Mathematics Department, University of Massachusetts Dartmouth
 Discrete Mathemtics II
 MTH182 - Section 03 - Spring 2015 Problem set 6
 Algorithms and function growth

Reading: Discrete Mathematics, first edition, section Sections 6.1, 6.2
Section 6.1: 9, 11
Section 6.2: 1, 3, 7, 9, 11, 15

Section 6.1

9. Illustrate algorithm 6.8 in the book for $k=11$ and $s: 9,10,14,11$.
10. Write an algorithm that determines whether a sequence $s: a_{1}, a_{2}, \ldots, a_{n}$ of n numbers contains any negative numbers.

Section 6.2

1. For function $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$and $g: \mathbb{N} \rightarrow \mathbb{R}^{+}, f=O(g)$ if there is a positive constant C and a positive integer k such that $f(n) \leq C g(n)$ for every integer $n \geq k$. Show that there is a positive constant C^{\prime} such that $f(n) \leq C^{\prime} g(n)$ for every positive integer n.
2. Let $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$and $g: \mathbb{N} \rightarrow \mathbb{R}^{+}$be functions defined by $f(n)=5 n+7$ and $g(n)=n^{2}$ for all $n \in \mathbb{N}$. Show that $f=O(g)$ but $g \neq O(f)$.
3. For which of the following is $f(n)=O\left(n^{2}\right)$?
(a) $f(n)=2 n+5$
(b) $f(n)=\lfloor n / 2\rfloor$
(c) $f(n)=n^{2}+3 n+2$
(d) $f(n)=n \log n$
(e) $f(n)=n^{2} \log n$
(f) $f(n)=2^{n}$
4. Let $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$and $g: \mathbb{N} \rightarrow \mathbb{R}^{+}$be two functions defined by $f(n)=2 n+1$ and $g(n)=n$ for all $n \in \mathbb{N}$. Show that $f=\Theta(g)$.
5. Let $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$and $g: \mathbb{N} \rightarrow \mathbb{R}^{+}$be functions defined by $f(n)=n^{2}+4 n+1$ and $g(n)=n^{2}+4$ for all $n \in \mathbb{N}$. Show that $f=\Theta(g)$.
6. Let f and g be two functions defined by $f(n)=\frac{1}{2} n^{2}+5 n+1$ and $g(n)=2 n^{2}+3$. Show that $f(n)=\Theta(g(n))$.
