Mathematics Department, University of Massachusetts Dartmouth
 Discrete Mathemtics II
 MTH182 - Section 03 - Spring 2015 Problem set 3
 Equivalence relations

Reading: Discrete Mathematics, first edition, section Sections 5.2

Section 5.2, 1, 3, 5, 7, 9, 11, 15

Section 5.2

1. A relation R is defined on $\mathbb{N} \times \mathbb{N}$ by $(a, b) R(c, d)$ if $a+d=b+c$.
(a) Show that R is an equivalence relation.
(b) Describe the equivalence classes $[(3,1)]$, $[(5,5)]$, $[(4,7)]$.
2. Let R be an equivalence relation on the set $S=\{a, b, c, d, e, f\}$. If the distinct equivalence classes are $\{a, d\},\{b, f\}$, and $\{c, e\}$, what is R ?
3. An equivalence relation R on the set $S=\{1,2,3,4,5,6\}$ results in three distinct equivalence classes. Given that (a) $3 \in[4] \cap[5]$, (b) $[2] \cap[6]=\varnothing$, and (c) $1 \in[3]$, what is R ?
4. Let R be a relation defined on \mathbb{Z} by $a R b$ if $a+b=0$ or $a-b=0$.
(a) Determine whether R is an equivalence relation.
(b) If R is an equivalence relation, then describe the distinct equivalence classes.
5. A relation R is defined on the set \mathbb{Z} of integers by $a R b$ if $11 a-5 b$ is even.
(a) Show that R is an equivalence relation.
(b) Describe the distinct equivalence classes resulting from R.
6. A relation R is defined on $\mathbb{Z} \times \mathbb{Z}$ by $(a, b) R(c, d)$ if $a b c d$ is even. Is R an equivalence relation?
7. Let S be a nonemtpy set and let $\mathcal{P}=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ be a partition of S, where $k \geq 1$. Define a relation R on S by $a R b$ if $a, b \in S_{i}$ for some i with $1 \leq i \leq k$.
(a) Prove that R is an equivalence relation.
(b) Describe the distinct equivalence classes resulting from R.
