Mathematics Department, University of Massachusetts Dartmouth
 Discrete Mathemtics II
 MTH182 - Section 03 - Spring 2015
 Review for Exam 3
 Exam 3 is Thursday, April 9 from 8:00-9:15am

Reading: Discrete Mathematics, first edition, section Sections 7.1-7.5
Problems sets 7, 8, and 9
Chapter 7 supplementary exercises: $1,3,5,7,9,11,13$

Summary of concepts

The following is a list of the major topics covered in this exam:

- Divisibility: "divides" notation, divisors, factors, multiples
- Prime and composite numbers
- The division algorithm: quotients, remainders, "div" and "mod" operations.
- Modular congruence
- Basic cryptography: private key ciphers and shift ciphers

What follows are a list of suggested exercises that will help you review for the exam. It is not a replacement for the week-by-week problem sets.

Chapter 7 Supplementary Exercises

1. Let $A=\{n \in \mathbb{Z}: n \geq 2\}$. For $a \in A$, define $f(a)$ to be the largest positive integer k such that $k<a$ and $k \mid a$. Then f is a function from \mathbb{N} to \mathbb{N}.
(a) What is $f(12)$
(b) What is $f(27)$
(c) What is $f(32)$
(d) What is $f(33)$
(e) Is f one-to-one?
(f) Is f onto?
2. Let $a, b, c, d \in \mathbb{Z}$ be such that $a \neq 0$. Prove that if $a \mid(b+c+d)$, and a divides any two of b, c, and d, then a divides the third integer.
3. Let a and b be integers such that $a \neq 0$. Prove that if $a \mid b$, then $a^{n} \mid b^{n}$ for every positive integer n.
4. Prove that $3 \mid\left(n^{3}+2 n\right)$ for every positive integer n.
5. Express 234 as a product of primes.
6. Is $37 \equiv-19(\bmod 4)$?
7. Prove or disprove:
(a) There exists an integer a such that $a b \equiv 0(\bmod 5)$ for every integer b.
(b) If $a \in \mathbb{Z}$, then $a b \equiv 0(\bmod 5)$ for every $b \in \mathbb{Z}$.
(c) For every integer a, there exists an integer b such that $a b \equiv 0(\bmod 5)$.
