0 )2)
(
C16 + C17(Mm+1

0 +Mm
0 )
)
. (4.45)

The bound for the first term in (4.44) can be derived in the same manner as in (4.29)

C15C24((Mm
0 )2 + (Mm−1

0 )2)
(
2C2

12 + (Mm+1
0 )2 + (Mm

0 )2
)
·

(‖∇hφ̃m+1‖2 + ‖∇hφ̃m‖2) ·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2

≤ ε2

16γ

∥∥∥∇h∆hφ̃
m+1/2
I

∥∥∥2

2
+
C26

ε2
(‖∇hφ̃m+1‖22 + ‖∇hφ̃m‖22), (4.46)

with C26 = C27C
2
15C

2
24γ((Mm

0 )4 + (Mm−1
0 )4)

(
2C4

12 + (Mm+1
0 )4 + (Mm

0 )4
)
.

The bound for the second and third terms appearing in (4.44) follows from the proof of (4.30)-

(4.35). Hence, the following two estimates are available, and the details are skipped for simplicity

of presentation:

C25‖φ̃m‖∞ ·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2
≤ Cα,ε,γ1 (C

8/3
25 + C2

25)‖∇hφ̃m‖22 +
ε2

16γ

∥∥∥∇h∆hφ̃
m+1/2
I

∥∥∥2

2

+
ε2

64γ
‖∇h∆hφ̃

m‖22 +
16γ(C14C18)2

ε2
h4, (4.47)

C25‖φ̃m+1‖∞ ·
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥
2
≤ Cα,ε,γ1 (C

8/3
25 + C2

25)‖∇hφ̃m+1‖22 +
ε2

16γ

∥∥∥∇h∆hφ̃
m+1/2
I

∥∥∥2

2

+
ε2

64γ
‖∇h∆hφ̃

m+1‖22 +
16γ(C14C18)2

ε2
h4. (4.48)

Going back to (4.43)-(4.44), we arrive at

I4,4,2,1 =
(
Ahφ

m+1/2
∗ ∇h∆hφ̃

m+1/2
I ,Ph

(
Ahφ

m+1/2
∗ ∇h

(
Nm+1/2

)))
≤
(
Cα,ε,γ1 (C

8/3
25 + C2

25) + C26ε
−2
)

(‖∇hφ̃m+1‖22 + ‖∇hφ̃m‖22) +
3ε2

16γ

∥∥∥∇h∆hφ̃
m+1/2
I

∥∥∥2

2

+
ε2

64γ
(‖∇h∆hφ̃

m‖22 + ‖∇h∆hφ̃
m+1‖22) +

32γ(C14C18)2

ε2
h4. (4.49)

Note that C26 and C
8/3
25 are involved with (Mm+1

0 )8, (Mm
0 )8 and (Mm−1

0 )8. Consequently, a com-

bination of (4.38)-(4.42) and (4.49) shows that

I4,4 = −
(
Ah∇h∆hφ̃

m+1/2
I , Ahφ

m+1/2
∗ ũm+1/2

)
≤
(
Cα,ε,γ2 (C

8/3
25 + C2

25) + C26ε
−2
)

(‖∇hφ̃m+1‖22 + ‖∇hφ̃m‖22 + ‖∇hφ̃m−1‖22)
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+
5ε2

16

∥∥∥∇h∆hφ̃
m+1/2
I

∥∥∥2

2
+
ε2

64
(‖∇h∆hφ̃

m‖22 + ‖∇h∆hφ̃
m+1‖22) +

32γ2(C14C18)2

ε2
h4, (4.50)

with C27 = Cα,ε,γ3 ((Mm
0 )4 + (Mm−1

0 )4 + 1)(2C4
12 + (Mm+1

0 )4 + (Mm
0 )4 + 1).

Consequently, from (4.22), (4.23), (4.36), (4.37) and (4.50), we obtain

‖∇hφ̃m+1‖22 − ‖∇hφ̃m‖22 +
1

4
(‖∇h(φ̃m+1 − φ̃m)‖22 − ‖∇h(φ̃m − φ̃m−1)‖22) +

5

8
ε2s
∥∥∥∇h∆hφ̃

m+1/2
I

∥∥∥2

2

≤ ε2s

16
(‖∇h∆hφ̃

m‖22 + ‖∇h∆hφ̃
m+1‖22) + 2s‖τm+1/2‖22 +

64(1 + γ2)(C14C18)2

ε2
sh4

+s
(
Cα,ε,γ4 (C

8/3
25 + C2

25 + 1) + C27ε
−2
)

(‖∇hφ̃m+1‖22 + ‖∇hφ̃m‖22 + ‖∇hφ̃m−1‖22). (4.51)

On the other hand, a similar estimate as (3.8) could be carried out:

‖∇h∆hφ̃
m+1/2
I ‖22 =

∥∥∥∥∇h∆h(
3

4
φ̃m+1 +

1

4
φ̃m−1)

