
Mathematics Department, University of Massachusetts Dartmouth
High Performance Scientific Computing

MTHEAS 520 – Section 01 – Spring 2015
Project 3
OpenMP

Due May 5, 2015

There are two major tasks for this project:

a. Rerun the Lorentz attractor simulation from the previous project, but this time parallelize it
using OpenMP.

b. Write a serial and OpenMP-parallelized version of a matrix QR factorization.

As with the previous project, all these should be written to run on the cluster.

Please understand that the cluster is a shared resource – do not hog several nodes for yourself for
an extended period of time.

1 Chaos in the Lorentz attractor

Consider the serial Lorentz attractor code from Project 2 (repository lorentz on the class git
server). Parallelize the code to produce a particle cloud just as in Project 2, but this time using
OpenMP.

Your ultimate task is to reproduce, extend, and/or augment the scatterplots in Figure 2 from
Project 2.

• You are free to modify the code in the lorentz repository as much or as little as you like. But
your submitted code must employ OpenMP directives to foster computational parallelism.

• To generate standard normal random variables if you cannot generate them natively (e.g., in
C), then you are free to use any external library on the Internet that you wish. However, it
may be simpler to use the Box-Muller transform:
see http://en.wikipedia.org/wiki/Normal_distribution#Generating_values_from_normal_
distribution,
http://en.wikipedia.org/wiki/Box-Muller_transform.

• The parameter choices σ = 10, β = 8
3 , and ρ = 28 are known to produce chaos, but many

others do, too. You may change the parameter values to anything you wish.

• Your submission should contain your C or Fortran code with an appropriate makefile, and
bash/pbs scripts.

• Your report should describe what problem you are trying to solve and what your code does. It
should contain whatever scatterplots you were able to generate, and should give a high-level
description of your approach for parallelism.

Akil Narayan: akil.narayan (at) umassd.edu 1

http://en.wikipedia.org/wiki/Normal_distribution#Generating_values_from_normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution#Generating_values_from_normal_distribution
http://en.wikipedia.org/wiki/Box-Muller_transform


Project 3
MTHEAS 520 High Performance Scientific Computing University of Massachusetts Dartmouth

• For an optional challenge: make a video of the particle cloud evolution. (Upload it onto a
data partition of the cluster, do not submit it via git.)

2 The QR factorization

Let A be an m × n matrix, and for simplicity we’ll assume that m ≥ n and that A has full rank.
There is a matrix decomposition

A = QR,

where (i) Q is an m×n matrix whose columns are orthonormal, and (ii) R is a square n×n matrix
that is upper-triangular and invertible. The columns of the matrix Q are an orthonormal basis for
the column span of A. Loosely speaking, this decomposition takes the columns of A (that are not
necessarily orthogonal) and transforms them into an orthonormal set of vectors that are stored as
the columns of Q; the coefficients that transform the columns of Q back into the columns of A are
given as the entries of R.

One straightforward way to compute the matrices Q and R is to perform Gram-Schmidt orthog-
onalization: let a1, . . .an be te columns of A. For j = 1, . . . , n:

• Compute rj,j = ‖aj‖

• Set qj = aj/rj,j

• For k = j + 1, . . . , n:

– Compute rj,k = 〈ak,qj〉
– Set ak ← ak − rj,kqj

At the end of the algorithm, the scalars rj,k are the entries of the matrix R and the vectors qj are
the columns of the matrix Q.

Your task is to write C or Fortran code that performs a QR factorization using the Gram-Schmidt
algorithm above, which uses OpenMP to accelerate computations. You may assume that the input
m× n matrix A has full rank and that m ≥ n.

• You will probably find it helpful to write a serial version of the pseudocode above first. After
that, try to look at your serial code and figure out where you can take advantage of parallelism.

• Your report should describe what problem you are trying to solve and what your code does. It
should give a high-level description of your approach for parallelism and, if possible, timings
illustrating efficiency of the parallelization. In order to see the benefits of parallelism, you
should test your code on relatively large matrices, e.g., a 1000× 300 matrix A.

• For an optional challenge: write a column-pivoted QR decomposition routine that is paral-
lelized using OpenMP. A column-pivoted factorization generates a decomposition AP = QR,
with P a permutation matrix that is defined so that the diagonal elements of R satisfy
rj,j ≥ rj+1,j+1 for all j. This can be accomplished by inserting an initial step within the
j-counter loop: (i) find the column index ` so that ‖a`‖ ≥ ‖ak‖ for k = j, . . . , n, and (ii) swap
columns a` ↔ aj . The permutation matrix P should keep track of this swap, and you can
perform this swap without actually moving any of the elements of A around.

Akil Narayan: akil.narayan (at) umassd.edu 2



Project 3
MTHEAS 520 High Performance Scientific Computing University of Massachusetts Dartmouth

3 Submit

You must submit (1) your source code (C and/or Fortran), and (2) your LATEX source code (not
the dvi/ps/pdf output) via a Git repository. You are submitting to the john-smith-project-3

repository on the class git server, where you should replace john-smith with your first and last
name.

Akil Narayan: akil.narayan (at) umassd.edu 3


	Chaos in the Lorentz attractor
	The Q R factorization
	Submit

