Mathematics Department, University of Massachusetts Dartmouth
 Discrete Mathemtics II
 MTH182 - Section 03 - Spring 2015
 Review for Exam 1
 Exam 1 is Thursday, Feb 19 from 8:00-9:15am

Reading: Discrete Mathematics, first edition, section Sections 4.1-4.4, 5.1, 5.2
Chapter 4 supplementary exercises: $1,3,9,11,17,19,21$
Chapter 5 supplementary exercises: $1,3,5,7,11,13$

Summary of concepts

The following is a list of the major topics covered in this exam:

- Proof by mathematical induction
- Sequences
- Proof by the Strong Principle of Mathematical Induction
- Relations, product spaces
- Relation properties: symmetry, reflexivity, transitivity
- Equivalence relations, equivalence classes, partitions

What follows are a list of suggested exercises that will help you review for the exam. It is not a replacement for the week-by-week problem sets.

Chapter 4 Supplementary Exercises

1. Prove that $1+3+6+\cdots+\frac{n(n+1)}{2}=\frac{n(n+1)(n+2)}{6}$ for every positive integer n.
2. Prove that $1^{2}+3^{2}+\cdots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$ for every positive integer n.
3. Prove that $2^{n}>n^{3}$ for every integer $n \geq 10$.
4. Prove by induction that $n^{n}>n$! for every integer $n \geq 2$.
5. Let a and b be two real numbers. Use induction to prove that $\sum_{i=0}^{n}(a+i b)=\frac{1}{2}(n+1)(2 a+$ $n b$).
6. A sequence $a_{0}, a_{1}, a_{2}, \ldots$, of integers is defined recursively by $a_{0}=0$ and $a_{n}=3 a_{n-1}+3^{n-1}$.
7. A sequence $\left\{a_{n}\right\}$ is defined recursively by $a_{1}=2, a_{2}=6$, and $a_{n}=2 a_{n-1}-a_{n-2}+2$ for $n \geq 3$. Prove that $a_{n}=2^{n}$ for every positive integer n.

Chapter 5 Supplementary Exercises

1. For an integer $n \geq 2$, let $S_{n}=\{1,2, \ldots, n\}$, and let T_{n} be the set of all 2 -element subsets of S_{n}. For $A, B \in T_{n}$, define the relation R_{n} on T_{n} by $A R_{n} B$ if $A \cap B=\varnothing$. For $n=4$, list all elements of R_{n}.
2. Let $A=\{1,2,3,4\}$. For the relation $R=\{(1,1),(2,2),(2,3),(3,2),(4,4)\}$ on A, determine which of the properties reflexive, symmetric, transitive R possesses.
3. Let R be the relation on defined on \mathbb{Z} by $a R b$ if $a=b$ or $a=2 b$.
(a) Given an example of two integers that are related by R, and two integers that are not.
(b) Which of the properties reflexive, symmetric, transitive does R possess?
4. A relation R is defined on \mathbb{R} by $a R b$ if $a b \leq 0$.
(a) Given an example of two real numbers that are related by R, and two real numbers that are not.
(b) Which of the properties reflexive, symmetric, transitive does R possess?
5. A relation N on a nonempty set A is defined to be circular if whenever $a R b$ and $b R c$, then $c R a$ for all $a, b, c \in A$. Prove that a relation R on A is an equivalence relation if and only if R is reflexive and circular.
6. A relation R is defined on \mathbb{N} by $a R b$ if $a^{2}+b^{2}$ is even.
(a) Show that R is an equivalence relation.
(b) Describe the distinct equivalence classes resulting from R.