∥∥∥∥2

2

≥ 3

8
‖∇h∆hφ̃

m+1‖22 −
1

8
‖∇h∆hφ̃

m−1‖22. (4.52)

Then we get

‖∇hφ̃m+1‖22 − ‖∇hφ̃m‖22 +
1

4
(‖∇h(φ̃m+1 − φ̃m)‖22 − ‖∇h(φ̃m − φ̃m−1)‖22) +

11

64
ε2s‖∇h∆hφ̃

m+1‖22

≤ ε2s

16
‖∇h∆hφ̃

m‖22 +
5ε2s

64
‖∇h∆hφ̃

m−1‖22 + s‖τm+1/2‖22 +
64(1 + γ2)(C14C18)2

s
h4

+s
(
Cα,ε,γ4 (C

8/3
25 + C2

25) + C27ε
−2
)

(‖∇hφ̃m+1‖22 + ‖∇hφ̃m‖22 + ‖∇hφ̃m−1‖22). (4.53)

For the sake of convenience, we now make the coefficient on the right side of (4.53) explicit to

each time step. Define

I2 = Cα,ε,γ4 (C
8/3
25 + C2

25) + C27ε
−2. (4.54)

Applying Young’s inequality on C2
25, we get

C2
25 ≤

3

4
C

8/3
25 +

1

4
. (4.55)

Then I2 can be bounded as

I2 ≤ Cα,ε,γ4 (
7

4
C

8/3
25 +

5

4
) + ε−2C8 ≤ 2Cα,ε,γ4 (C

8/3
25 + 1) + C27ε

−2. (4.56)

Recall the definition of C25 in (4.45), the value of which can be controlled as

C7 ≤ C24 max(C16, C17) · ((Mm
0 )2 + (Mm−1

0 )2)(Mm+1
0 +Mm

0 + 1). (4.57)

With the application of the following inequality

(a+ b)p ≤ 2p−1(ap + bp), for ∀p ≥ 1, (4.58)

the value of C
8/3
25 can be bounded as

C
8/3
25 ≤ 85/3C

8/3
24 (max(C16, C17))8/3((Mm

0 )16/3 + (Mm−1
0 )16/3)((Mm+1

0 )8/3 + (Mm
0 )8/3 + 1).(4.59)
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As a result, the stability inequality (4.53) can be rewritten as (4.18), with the following constants:

C28 =
64(1 + γ2)(C14 max(C16, C17))2

ε2
, (4.60)

C29 = 2Cα,ε,γ4 ·max
(

85/3C24(max(C16, C17))8/3, 1
)
, (4.61)

C30 = C(2C4
12 + 1)ε−2. (4.62)

This finishes the proof of Theorem 4.3.

4.3 The result of an a-priori error assumption

As discussed in [3], in which a first order numerical scheme was analyzed, the discrete Gronwall

inequality could not be directly applied to derive an error estimate from the stability inequality as in

the form of (4.18), since Dm+1
1 and Dm+1

2 do not have a uniform bound. Instead, we have to use an

induction argument to establish the convergence analysis. Specifically, we assume, as an induction

hypothesis, that the desired error estimate holds at an arbitrary time step m (0 ≤ m ≤ M − 1).

We then use this a priori assumption to prove that s(C29D
m+1
1 + C30D

m+1
2 ) < 1, provided s is

small enough. Then we conclude the induction argument by proving that the error estimate holds

at the updated time step m+ 1.

First, we need the following technical result, which is a direct result of Young’s inequality. The

proof is skipped for brevity.

Lemma 4.4. For any a > 0, δ > 0 and 0 < q < 8, we have

a · δq ≤ bδ8 + r(a, b, q), ∀ b > 0, where r(a, b, q) :=
a

8
8−q

8
8−q

(
b · 8

q

) q
8−q

. (4.63)

We also need the following estimate of the ‖ · ‖∞ norm of φm.

Lemma 4.5. For any s, h > 0 and any 1 ≤ ` ≤M , there exists a constant C31 > 0 such that

s
∑̀
m=1

‖φm‖8∞ ≤ C31(t` + 1) ≤ C31 (T + 1) , (4.64)

where t` := s · `, and T := s ·M .

Proof. Inequality (4.64) is a direct consequence of the discrete Gagliardo-Nirenberg type inequality

(3.11), combined with the leading order H1
h bound (3.4) and the `2(0, T ;H3

h) estimate (3.5) (in

Theorem 3.1) for the numerical solution.
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Theorem 4.6. Suppose that h and s are sufficiently small and the following error estimate is valid

up to the time step tm := m · s, for 2 ≤ m ≤M − 1:∥∥∥∇hφ̃m∥∥∥2

2
+ ε2s

m∑
j=1

∥∥∥∇h∆hφ̃
j
∥∥∥2

2
≤ C32 exp (C33(tm + 1))

(
s4 + h4

)
, (4.65)

where C32, C33 > 0 may depend upon the final time T but are independent of s and h. Then

s(C29D
m+1
1 + C30D

m+1
2 ) ≤ 1

2
. (4.66)

