Mathematics Department, University of Massachusetts Dartmouth
 Discrete Mathemtics II
 MTH182 - Section 03 - Spring 2015 Problem set 5
 Bijective Functions and cardinality

Reading: Discrete Mathematics, first edition, section Sections 5.4, 5.5
Section 5.4, 1, 3, 5, 7, 9, 11, 13, 19, 21, 29, 31, 35, 37
Section 5.5, 1, 3, 9

Section 5.4

1. Let $A=\{1,2,3,4\}$ and $B=\{1,2,3,4,5\}$. Given an example of
(a) a function $f: A \rightarrow B$ that is not one-to-one but where $f(1) \neq f(2)$
(b) a one-to-one function $g: A \rightarrow B$ where $g(1) \neq 3 \neq g(2)$
(c) a one-to-one function $h: A \rightarrow B$ such that $h(n)>n$ for every $n \in A$
2. Let $A=\{a, b, c, d\}$ and $B=\{a, b, c\}$. Give an example of
(a) a function $f: A \rightarrow B$ that is not onto but where $f(a) \neq f(b)$
(b) a function $g: A \rightarrow B$ that is onto, but where $g(a)=g(b)$
(c) a function $h: A \rightarrow B$ that is onto but $h(x) \neq x$ for each $x \in B$
3. Determine, with explanation, whether the following functions are onto.
(a) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by $f(n)=4 n+1$ for $n \in \mathbb{Z}$
(b) $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is defined by $f(x)=x^{2}$ for $x \in \mathbb{R}^{+}$
(c) $f: \mathbb{R} \rightarrow \mathbb{Z}$ is defined by $f(x)=\lceil x\rceil$ for $x \in \mathbb{R}$
(d) $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=x^{2}+2 x+1$ for $x \in \mathbb{R}$.
4. Let $A=\{a, b, c, d\}$ and $B=\{q, r, s, t\}$. Give an example, if such an example exists, of a function $f: A \rightarrow B$ that is
(a) one-to-one but not onto
(b) onto but not one-to-one
(c) one-to-one and onto
(d) neither one-to-one nor onto
5. Let $A=\{a, b, c\}$ and $B=\{1,2,3,4\}$. Does there exist a function from A to B that is onto?
6. A function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by $f(n)=2 n$. Determine with explanation whether f is (a) one-to-one, (b) onto.
7. A function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by $f(n)=5 n+1$. Determine with explanation whether f is (a) one-to-one, (b) onto.
8. Each of the following is a function from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N}. Which of these are one-to-one?
(a) $f(a, b)=2 a+b$
(b) $f(a, b)=b$
(c) $f(a, b)=a^{2}+b^{2}$
(d) $f(a, b)=a^{b}$
(e) $f(a, b)=2^{a} 3^{b}$
9. Let $f: A \rightarrow B$ be a function for nonempty sets A and B. Prove or disprove the following.
(a) If, for every two nonempty subsets A_{1} and A_{2} of $A, f\left(A_{1}\right)=f\left(A_{2}\right)$ implies that $A_{1}=A+2$, then f is one-to-one.
(b) If, for every two nonempty subset B_{1} of B, there exists a subset A_{1} of A such that $f\left(A_{1}\right)=B_{1}$, then f is onto.
10. For $A=\{a, b, c\}$ and $B=\{w, x, y, z\}$, let $f: A \rightarrow B$ be the function defined by $f(a)=y$, $f(b)=z$, and $f(c)=w$. Determine, with explanation
(a) whether f is one-to-one
(b) whether f has an inverse function from B to A
11. Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=5 x-7$ is bijective and determine $f^{(-1)}(x)$ for $x \in \mathbb{R}$.
12. Let $A=\{1,2,3\}, B=\{a, b, c\}$, and $C=\{x, y, z\}$. The functions $f: A \rightarrow B$ and $g: B \rightarrow C$ defined by $f=\{(1, c),(2, a),(3, b)\}$ and $g=\{(a, y),(b, z),(c, x)\}$ are bijective.
(a) Determine $g \circ f: A \rightarrow C$ and $(g \circ f)^{-1}: C \rightarrow A$
(b) Determine $f^{-1}: B \rightarrow A, g^{-1}: C \rightarrow B$, and $f^{-1} \circ g^{-1}: C \rightarrow A$
13. Give an example of a finite set S and a bijection $f: S \rightarrow S$ such that all of the elements $f(a),(f \circ f)(a), f^{-1}(a)$ are distinct for each $a \in S$.

Section 5.5

1. Let E denote the set of even integers and O denote the set of odd integers. Show that $|E|=|O|$.
2. Let A denote a denumerable set and let B be a nonempty finite set. Show that if A and B are disjoint, then $A \cup B$ is a denumerable set.
3. Prove or disprove: If A is a nonempty subset of a denumerable set, then A is denumerable.
