MATHEMATICS DEPARTMENT, UNIVERSITY OF MASSACHUSETTS DARTMOUTH Discrete Mathemtics II MTH182 – Section 03 – Spring 2015 Problem set 5 Bijective Functions and cardinality

Reading: Discrete Mathematics, first edition, section Sections 5.4, 5.5 Section 5.4, 1, 3, 5, 7, 9, 11, 13, 19, 21, 29, 31, 35, 37 Section 5.5, 1, 3, 9

Section 5.4

- 1. Let $A = \{1, 2, 3, 4\}$ and $B = \{1, 2, 3, 4, 5\}$. Given an example of
 - (a) a function $f: A \to B$ that is not one-to-one but where $f(1) \neq f(2)$
 - (b) a one-to-one function $g: A \to B$ where $g(1) \neq 3 \neq g(2)$
 - (c) a one-to-one function $h: A \to B$ such that h(n) > n for every $n \in A$
- **3.** Let $A = \{a, b, c, d\}$ and $B = \{a, b, c\}$. Give an example of
 - (a) a function $f: A \to B$ that is not onto but where $f(a) \neq f(b)$
 - (b) a function $g: A \to B$ that is onto, but where g(a) = g(b)
 - (c) a function $h: A \to B$ that is onto but $h(x) \neq x$ for each $x \in B$
- 5. Determine, with explanation, whether the following functions are onto.
 - (a) $f: \mathbb{Z} \to \mathbb{Z}$ is defined by f(n) = 4n + 1 for $n \in \mathbb{Z}$
 - (b) $f: \mathbb{R}^+ \to \mathbb{R}^+$ is defined by $f(x) = x^2$ for $x \in \mathbb{R}^+$
 - (c) $f : \mathbb{R} \to \mathbb{Z}$ is defined by f(x) = [x] for $x \in \mathbb{R}$
 - (d) $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2 + 2x + 1$ for $x \in \mathbb{R}$.
- 7. Let $A = \{a, b, c, d\}$ and $B = \{q, r, s, t\}$. Give an example, if such an example exists, of a function $f : A \to B$ that is
 - (a) one-to-one but not onto
 - (**b**) onto but not one-to-one
 - (\mathbf{c}) one-to-one and onto
 - (d) neither one-to-one nor onto
- 9. Let $A = \{a, b, c\}$ and $B = \{1, 2, 3, 4\}$. Does there exist a function from A to B that is onto?
- **11.** A function $f : \mathbb{Z} \to \mathbb{Z}$ is defined by f(n) = 2n. Determine with explanation whether f is (a) one-to-one, (b) onto.
- **13.** A function $f : \mathbb{Z} \to \mathbb{Z}$ is defined by f(n) = 5n + 1. Determine with explanation whether f is (a) one-to-one, (b) onto.

19. Each of the following is a function from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} . Which of these are one-to-one?

- (a) f(a,b) = 2a+b
- (**b**) f(a,b) = b
- (c) $f(a,b) = a^2 + b^2$
- (d) $f(a,b) = a^b$
- (e) $f(a,b) = 2^a 3^b$
- **21.** Let $f: A \to B$ be a function for nonempty sets A and B. Prove or disprove the following. (a) If, for every two nonempty subsets A_1 and A_2 of A, $f(A_1) = f(A_2)$ implies that $A_1 = A + 2$, then f is one-to-one.
 - (b) If, for every two nonempty subset B_1 of B, there exists a subset A_1 of A such that $f(A_1) = B_1$, then f is onto.
- **29.** For $A = \{a, b, c\}$ and $B = \{w, x, y, z\}$, let $f : A \to B$ be the function defined by f(a) = y, f(b) = z, and f(c) = w. Determine, with explanation
 - (a) whether f is one-to-one
 - (b) whether f has an inverse function from B to A
- **31.** Show that the function $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 5x 7 is bijective and determine $f^{(-1)}(x)$ for $x \in \mathbb{R}$.
- **35.** Let $A = \{1, 2, 3\}, B = \{a, b, c\}, \text{ and } C = \{x, y, z\}.$ The functions $f : A \to B$ and $g : B \to C$ defined by $f = \{(1, c), (2, a), (3, b)\}$ and $g = \{(a, y), (b, z), (c, x)\}$ are bijective.
 - (a) Determine $g \circ f : A \to C$ and $(g \circ f)^{-1} : C \to A$
 - (b) Determine $f^{-1}: B \to A, g^{-1}: C \to B$, and $f^{-1} \circ g^{-1}: C \to A$
- **37.** Give an example of a finite set S and a bijection $f: S \to S$ such that all of the elements $f(a), (f \circ f)(a), f^{-1}(a)$ are distinct for each $a \in S$.

Section 5.5

- 1. Let E denote the set of even integers and O denote the set of odd integers. Show that |E| = |O|.
- **3.** Let A denote a denumerable set and let B be a nonempty finite set. Show that if A and B are disjoint, then $A \cup B$ is a denumerable set.
- 9. Prove or disprove: If A is a nonempty subset of a denumerable set, then A is denumerable.