
Mathematics Department, University of Massachusetts Dartmouth
High Performance Scientific Computing

MTHEAS 520 – Section 01 – Spring 2015
Project 1 – Due Thursday, Feb 19

Getting our act together

Most of the directives below assume you are working with a unix/linux-based operating system. Of
course a Linux operating system is fine. Mac OSX ia Unix-based, and it is also fine. (There may
be some slightly differences compared to a Linux distribution.) If you insist on using Windows,
you will likely spend a large amount of time searching the internet for solutions to program and/or
compilation problems. Consider yourself warned. All the machines in LArts 218 are Mac OSX
machines, and so you can use those for completing these projects.

I expect most students will have access to a Mac OSX machine, and so this description will gener-
ally be OSX-skewed.

For most of this class, I will assume that you are working with a Unix-like terminal command
prompt. You are, of course, free to use any GUI that you like.

There are six main tasks for this project:
1. Set up and learn version control (for this class: Git)
2. Set up C and Fortran compilers
3. Write some C and Fortran code (based on assignment below)
4. Set up and learn basics for mathematical document typesetting (for this class: LATEX)
5. Write a report
6. Submit both the report and your code (with Git!)

1 Version control: Git

You can first test if you have Git installed by typing git at the terminal prompt. If you don’t have
Git installed, download a binary from: http://git-scm.com/.

Git is a distributed version control system. This essentially means that if various people all have
copies of a repository, there is no “master” repository – from Git’s point of view, all the repository
copies are treated democratically. This has consequences for project workflows.

For this part of the project, all you need to do (a) install Git on your system, and (b) familiarize
yourself with Git. The following are tutorials on the Internet that are useful for learning Git:

• https://try.github.io/ – Interactive, browser-based, but short and limited on content

• https://www.atlassian.com/git/tutorials – More comprehensive tutorial

• http://git-scm.com/docs/gittutorial – The official tutorial from the documentation.
(You get the same thing in a terminal with the command gittutorial.)

Make sure you are comfortable with the following commands and their basic usage:

Akil Narayan: akil.narayan (at) umassd.edu 1

http://git-scm.com/
https://try.github.io/
https://www.atlassian.com/git/tutorials
http://git-scm.com/docs/gittutorial

Project 1 – Due Thursday, Feb 19
MTHEAS 520 High Performance Scientific Computing University of Massachusetts Dartmouth

• git init, git clone, git pull, git push

• git add, git commit, git log, git status

Note that Git includes a native visualization tool, gitk, which provides a nice GUI display of the
commit history with details.

2 C and Fortran

You will need to know C or Fortran for this course. I recommend you learn C.

Here are some basic C tutorials:

• http://www.cprogramming.com/tutorial/c-tutorial.html

• http://www.physics.drexel.edu/courses/Comp_Phys/General/C_basics/c_tutorial.html

If you choose to learn Fortran, I would recommend you learn a later version of Fortran (e.g., Fortran
95). The following are some tutorials:

• http://www.fortrantutorial.com/

• http://www.mrao.cam.ac.uk/~rachael/compphys/SelfStudyF95.pdf

• http://www-eio.upc.edu/lceio/manuals/Fortran95-manual.pdf

You do not need to learn advanced features of either language at this stage. Just get the basics
down: output to screen, writing to files, arithmetic, arrays, logical statements, conditional and loop
statements, etc.

3 Coding assignment

Write programs to accomplish the following in either C or Fortran.

Calculate the value of π

One way to compute an approximate value for integrals is the Monte Carlo method: Let f(x) be
a real-valued function, where x is a multidimensional vector taking values in some region R ⊂ Rd.
Now let Xi for i = 1, 2, . . . be independent and identically distributed (iid) random variables. The
random variables Xi are uniform random variables taking values in R. Then∫

R
f(x) dx = lim

N→∞

1

N

N∑
i=1

f(Xi).

In order to calculate the value of π, let D ⊂ R2 be the two-dimensional unit disc, i.e., D ={
x ∈ R2 | x21 + x22 ≤ 1

}
, and letR be the circumscribing square: R =

{
x ∈ R2 | |x1| ≤ 1 and |x2| ≤ 1

}
.

Let f(x) ≡ 1D(x) be the indicator function on D: The following where 1D(y) is an indicator func-
tion, defined as

1D(x) =

{
1, x ∈ D,
0, x 6∈ D.

Akil Narayan: akil.narayan (at) umassd.edu 2

http://www.cprogramming.com/tutorial/c-tutorial.html
http://www.physics.drexel.edu/courses/Comp_Phys/General/C_basics/c_tutorial.html
http://www.fortrantutorial.com/
http://www.mrao.cam.ac.uk/~rachael/compphys/SelfStudyF95.pdf
http://www-eio.upc.edu/lceio/manuals/Fortran95-manual.pdf

Project 1 – Due Thursday, Feb 19
MTHEAS 520 High Performance Scientific Computing University of Massachusetts Dartmouth

Then clearly ∫
R
f(x) dx =

∫
D

1 dx = area(D) = π.

