Mathematics Department, University of Massachusetts Dartmouth
Discrete Mathemtics II
MTH182 - Section 001 - Spring 2015
Problem set 1
Review of proof by induction

Reading: Discrete Mathematics, first edition, section Sections 4.1, 4.2
Section 4.1: 1, 3, 5, 7
Section 4.2: 1, 9

Section 4.1

1. Prove that $\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{(n+1)(n+2)}=\frac{n}{2 n+4}$ for every positive integer n.
2. Prove that $\frac{1}{1 \cdot 4}+\frac{1}{4 \cdot 7}+\frac{1}{7 \cdot 10}+\cdots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{3 n+1}$ for every positive integer n.
3. Prove that $1+5+9+\cdots+(4 n-3)=n(2 n-1)$ for every positive integer n.
4. Prove the result in Result 4.5 in the book: For every positive integer $n, 1^{2}+2^{2}+\cdots+n^{2}=$ $\frac{n(n+1)(2 n+1)}{6}$.

Section 4.2

1. Use induction to prove that $2^{n}>n$ for every nonnegative integer n.
2. Prove by induction that $n^{2}+n+1$ is odd for every nonnegative integer n.