Proof. As an application of (4.63), the non-leading terms appearing on the right hand side of (4.19)

for the expansion of Dm+1
1 can be bounded as follows:

(Mm
0 )16/3 ≤ 1

52C29C31(T + 1)
(Mm

0 )8 + C32, (4.67)

(Mm−1
0 )16/3 ≤ 1

52C29C31(T + 1)
(Mm−1

0 )8 + C33. (4.68)

Then we get, for any 0 ≤ m ≤M − 1,

sC29

(
(Mm

0 )16/3 + (Mm−1
0 )16/3 + 1

)
≤ s

52C31(T + 1)
(Mm

0 )8 +
s

52C31(T + 1)
(Mm−1

0 )8 + sC34

≤ 1

26
+ sC34, (4.69)

using the L8
s(0, T ) bound for Mm

0 := ‖φm‖∞ in (4.64), where C34 > 0 is a constant independent of

h and s. Using the same skill, the non-leading order of Dm+1
2 can be bounded as follows

sC30

(
(Mm+1

0 )4 + 2(Mm
0 )4 + (Mm−1

0 )4 + 1
)
≤ 3

52
+ sC35, (4.70)

where C18 > 0 is a constant that is independent of h and s.

Now, the leading terms appearing on the right hand side of (4.19)–(4.20) cannot be bounded

in this way. We divide them into two groups G1 and G2 as follows:

G1 : (Mm
0 )8, (Mm

0 )8/3(Mm−1
0 )16/3, (Mm

0 )4(Mm−1
0 )4, (4.71)

G2 : (Mm+1
0 )8/3(Mm

0 )16/3, (Mm+1
0 )8/3(Mm−1

0 )16/3, (Mm+1
0 )4(Mm

0 )4, (Mm+1
0 )4(Mm−1

0 )4.(4.72)

We must, therefore, rely upon (4.65). This bound implies∥∥∥∇hφ̃m∥∥∥2

2
≤ C32 exp (C33(T + 1))

(
s4 + h4

)
,∥∥∥∇h∆hφ̃

m
∥∥∥2

2
≤ ε−2C32 exp (C33(T + 1))

(
s4 + h4

)
s−1.

(4.73)

Using (4.15) and setting C36 := C32 exp (C33(T + 1)), we have∥∥∥φ̃m∥∥∥2

∞
≤ 4C2

14

(∥∥∥∇hφ̃m∥∥∥ 3
2

2

∥∥∥∇h∆hφ̃
m
∥∥∥ 1

2

2
+
∥∥∥∇hφ̃m∥∥∥2

2
+ h4

)
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≤ 4C2
14

{
C36

(
s4 + h4

) (
ε−1/2s−1/4 + 1

)
+ h4

}
= 4C2

14

{
C36ε

−1/2s15/4 + C36ε
−1/2h4s−1/4 + C36s

4 + (1 + C36)h4
}
. (4.74)

Under the time and space step size constraint

C36ε
−1/2s15/4 + C36s

4 + (1 + C36)h4 ≤ 1

4C2
14

, (4.75)

the following bound is available:∥∥∥φ̃m∥∥∥2

∞
≤ 1 + 4C2

14C36ε
−1/2 h4

s1/4
. (4.76)

Consequently, we see that

(Mm
0 )2 := ‖φm‖2∞ ≤ 2 ‖Φm‖2∞ + 2

∥∥∥φ̃m∥∥∥2

∞
≤ C37

(
1 +

h4

s1/4

)
, (4.77)

(Mm−1
0 )2 :=

∥∥φm−1
∥∥2

∞ ≤ 2
∥∥Φm−1

∥∥2

∞ + 2
∥∥∥φ̃m−1

∥∥∥2

∞
≤ C37

(
1 +

h4

s1/4

)
, (4.78)

where C37 > 0 is independent of s and h, but it does depend upon the final time T (at least

exponentially) and the interface parameter ε (O(ε−1/2)). This shows that

(Mm
0 )8 ≤ C4

37

(
1 +

h4

s1/4

)4

≤ 8C4
37(1 +

h16

s
), (4.79)

the bound of which is also valid for other terms in group G1. Thus, under the time and space step

size constraint

8C4
37(s+ h16) ≤ 1

52C29
, (4.80)

the following bounds are available:

sC29

(
(Mm

0 )8 + (Mm
0 )8/3(Mm−1

0 )16/3
)
≤ 1

26
, (4.81)

sC30

(
(Mm

0 )8 + (Mm
0 )4(Mm−1

0 )4
)
≤ 1

26
. (4.82)

Now we estimate terms in group G2. We take (Mm+1
0 )4(Mm

0 )4 as example. Reusing the estimate

(4.77)–(4.78) leads to

(Mm+1
0 )4(Mm

0 )4 ≤ C2
37

(
1 +

h4

s1/4

)2

(Mm+1
0 )4 ≤ 2C2

37(Mm+1
0 )4 + 2C2

37

h8

s1/2
(Mm+1

0 )4. (4.83)

