MATHEMATICS DEPARTMENT, UNIVERSITY OF MASSACHUSETTS DARTMOUTH Discrete Mathemtics II MTH182 – Section 03 – Spring 2015 Problem set 6 Algorithms and function growth

Reading: Discrete Mathematics, first edition, section Sections 6.1, 6.2 Section 6.1: 9, 11 Section 6.2: 1, 3, 7, 9, 11, 15

Section 6.1

- **9.** Illustrate algorithm 6.8 in the book for k = 11 and s: 9, 10, 14, 11.
- 11. Write an algorithm that determines whether a sequence $s: a_1, a_2, \ldots, a_n$ of n numbers contains any negative numbers.

Section 6.2

- **1.** For function $f : \mathbb{N} \to \mathbb{R}^+$ and $g : \mathbb{N} \to \mathbb{R}^+$, f = O(g) if there is a positive constant C and a positive integer k such that $f(n) \leq Cg(n)$ for every integer $n \geq k$. Show that there is a positive constant C' such that $f(n) \leq C'g(n)$ for every positive integer n.
- **3.** Let $f : \mathbb{N} \to \mathbb{R}^+$ and $g : \mathbb{N} \to \mathbb{R}^+$ be functions defined by f(n) = 5n + 7 and $g(n) = n^2$ for all $n \in \mathbb{N}$. Show that f = O(g) but $g \neq O(f)$.
- 7. For which of the following is $f(n) = O(n^2)$?
 - (a) f(n) = 2n + 5
 - (**b**) f(n) = |n/2|
 - (c) $f(n) = n^2 + 3n + 2$
 - (d) $f(n) = n \log n$
 - (e) $f(n) = n^2 \log n$
 - (f) $f(n) = 2^n$
- **9.** Let $f : \mathbb{N} \to \mathbb{R}^+$ and $g : \mathbb{N} \to \mathbb{R}^+$ be two functions defined by f(n) = 2n + 1 and g(n) = n for all $n \in \mathbb{N}$. Show that $f = \Theta(g)$.
- **11.** Let $f : \mathbb{N} \to \mathbb{R}^+$ and $g : \mathbb{N} \to \mathbb{R}^+$ be functions defined by $f(n) = n^2 + 4n + 1$ and $g(n) = n^2 + 4$ for all $n \in \mathbb{N}$. Show that $f = \Theta(g)$.
- **15.** Let f and g be two functions defined by $f(n) = \frac{1}{2}n^2 + 5n + 1$ and $g(n) = 2n^2 + 3$. Show that $f(n) = \Theta(g(n))$.