Mathematics Department, University of Massachusetts Dartmouth
 Discrete Mathemtics II
 MTH182 - Section 03 - Spring 2015 Problem set 7
 Divisibility and Primes

Reading: Discrete Mathematics, first edition, section Sections 7.1, 7.2
Section 7.1: 1, 3, 5, 7, 11
Section 7.2: 1, 7, 11, 13

Section 7.1

1. For each pair a, b of integers, determine whether $a \mid b$. If $a \mid b$, then find an integer c such that $b=a c$.
(a) $a=7$ and $b=-70$
(b) $a=16$ and $b=-40$
(c) $a=1$ and $b=10$
(d) $a=8$ and $b=-8$
(e) $a=14$ and $b=0$
(f) $a=0$ and $b=14$
2. Let a and b be integers with $a \neq 0$. Prove that if $a \mid b$, then $a \mid(-b)$ and $(-a) \mid b$.
3. Let a, b, and c be integers with $a \neq 0$ and $c \neq 0$. Prove that $a c \mid b c$ if and only if $a \mid b$.
4. Disprove the following: Let a and b be integers with $a \neq 0$ and $b \neq 0$. If $a \mid b$ and $b \mid a$, then $a=b$.
5. Prove that $3 \mid\left(4 n^{3}+5 n\right)$ for every nonnegative integer n.

Section 7.2

1. Express each of the following integers as a product of primes.
(a) 250
(b) 297
(c) 2662
(d) 1225
(e) 891
2. Of course, 11 is a prime.
(a) Show that 111 is not a prime.
(b) Show that 1111 is not a prime.
(c) Show that 111,111 is not a prime.
(d) Is 11,111 a prime?
3. Show that only one prime can be expressed as $n^{3}+1$ for some positive integer n.
4. Goldbach's Conjecture states that every even integer $n \geq 4$ can be expressed as the sum of two primes. Goldbach also conjectured that every integer $n \geq 3$ can be written as the sum of three integers, each of which is either 1 or a prime. Prove that if Goldbach's conjecture is true, then this conjecture is also true.