The first term on the right hand side can be handled in the same way as (4.67):

2C2
37(Mm+1

0 )4 ≤ 1

104C30C31(T + 1)
(Mm+1

0 )8 + C38. (4.84)
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Hence

sC30

(
2C2

37(Mm+1
0 )4

)
≤ 1

104
+ sC38, (4.85)

where C38 > 0 is independent of s and h. The second term on the right hand side of (4.83) can be

analyzed as follows: using Cauchy’s inequality and (4.64), we have

sC30

(
2C2

37

h8

s1/2
(Mm+1

0 )4

)
≤ C30C

2
37h

8
(
s(Mm+1

0 )8 + 1
)
,

≤ C30C
2
37C4(T + 1)h8 + C30C

2
37h

8. (4.86)

Under an additional constraint for the grid size

h8 ≤ min

(
1

208C30C2
37C31(T + 1)

,
1

208C30C2
37

)
, (4.87)

we arrive at

sC30

(
2C2

37

h8

s1/2
(Mm+1

0 )4

)
≤ 1

104
. (4.88)

A combination of (4.83), (4.85) and (4.88) yields

sC30(Mm+1
0 )4(Mm

0 )4 ≤ 1

52
+ sC38. (4.89)

A similar analysis can be applied to all the other terms in group G2: under a similar constraint as

given by (4.87), we have

sC29

(
(Mm+1

0 )8/3(Mm
0 )16/3 + (Mm+1

0 )8/3(Mm−1
0 )16/3

)
≤ 1

26
+ sC39, (4.90)

sC30

(
(Mm+1

0 )4(Mm
0 )4 + (Mm+1

0 )4(Mm−1
0 )4

)
≤ 1

26
+ sC39, (4.91)

where C39 > 0 is independent of s and h. The details of the proof are skipped for the sake of

brevity.

Therefore, a combination of (4.69)–(4.70), (4.81)–(4.82), and (4.90)–(4.91) leads to

s(C29D
m+1
1 + C30D

m+1
2 ) ≤ 1

4
+ s(C34 + C35 + C39), (4.92)

and under the additional constraint for the time step

s ≤ 1

4(C34 + C35 + C39)
, (4.93)

we get the desired result, estimate (4.66).
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4.4 The main result: an error estimate

The following theorem is the main theoretical result of this article. The basic idea is to extend the

a-priori error estimate (4.65) by an induction argument.

Theorem 4.7. Given initial data φ0, φ1 ∈ C6(Ω), with homogeneous Neumann boundary condi-

tions, suppose the unique solution for the CHHS equation (1.2) – (1.4) is of regularity class R.

Then, provided s and h are sufficiently small, for all positive integers `, such that s · ` ≤ T , we have

∥∥∥∇hφ̃`∥∥∥2

2
+ ε2s

∑̀
m=1

∥∥∥∇h∆hφ̃
m
∥∥∥2

2
≤ C

(
s4 + h4

)
, (4.94)

where C > 0 is independent of s and h.

Proof. Suppose that m+ 1 ≤M . By summing (4.18) we obtain

‖∇hφ̃m+1‖22 +
1

4
‖∇h(φ̃m+1 − φ̃m)‖22 +

1

32
ε2s

m+1∑
j=1

‖∇h∆hφ̃
j‖22

≤ ‖∇hφ̃0‖22 +
1

4
‖∇h(φ̃0 − φ̃−1)‖22 + s

m+1∑
j=1

(C29D
j
1 + C30D

j
2)‖∇hφ̃j‖22

+s

m∑
j=0

(C29D
j+1
1 + C30D

j+1
2 )(‖∇hφ̃j‖22 + ‖∇hφ̃j−1‖22)

+s
m+1∑
j=1

‖τ j+1/2‖22 + C28s
m+1∑
j=1

Dj
3h

4. (4.95)

We proceed by induction. Namely, suppose that (4.65) holds. Then, if h and s are sufficiently small

– as required in the proof of the last theorem – considering (4.66) and using φ̃−1 ≡ φ̃0 ≡ 0, we have

1

2
‖∇hφ̃m+1‖22 +

1

32
ε2s

m+1∑
j=1

‖∇h∆hφ̃
j‖22

≤ s

m∑
j=0

(C29D
j+1
1 + C30D

j+1
2 )(2‖∇hφ̃j‖22 + ‖∇hφ̃j−1‖2)

+s

m+1∑
j=1

‖τ j+1/2‖22 + C28s

m+1∑
j=1

Dj
3h

4. (4.96)

Hence

‖∇hφ̃m+1‖22 + ε2s

m+1∑
j=1

‖∇h∆hφ̃
j‖22 ≤ s

m∑
j=0

(32C29D
j+1
1 + 32C30D

j+1
2 )(2‖∇hφ̃j‖22 + ‖∇hφ̃j−1‖22)

+C40(s4 + h4), (4.97)
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where C40 > 0 is a constant that is independent of s and h. Using the discrete Gronwall inequality

gives

‖∇hφ̃m+1‖22 + ε2s

m+1∑
j=1

‖∇h∆hφ̃
j‖22 ≤ C40(s4 + h4) exp

s m∑
j=1

(96C29D
j+1
1 + 96C30D

j+1
2 )


≤ C40(s4 + h4) exp (C41(tm+1 + 1)) , (4.98)

where C41 > 0 is a constant that is independent of s and h. Consequently, the a priori assumption

(4.65) can be justified at time step tm+1 by taking C32 = C40, C33 = C41. This completes the

induction argument, and the proof of Theorem 4.7 is finished.