Thus, if we take Xi as iid random variables uniformly distributed on D, the Monte Carlo approxi-
mation 1

N

∑N
i=1 1D(Xi) converges to π as N increases.

Write C and Fortran programs that compute this Monte Carlo approximation to π for N = 10k

for k = 2, 3, 4, 5. Note that if Xi is a uniformly distributed on R = [−1, 1]2, then its x and y
coordinates are uniform scalar random variables on the domain [−1, 1]. Thus, you will need to find
out how to generate uniform random variables in C and Fortran.

Approximate the Mandelbrot set

Let z = x+ iy be a complex number, with i =
√
−1. Define pa(z) = z2 + a. The Mandelbrot set is

the collection of values a ∈ C such that

lim
n→∞

p(n)a (0) 6=∞,

where∞ is taken as “complex” infinity, and a nonexistent limit is equivalent to the limit not being
∞. Let M be the Mandelbrot set. (You can verify yourself directly that a = 0 ∈ M so that M is
nonempty.)

To understand how we can approximate M , consider first the known fact that if a ∈ M , then

|p(n)a (0)| ≤ 2 for any n ≥ 0. Thus, if |p(n)a (0)| > 2 for any n, then the value a does not lie in n.
Secondly, we cannot actually compute the limit as n → ∞ in finite time, so we content ourselves
with the assumption that, for some large N ,

p(N)
a (0) ≈ lim

n→∞
p(n)a (0),

where of course this is a bit nonsensical if we choose an a such that the limit doesn’t exist. However,
combining the first and second points, we can test whether some a lies in the Mandelbrot set via
the following algorithm: select a large N , set z0 = 0, and recursively define zn = pa(zn−1) for
n = 1, . . . , N . If, at some n, we test and find |zn| > 2, we conclude that a 6∈ M . On the other
hand, if we reach zN with |zN | ≤ 2, we conclude that a ∈ M . (This latter conclusion is possibly
false, hence this is only an approximation.)
Write programs to (a) compute points that fall within the Mandelbrot set, and (b) approximate
the area of M . You may compute points in the set by choosing a large N (say 1000), creating an
equidistant grid on [−2.5, 1] × [−1, 1] ⊂ C, and using the algorithm from the previous paragraph
to test if each point fall within M . Note that you may also choose to construct a color plot of
Mandelbrot set; to do so, you associate a color (i.e., a number) with each point in the equidistant
grid. The way in which the color is chosen is usually via some count of number of iterations required
to escape, or distance to the boundary of M , etc. You may find such a discussion on the Wikipedia
page.
https://en.wikipedia.org/wiki/Mandelbrot_set

Akil Narayan: akil.narayan (at) umassd.edu 3

https://en.wikipedia.org/wiki/Mandelbrot_set

Project 1 – Due Thursday, Feb 19
MTHEAS 520 High Performance Scientific Computing University of Massachusetts Dartmouth

4 Typesetting with LATEX

LATEX is a typesetting language for documents. It is most often used in technical disciplines for its
ability to display languages, but is used even in non-technical fields. In this class, you will write
report documents for each project and submit these to me.

In order to use LATEX, you must first install it on your system; for Mac OSX, the MacTEX package
is a relatively painless way to do so: https://tug.org/mactex. This installs command-line tools
for you to use. However, most people prefer a GUI interface. There are many operating-system-
specific tools for this. E.g., on OSX, TEXShop are two such TEXworks packages.

In order to generate plots from the programs you have written, you have several options:

• Open data files in Matlab (these data files should be generated from your C/Fortran code)

• Open data files in Python. OSX comes with its own versions of NumPy and Matplotlib;
if you are using your own machine, you may want to consider a custom install: http://

matplotlib.org/faq/installing_faq.html#os-x-notes. This is not necessarily, but will
allow you to more easily update in the future.

• Use another third-party but free plotting software (e.g., ParaView, gnuplot, etc.)

5 Write a report

Write a report (in LATEX) that describes the algorithms from Section 3 and displays your results.
Include details such as computational runtime (this will depend on your machine), plots, and any
observations you have about the algorithms. Do not include C or Fortran source code in your
report. I will already have your source code. (See the ”Submit” section below.)

6 Submit

You must submit (1) your source code (C and Fortran), and (2) your LATEX source code (not the
dvi/ps/pdf output) via a Git repository.

Instructions for submission are given at
http://www.math.umassd.edu/~anarayan/eas520/pdfs/git-instructions.pdf

Submit to the remote repository john-smith-project-1, replacing john-smith with your first+last
name.

Akil Narayan: akil.narayan (at) umassd.edu 4

https://tug.org/mactex
http://matplotlib.org/faq/installing_faq.html#os-x-notes
http://matplotlib.org/faq/installing_faq.html#os-x-notes
http://www.math.umassd.edu/~anarayan/eas520/pdfs/git-instructions.pdf

	Version control: Git
	C and Fortran
	Coding assignment
	Typesetting with LaTeX
	Write a report
	Submit

