MATHEMATICS DEPARTMENT, UNIVERSITY OF MASSACHUSETTS DARTMOUTH Discrete Mathemtics II MTH182 – Section 03 – Spring 2015 Problem set 2 Strong induction and relations

Reading: Discrete Mathematics, first edition, section Sections 4.3, 4.4, 5.1 Section 4.3: 1 Section 4.4: 1, 3 Section 5.1: 1, 3, 5, 7, 9

Section 4.3

1. Write out the first four terms of the sequence $\{a_n\}$, for which $a_n = (-1)^{n+1} \frac{2n+3}{3 \cdot 2^{n-1}}$.

Section 4.4

- **1.** A sequence $\{a_n\}$ is defined recursively by $a_1 = 1$ and $a_n = 2a_{n-1}$ for $n \ge 2$.
 - (a) Determine a_2 , a_3 , a_4 , and a_5 .
 - (b) Conjecture a formula for a_n for each positive integer n.
 - (c) Verify the conjecture in part (b).
- **3.** A sequence a_1, a_2, a_3, \ldots of integers is defined recursively by $a_1 = 4, a_2 = 7$, and $a_n = 2a_{n-1} a_{n-2} + 2$ for $n \ge 3$. Prove that $a_n = n^2 + 3$ for every positive integer n.

Section 5.1

- 1. Let $A = \{1, 2, 3\}$ and $B = \{4, 5, 6\}$. Give an example of a relation R from A to B such that 1 is related to 5, but 2 is not related to 4.
- **3.** For $A = \{a, b, c, d\}$ and $B = \{x, y, z\}$, the set $R = \{(a, y), (a, z), (b, y), (c, x), (c, z)\}$ of ordered pairs is a relation from A to B. Describe this relation by a diagram.
- 5. Let $A = \{1, 2, 4, 5\}$ and $B = \{2, 3, 5\}$. A relation R from A to B is defined by a R b if a + b is prime. Express R as a set of ordered pairs.
- 7. The following are relations on the set $S = \{1, 2, 3, 4\}$. Which of the properties reflexive, symmetric, and transitive does each relation possess?
 - (a) $R_1 = \{(1,2), (2,1), (3,4), (4,3)\}$
 - (b) $R_2 = \{(1,2), (1,3), (1,4)\}$
 - (c) $R_3 = \{(1,1), (1,2), (2,2), (2,3), (3,3), (3,4), (4,4), (4,1)\}$
 - (d) $R_4 = \{(1,2), (3,4)\}$
 - (e) $R_5 = \{(1,1), (2,2), (3,3), (3,1), (4,4)\}$

- **9.** The relation R is defined on the set \mathbb{R} of real numbers by x R y if $x y \ge 0$, that is, x R y if the point (x, y) in the plane lies on or to the right of the line y = x.
 - (a) Given an example of two real numbers a and b such that $a \ R \ b$ and two real numbers c and d such that $c \ R \ d$.
 - (b) Which of the properties reflexive, symmetric, and transitive does R possess?