Remark 4.8. The convergence analysis presented in this article is unconditional for the time step

size s in terms of the spatial grid size h, i.e., no scaling law between s and h is required for the

theoretical justification of the optimal convergence.

On the other hand, we observe that, both s and h have to be bounded by a certain constant,

namely, (4.75), (4.87) and (4.93). Moreover, a detailed calculation shows that, the constants C29,

C30, C31, C34, C35, C37 and C39 depend on ε−1 in a singular way. As a result, a severe time step

and grid size constraint, s ≤ εk0, h ≤ εk1, with k0 and k1 two integers, has to be imposed for the

theoretical justification of the convergence.

In fact, such a constraint is needed for the convergence analysis for most phase field models, if

the nonlinear term is treated implicitly; see the relevant analyses in [3, 5, 6, 7, 13, 22], etc. The

authors also believe that the power index k0 and k1 could be relaxed using more advanced analysis

techniques, and such an analysis will be left in the future work.

5 Numerical Experiments

In this section, we perform some numerical tests in two-dimensional space to verify the accuracy

and efficiency of the proposed numerical scheme (2.5)-(2.7). The coupled systems are solved by

the Full Approximation Scheme (FAS) under the nonlinear multigrid framework in [9, 29]. Here

we omit the details for brevity; more details in [4, 29] are referred to the readers. In the following

tests, all the numerical experiments were performed with Fortran90 on Thinkpad W541 running

with Intel Core i7-4800MQ at 2.80Ghz with 7.4GB memory under the Ubuntu 14.04. The general

parameters of FAS are finest grid 2 × 2, pre- and post-smooth steps ν1 = ν2 = 2 and stopping

tolerance tol = 10−10.
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5.1 Convergence rate, energy dissipation and mass conservation test

To estimate the convergence rate, we perform the Cauchy-type convergence as in [1, 4, 10, 17, 25, 26]

on a square Ω = [0, Lx]× [0, Ly] with initial condition

φ(x, y, 0) =

[
1− cos

(
4πx
Lx

)]
·
[
1− cos

(2πy
Ly

)]
2

− 1. (5.1)

The homogeneous Neumann boundary conditions are imposed for φ, µ and p. In this test, the

Cauchy difference is defined as δφ = φhf −I
f
c φhc , where hc = 2hf and Ifc is a bilinear interpolation

operator that maps the coarse grid approximation uhc onto the fine grid (we applied nearest matlab

interpolation function). We take a liner refinement path, i.e. s = Ch. At the final time T = 0.8,

we expect the global error to be O(s2) +O(h2) = O(h2) under the `2 norm, as h, s→ 0. The other

parameters are given by Lx = Ly = 3.2, s = 0.05h, ε = 0.2 and γ = 2. The norms of Cauchy

difference, the convergence rates, the average number of V-cycle and average CPU time for one

time step can be found in Table 1, which confirms our second order convergence rate expectation

and indicates the efficiency of the proposed numerical scheme. The evolutions of discrete energy

and mass for the simulation, associated with Table 1 for the h = 3.2
512 , are presented in Figure 1.

The energy dissipation property is clearly demonstrated in the evolutions of discrete energy in the

figure. And also, the evolution of discrete mass indicates the mass conservative property, with∫
Ω φ(x, y, 0)dx = −5.12.

Table 1: Errors, convergence rates, average iteration numbers and average CPU time (in seconds)

for each time step.

hc hf ‖δφ‖2 Rate #V’s Tcpu(hf )

3.2
16

3.2
32 7.6501× 10−3 - 5 0.0012

3.2
32

3.2
64 1.8565× 10−3 2.04 5 0.0046

3.2
64

3.2
128 4.6141× 10−4 2.01 4 0.0160

3.2
128

3.2
256 1.1520× 10−4 2.00 4 0.0744

3.2
256

3.2
512 2.8792× 10−5 2.00 5 0.3818

5.2 Spinodal decomposition

In this test, we simulate the spinodal decomposition of a binary fluid in a Hele-Shaw cell and show

the effect of γ on the phase decomposition. The simulation parameters are similar to those in [29],

with the parameters given by Lx = Ly = 6.4, ε = 0.03, h = 6.4/512, and s = 0.01. The initial data

for this simulation is taken as a random field of values φ0
i,j = φ̄+ 0.05 · (2ri,j − 1) with an average
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Figure 1: The evolutions of discrete energy and mass for the simulation depicted in Table 1 for the

h = 3.2/512 case.

composition φ̄ = −0.05 and ri,j ∈ [0, 1]. The simulation results are presented in Figures 2 and 3.

