Mathematics Department, University of Massachusetts Dartmouth
 Discrete Mathemtics II
 MTH182 - Section 03 - Spring 2015
 Review for Exam 2
 Exam 2 is Thursday, March 12 from 8:00-9:15am

Reading: Discrete Mathematics, first edition, section Sections 5.3-5.5, 6.1-6.2
Problems sets 5 and 6
Chapter 5 supplementary exercises: $17,19,23,29,31,37,39,41$
Chapter 6 supplementary exercises: 5, 7, 9

Summary of concepts

The following is a list of the major topics covered in this exam:

- Functions
- Injections, surjections, bijections
- Composition of functions, inverse functions
- Cardinality
- Finite, denumerable, countable, uncountable sets
- Algorithms
- Algorithmic complexity:"big-O" and "big-theta" relations and growth

What follows are a list of suggested exercises that will help you review for the exam. It is not a replacement for the week-by-week problem sets.

Chapter 5 Supplementary Exercises

17. Let $A=\{0,1,3,4\}$ and $B=\{-2,-1,0,1,2\}$.
(a) Given an example of a function $f: A \rightarrow B$.
(b) What is the range of f ?
18. Let $A=\{1,3,4\}$ and $B=\{-2,-1,0,1,4\}$. For $a \in A$, define $f(a)=b$, where $|b|=a$. Is f a function from A to B ?
19. Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(n)=\lceil n / 3\rceil$.
(a) Is f one-to-one?
(b) Is f onto?
20. Show that there is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is
(a) onto but not one-to-one.
(b) one-to-one but not onto.
21. Show that the functio $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$, where $a, b \in \mathbb{R}$ and $a \neq 0$ is bijective.
22. Show that the set A of negative integers if denumerable.
23. Prove that if A and B are disjoint countable sets, then $A \cup B$ is countable.
24. Determine, with explanation, whether the following is true or false. If A and B are denumerable sets, then $A \cap B$ is denumerable.

Chapter 6 Supplementary Exercises

5. Show that $n \log n=O\left(n^{2}\right)$.
6. For the function f defined by $f(n)=\frac{2 n^{3}+n}{n+2}$ for each $n \in \mathbb{N}$, show that $f(n)=O\left(n^{2}\right)$.
7. Let f and g be the functions defined by $f(n)=n^{2}+3 n+1$ and $g(n)=n^{3}$ for each $n \in \mathbb{N}$. Show that $f(n)=O(g(n))$, but $g(n) \neq O(f(n))$.
