Mathematics Department, University of Massachusetts Dartmouth
 Discrete Mathemtics II MTH182 - Section 03 - Spring 2015 Problem set 8
 Division and congruence

Reading: Discrete Mathematics, first edition, section Sections 7.3, 7.4
Section 7.3: 1, 3, 5, 9, 11, 17, 23
Section 7.4: 1, 3, 5, 7, 9, 13, 15, 17

Section 7.3

1. For each of the following pairs of integers m, n of integers, find the quotient q and remainder r when m is divided by n. Then write $m=n q+r$.
(a) $m=48, n=11$.
(b) $m=0, n=11$.
(c) $m=-48, n=11$.
(d) $m=9, n=11$.
2. Determine $(m \operatorname{div} n)$ and $(m \bmod n)$ for the following pairs m, n of integers.
(a) $m=47, n=14$
(b) $m=81, n=22$
(c) $m=180, n=45$
(d) $m=24, n=25$
(e) $m=0, n=15$
(f) $m=-55, n=27$
3. Show that if n is an odd integer, then n^{2} has a remainder of 1 when divided by 4 .
4. For each integer n, prove that
(a) 3 divides one of the integers $n, n+1$, and $2 n+1$
(b) 3 divides one of the integers $n, 2 n-1$, and $2 n+1$
5. Let a, b, c, d, and e be consecutive integers. Use the Division Algorithm to prove that 5 divides one of these five integers.
6. Let $a, b \in \mathbb{Z}$. Prove that if $3 \nmid a$ and $3 \nmid b$, then $3 \mid\left(a^{2}-b^{2}\right)$.
7. Let $n \in \mathbb{Z}$. Prove that if $3 \mid\left(n^{2}+1\right)$, then $3 \nmid\left(2 n^{2}+1\right)$.

Section 7.4

1. For the following integers a, b, and n, determine whether a is congruent to b modulo n. If so, write $a \equiv b(\bmod n)$; if not, write $a \not \equiv b(\bmod n)$.
(a) $a=47, b=23, n=8$
(b) $a=18, b=38, n=5$
(c) $a=20, b=10, n=3$
(d) $a=12, b=12, n=13$
(e) $a=37, b=35, n=2$
2. Given an example of four integers that are congruent to 4 modulo 13 .
3. Recall Theorem 7.25 in the book: Let a, b, and $n \geq 2$ be integers. Then $a \equiv b(\bmod n)$ if and only if $a=b+k n$ for some integer k.
Prove the following:
Let a, b, and $n \geq 2$ be integers. Prove that $a \equiv b(\bmod n)$ if and only if $b=a+\ell n$ fo some integer ℓ.
4. Let a, b, m, and n be integers with $m, n \geq 2$ and $m \mid n$. Show that if $a \equiv b(\bmod n)$ then $a \equiv b(\bmod m)$.
5. Let a, b, c, d, and $n \geq 2$ be integers. Show that if $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then $a-c \equiv b-d(\bmod n)$.
6. Let $a, b \in \mathbb{Z}$. Prove that if $a \equiv 0(\bmod 5)$ and $b \equiv 2(\bmod 5)$, then $a^{2}+b^{2}=4(\bmod 5)$.
7. Let $a, b \in \mathbb{Z}$. Prove that if $a^{2}+2 b^{2} \equiv 0(\bmod 3)$, then either both a and b are congruent to 0 modulo 3 , or neither a nor b is congruent to 0 modulo 3 .
8. For each of the following pairs a, b or integers and an integer $n \geq 2$, compute $a \bmod n$ and $b \bmod n$ and use this to determine whether $a \equiv b(\bmod n)$.
(a) $a=47, b=23, n=8$
(b) $a=31, b=43, n=6$
(c) $a=27, b=-15, n=7$
(d) $a=35, b=-11, n=12$
(e) $a=0, b=-2, n=2$
(f) $a=43, b=29, n=9$