From Figure 2, we observe that the particles indeed have a smaller shape factor for γ = 4 than for

γ = 0 at same time, which coincides with the real physical states. Since larger γ would improve the

fluid flow and enhance the energy dissipation. The energy evolution plot in Figure 3 implies that

the energy decay are almost the same in the early stages of decomposition. Meanwhile, it is not

precisely clear from the energy inequality that the larger γ will result in a larger energy dissipation

rate [15, 18, 31].

6 Conclusions

A second order accurate energy stable numerical scheme for the Cahn-Hilliard-Hele-Shaw equations

is proposed and analyzed in this article. The unique solvability and unconditional energy stability

are proved, based on a rewritten form of the scheme, following a convexity analysis. At each time

step of this scheme, an efficient nonlinear multigrid solver could be applied to the nonlinear equa-

tions associated with the finite difference approximation. At the theoretical side, an `2(0, T ;H3
h)

stability of the numerical scheme is established, in addition to the leading order energy stabil-

ity. As an outcome of this estimate, we perform an `∞(0, T ;H1
h) error estimate for the numerical

scheme, and an optimal rate convergence analysis is obtained. A few numerical simulation results

are presented to demonstrate the accuracy and robustness of the proposed numerical scheme.
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Figure 2: Snapshots of Spinodal decomposition of a binary fluid in a Hele-Shaw cell.
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Figure 3: The evolutions of discrete energy with γ = 0, 2, 4.
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A Discretization of space

A.1 Basic definitions

Here we use the notation and results for some discrete functions and operators from [29]. We

begin with definitions of grid functions and difference operators needed for the three-dimensional

discretization. We consider the domain Ω = (0, Lx)× (0, Ly)× (0, Lz) and assume that Nx, Ny and

Nz are positive integers such that h = Lx/Nx = Ly/Ny = Lz/Nz, for some h > 0, which is called
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the spatial step size. Consider, for any positive integer N , the following sets:

EN := {i·h
∣∣ i = 0, . . . , N}, CN :={(i− 1/2)·h

∣∣ i = 1, . . . , N)}, (A.1)

CN := {(i− 1/2)·h
∣∣ i = 0, . . . , N + 1)}. (A.2)

The two points belonging to CN \CN are the so-called ghost points. Define the function spaces

CΩ:={φ :CNx
×CNy

×CNz
→R}, ExΩ:={φ :ENx×CNy×CNz→R}, (A.3)

EyΩ:={φ :CNx×ENy×CNz→R}, EzΩ:={φ :CNx×CNy×ENz→R}, (A.4)

~EΩ := ExΩ × E
y
Ω × E

z
Ω. (A.5)

The functions of CΩ are called cell centered functions. In component form, cell-centered functions

are identified via φi,j,k :=φ(ξi, ξj , ξk), where ξi := (i − 1/2) ·h. The functions of ExΩ, et cetera,

are called face-centered functions. In component form, face-centered functions are identified via

fi+ 1
2
,j,k := f(ξi+1/2, ξj , ξk), etc.

A discrete function φ ∈ CΩ is said to satisfy homogeneous Neumann boundary conditions, and

we write n · ∇hφ = 0 iff at the ghost points φ satisfies

φ0,j,k = φ1,j,k, φNx,j,k= φNx+1,j,k, (A.6)

φi,0,k = φi,1,k, φi,Ny ,k= φi,Ny+1,k, (A.7)

φi,j,0 = φi,j,1, φi,j,Nz = φi,j,Nz+1. (A.8)

A discrete function f = (fx, fy, fz)T ∈ ~EΩ is said to satisfy the homogeneous boundary conditions

n · f = 0 iff we have

fx1/2,j,k = 0, fxNx+1/2,j,k= 0, (A.9)

fyi,1/2,k = 0, fyi,Ny+1/2,k= 0, (A.10)

fzi,j,1/2 = 0, fzi,j,Nz+1/2= 0. (A.11)

This staggered grid is also known as the marker and cell (MAC) grid and was first proposed in [16]

to deal with the incompressible Navier-Stokes equations. Also see [24] for related applications to

the 3-D primitive equations.

