MATHEMATICS DEPARTMENT, UNIVERSITY OF MASSACHUSETTS DARTMOUTH Discrete Mathemtics II MTH182 – Section 03 – Spring 2015 Review for Exam 2 Exam 2 is Thursday, March 12 from 8:00-9:15am

Reading: Discrete Mathematics, first edition, section Sections 5.3-5.5, 6.1-6.2
Problems sets 5 and 6
Chapter 5 supplementary exercises: 17, 19, 23, 29, 31, 37, 39, 41
Chapter 6 supplementary exercises: 5, 7, 9

Summary of concepts

The following is a list of the major topics covered in this exam:

- Functions
- Injections, surjections, bijections
- Composition of functions, inverse functions
- Cardinality
- Finite, denumerable, countable, uncountable sets
- Algorithms
- Algorithmic complexity: "big-O" and "big-theta" relations and growth

What follows are a list of *suggested* exercises that will help you review for the exam. It is *not* a replacement for the week-by-week problem sets.

Chapter 5 Supplementary Exercises

17. Let $A = \{0, 1, 3, 4\}$ and $B = \{-2, -1, 0, 1, 2\}$.

- (a) Given an example of a function $f: A \to B$.
- (b) What is the range of f?
- **19.** Let $A = \{1, 3, 4\}$ and $B = \{-2, -1, 0, 1, 4\}$. For $a \in A$, define f(a) = b, where |b| = a. Is f a function from A to B?
- **23.** Define $f : \mathbb{N} \to \mathbb{N}$ by $f(n) = \lceil n/3 \rceil$.
 - (a) Is f one-to-one?
 - (b) Is f onto?

29. Show that there is a function $f : \mathbb{R} \to \mathbb{R}$ that is

- (\mathbf{a}) onto but not one-to-one.
- (\mathbf{b}) one-to-one but not onto.

- **31.** Show that the functio $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b, where $a, b \in \mathbb{R}$ and $a \neq 0$ is bijective.
- **37.** Show that the set A of negative integers if denumerable.
- **39.** Prove that if A and B are disjoint countable sets, then $A \cup B$ is countable.
- 41. Determine, with explanation, whether the following is true or false. If A and B are denumerable sets, then $A \cap B$ is denumerable.

Chapter 6 Supplementary Exercises

- 5. Show that $n \log n = O(n^2)$.
- 7. For the function f defined by $f(n) = \frac{2n^3 + n}{n+2}$ for each $n \in \mathbb{N}$, show that $f(n) = O(n^2)$. 9. Let f and g be the functions defined by $f(n) = n^2 + 3n + 1$ and $g(n) = n^3$ for each $n \in \mathbb{N}$. Show that f(n) = O(g(n)), but $g(n) \neq O(f(n))$.