Mathematics Department, University of Massachusetts Dartmouth
 Discrete Mathemtics II MTH182 - Section 03 - Spring 2015 Problem set 2 Strong induction and relations

```
Reading: Discrete Mathematics, first edition, section Sections 4.3, 4.4, 5.1
    Section 4.3: 1
    Section 4.4: 1, 3
    Section 5.1: 1, 3, 5, 7, 9
```


Section 4.3

1. Write out the first four terms of the sequence $\left\{a_{n}\right\}$, for which $a_{n}=(-1)^{n+1} \frac{2 n+3}{3 \cdot 2^{n-1}}$.

Section 4.4

1. A sequence $\left\{a_{n}\right\}$ is defined recursively by $a_{1}=1$ and $a_{n}=2 a_{n-1}$ for $n \geq 2$.
(a) Determine a_{2}, a_{3}, a_{4}, and a_{5}.
(b) Conjecture a formula for a_{n} for each positive integer n.
(c) Verify the conjecture in part (b).
2. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ of integers is defined recursively by $a_{1}=4, a_{2}=7$, and $a_{n}=$ $2 a_{n-1}-a_{n-2}+2$ for $n \geq 3$. Prove that $a_{n}=n^{2}+3$ for every positive integer n.

Section 5.1

1. Let $A=\{1,2,3\}$ and $B=\{4,5,6\}$. Give an example of a relation R from A to B such that 1 is related to 5 , but 2 is not related to 4 .
2. For $A=\{a, b, c, d\}$ and $B=\{x, y, z\}$, the set $R=\{(a, y),(a, z),(b, y),(c, x),(c, z)\}$ of ordered pairs is a relation from A to B. Describe this relation by a diagram.
3. Let $A=\{1,2,4,5\}$ and $B=\{2,3,5\}$. A relation R from A to B is defined by $a R b$ if $a+b$ is prime. Express R as a set of ordered pairs.
4. The following are relations on the set $S=\{1,2,3,4\}$. Which of the properties reflexive, symmetric, and transitive does each relation possess?
(a) $R_{1}=\{(1,2),(2,1),(3,4),(4,3)\}$
(b) $R_{2}=\{(1,2),(1,3),(1,4)\}$
(c) $R_{3}=\{(1,1),(1,2),(2,2),(2,3),(3,3),(3,4),(4,4),(4,1)\}$
(d) $R_{4}=\{(1,2),(3,4)\}$
(e) $R_{5}=\{(1,1),(2,2),(3,3),(3,1),(4,4)\}$
5. The relation R is defined on the set \mathbb{R} of real numbers by $x R y$ if $x-y \geq 0$, that is, $x R y$ if the point (x, y) in the plane lies on or to the right of the line $y=x$.
(a) Given an example of two real numbers a and b such that $a R b$ and two real numbers c and d such that $c \quad R d$.
(b) Which of the properties reflexive, symmetric, and transitive does R possess?