A.2 Discrete operators, inner products, and norms

We introduce the face-to-center difference operator dx :ExΩ → CΩ, defined component-wise via

dxfi,j,k :=
1

h
(fi+ 1

2
,j,k − fi− 1

2
,j,k), (A.12)
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with dy :EyΩ → CΩ and dz :EzΩ → CΩ formulated analogously. Define ∇h· : ~EΩ → CΩ via

∇h · f := dxf
x + dyf

y + dzf
z, (A.13)

where f = (fx, fy, fz)T . Define Ax :CΩ → ExΩ component-wise via

Axφi+ 1
2
,j,k :=

1

2
(φi,j,k + φi+1,j,k), (A.14)

with Ay :CΩ → EyΩ and Az :CΩ → EzΩ formulated analogously. Define Ah :CΩ → ~EΩ via

Ahφ := (Axφ,Ayφ,Azφ)T . (A.15)

Define Dx :CΩ → ExΩ component-wise via

Dxφi+ 1
2
,j,k :=

1

h
(φi+1,j,k − φi,j,k). (A.16)

Dy :CΩ → EyΩ and Dz :CΩ → EzΩ are similarly evaluated. Define ∇h :CΩ → ~EΩ via

∇hφ := (Dxφ,Dyφ,Dzφ)T . (A.17)

The standard discrete Laplace operator ∆h : CΩ → CΩ is just

∆hφ := ∇h · ∇hφ. (A.18)

We define the following inner-products:

(φ, ψ) :=h3
L∑
i=1

M∑
j=1

N∑
m=1

φi,j,kψi,j,k, ∀ φ, ψ ∈ CΩ, (A.19)

[f, g]x :=
1

2
h3

L∑
i=1

M∑
j=1

N∑
m=1

(fi+ 1
2
,j,kgi+ 1

2
,j,k + fi− 1

2
,j,kgi− 1

2
,j,k), ∀ f, g ∈ E

x
Ω. (A.20)

[·, ·]y and [·, ·]z can be formulated analogously. For f = (fx, fy, fz)T , g = (gx, gy, gz)T ∈ ~EΩ we

define the natural inner product

(f , g) := [fx, gx]x + [fy, gy]y + [fy, gy]z , (A.21)

which gives the associated norm ‖f‖2 =
√

(f ,f). Analogously, for φ, ψ ∈ CΩ, a natural discrete

inner product of their gradients is given by

(∇hφ,∇hψ) := [Dxφ,Dxψ]x + [Dyφ,Dyψ]y + [Dzφ,Dzψ]z . (A.22)

We also introduce the following norms for cell-centered functions φ ∈ CΩ:

‖φ‖∞ := max
i,j,k
|φi,j,k|, (A.23)
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‖φ‖p := (|φ|p, 1)
1
p , 1 ≤ p <∞. (A.24)

In addition, we define

‖∇hφ‖p :=
(

[|Dxφ|p , 1]x + [|Dyφ|p , 1]y + [|Dzφ|p , 1]z

) 1
p
. (A.25)

In the case of p = 2, it is clear that (∇hφ,∇hφ) = ‖∇hφ‖22.

In addition, we introduce the discrete H1
h and H3

h norms, which are needed in the stability and

convergence analysis:

‖φ‖2H1
h

= ‖φ‖22 + ‖∇hφ‖22, (A.26)

‖φ‖2H3
h

= ‖φ‖22 + ‖∇hφ‖22 + ‖∆hφ‖22 + ‖∇h∆hφ‖22, (A.27)

for any φ ∈ CΩ.

A.3 Summation by parts formulas

For φ, ψ ∈ CΩ and a velocity vector field u ∈ ~EΩ, the following summation by parts formulas can

be derived. If ψ satisfies the homogeneous Neumann boundary conditions, we have

(φ,∆hψ) = − (∇hφ,∇hψ) (A.28)

If u · n = 0 on the boundary, we get

(φ,∇h · u) = − (∇hφ,u) . (A.29)

B Proof of the Gagliardo-Nirenberg Inequality in Lemma B.1

Lemma B.1. [3] If the cell-centered grid function φ ∈ CΩ satisfies the discrete homogeneous

Neumann boundary conditions n · ∇hφ = 0, as defined in Appendix A, then∥∥φ− φ̄∥∥∞ ≤ C (‖∇hφ‖ 3
4
2 ‖∇h∆hφ‖

1
4
2 + ‖∇hφ‖2

)
, (B.1)

where φ̄ := 1
|Ω| (φ, 1), and C1 > 0 is a constant that is independent of h.

For simplicity of presentation, we assume Nx = Ny = Nz =: N is odd and Lx = Ly = Lz =: L.

The general case can be analyzed in the same manner, with more technical details involved.

Proof. Due to the discrete Neumann boundary conditions for φ and its cell-centered representation,

it has a corresponding discrete Fourier Cosine transformation in quarter wave sequence:

φi,j,k =

N−1∑
`,m,n=0

α`,m,nφ̂
N
`,m,n cos

`πxi
L

cos
mπyj
L

cos
nπzk
L

, (B.2)
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with α`,m,n =



1, if ` 6= 0, m 6= 0, n 6= 0,√
1
2 , if one among `,m, n is 0,√
1
4 , if two among `,m, n are 0,√
1
8 , if ` = m = n = 0,

where xi = (i − 1
2)h, yj = (j − 1

2)h, zk = (k − 1
2)h. Then we make its extension to a continuous

function:

φF(x, y, z) =

N−1∑
`,m,n=0

α`,m,nφ̂
N
`,m,n cos

`πx

L
cos

mπy

L
cos

nπz

L
. (B.3)

Parseval’s identity (at both the discrete and continuous levels) implies that

N∑
i,j,k=1

|φi,j,k|2 =
1

8
N3

N−1∑
`,m,n=0

|φ̂N`,m,n|2, (B.4)

‖φF‖2L2 =
1

8
L3

N−1∑
`,m,n=0

|φ̂N`,m,n|2. (B.5)

Based on the fact that hN = L, this in turn results in

‖φ‖22 = h3
N∑

i,j,k=1

|φi,j,k|2 = ‖φF‖2L2 =
1

8
L3

N−1∑
`,m,n=0

|φ̂N`,m,n|2. (B.6)

For the comparison between the discrete and continuous gradient, we start with the following

Fourier expansions:

(Dxφ)i+1/2,j,k =
φi+1,j,k − φi,j,k

h

=

N−1∑
`,m,n=0

α`,m,nµ`φ̂
N
`,m,n sin

`πxi+1/2

L
cos

mπyj
L

cos
nπzk
L

, (B.7)

∂xφF(x, y, z) =
N−1∑

`,m,n=0

α`,m,nν`φ̂
N
`,m,n sin

`πx

L
cos

mπy

L
cos

nπz

L
, (B.8)

with

µ` = −
2 sin `πh

2L

h
, ν` = −`π

L
. (B.9)

In turn, an application of Parseval’s identity yields

‖Dxφ‖22 =
1

8
L3

N−1∑
`,m,n=0

|µ`|2|φ̂N`,m,n|2, (B.10)

‖∂xφF‖2L2 =
1

8
L3

N−1∑
`,m,n=0

|ν`|2|φ̂N`,m,n|2. (B.11)
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The comparison of Fourier eigenvalues between |µ`| and |ν`| shows that

2

π
|ν`| ≤ |µ`| ≤ |ν`|, for 0 ≤ ` ≤ N− 1. (B.12)

This indicates that
2

π
‖∂xφF‖L2 ≤ ‖Dxφ‖2 ≤ ‖∂xφF‖L2 . (B.13)

Similar comparison estimates can be derived in the same manner to reveal

2

π
‖∇φF‖L2 ≤ ‖∇hφ‖2 ≤ ‖∇φF‖L2 . (B.14)

It can be proved analogously that

4

π2
‖∆φF‖L2 ≤ ‖∆hφ‖2 ≤ ‖∆φF‖L2 , (B.15)

8

π3
‖∇∆φF‖L2 ≤ ‖∇h∆hφ‖2 ≤ ‖∇∆φF‖L2 . (B.16)

Meanwhile, we observe that the discrete average of φ and the continuous average of φF are

identical:

φ̄ :=
h3

|Ω|

N∑
i,j,k=1

φi,j,k = α0,0,0φ̂
N
0,0,0 =

1

|Ω|

∫
Ω
φF(x) dx =: φF. (B.17)

As a result, we see that∥∥φ− φ̄∥∥∞ ≤ ∥∥φF − φ̄∥∥L∞
≤ C

(
‖φF − φ̄‖

3
4

L6‖∇∆φF‖
1
4

L2 + ‖φF − φ̄‖L6

)
≤ C

(
‖∇φF‖

3
4

L2 ‖∇∆φF‖
1
4

L2 + ‖∇φF‖L2

)
≤ C

(
‖∇hφ‖

3
4
2 ‖∇h∆hφ‖

1
4
2 + ‖∇hφ‖2

)
,

(B.18)

in which the 3-D Gagliardo-Nirenberg inequality, Sobolev embedding and Poincaré inequality were

applied, and the equivalence estimates (B.14), (B.16) were recalled in the derivation. The proof of

Lemma B.1 is complete.
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Poincaré CAN., 30:367384, 2013.

[29] S. M. Wise. Unconditionally stable finite difference, nonlinear multigrid simulation of the

Cahn-Hilliard-Hele-Shaw system of equations. J. Sci. Comput., 44(1):38–68, 2010.

[30] S.M. Wise, J.S. Lowengrub, H.B. Frieboes B, and V. Cristini. Three-dimensional multispecies

nonlinear tumor growth—I: model and numerical method. J. Theor. Biol., 253(3):524–543,

2008.

[31] S.M. Wise, C. Wang, and J.S. Lowengrub. An energy-stable and convergent finite-difference

scheme for the phase field crystal equation. SIAM J. Numer. Anal., 47(3):2269–2288, 2009.

39


	Introduction
	The fully discrete scheme and a-priori stabilities
	2 (0,T; Hh3) stability of the numerical scheme
	Optimal rate convergence analysis
	Error equations and consistency analysis
	Stability of the error functions
	The result of an a-priori error assumption
	The main result: an error estimate

	Numerical Experiments
	Convergence rate, energy dissipation and mass conservation test
	Spinodal decomposition

	Conclusions
	Discretization of space
	Basic definitions
	Discrete operators, inner products, and norms
	Summation by parts formulas

	Proof of the Gagliardo-Nirenberg Inequality in Lemma B.1

