Introduction to OpenMP

EAS 520
High Performance Scientific Computing

University of Massachusetts Dartmouth

Spring 2015
Thread Control

Barrier

Each thread wait at the barrier until all threads reach the barrier.

Fortran Example

```fortran
!$omp parallel private(myid, istart, iend)
call myrange(myid, nthreads, istart, iend)
do i = istart, iend
   a(i) = a(i) - b(i)
end do
!$omp barrier
call dowork(a)
!$omp end parallel
```

C/C++ Example

```c
#pragma omp parallel private(myid, istart, iend)
{
   myrange(myid, nthreads, &istart, &iend);
   for(i=istart; i<=iend; i++){
      a[i] = a[i] - b[i];
   }
   #pragma omp barrier
dowork(a);
}
```
Thread Control Continued

Master

A section of code that runs only on the master (thread with rank=0)

Fortran Example

```fortran
!$omp parallel private(myid, istart, iend)
call myrange(myid, nthreads, global_start, global_end, istart, iend)
do i = istart, iend
   a(i) = b(i)
end do
!$omp barrier
!$omp master
write(21) a
!$omp end master
call do_work(istart, iend)
!$omp end parallel
```
Thread Control Continued

Master

A section of code that runs only on the master (thread with rank=0)

C/C++ Example

```c
#pragma omp parallel private(myid, istart, iend)
{
    myrange(myid, nthreads, global_start, global_end, &istart, &iend);
    for(i=istart; i<=iend; i++){
        a[i] = b[i];
    }
    #pragma omp barrier
    #pragma omp master
    {
        n = global_end - global_start + 1;
        write_size = fwrite(a, 1, n, file_pointer);
    }
    do_work(istart, iend);
}
```

Single: Similar to Master except runs only on the first thread to reach it
Thread Control Continued

Critical

- Only one thread executes a specified section of the code at a time
- Threads can execute in any order
- Similar to ORDERED directive except ordered specifies that threads go in numerical order

Fortran Example

```fortran
the_max = 0.0
!$omp parallel private(myid, istart, iend)
   call myrange(myid, nthreads, global_start, global_end, istart, iend)
   call compute_a(a(istart:iend))
   !$omp critical
     the_max = max( maxval(a(istart:iend), the_max )
   !$omp end critical
   call more_work_on_a(a)
!$omp end parallel
```
Thread Control Continued

C/C++ Example

the_max = 0.0;
#pragma omp parallel private(myid, istart, iend)
{
 myrange(myid, nthreads, global_start, global_end, &istart, &iend);
 nvals = iend-istart+1;
 compute_a(a[istart],nvals);
 #pragma omp critical
 the_max = max(maxval(a[istart],nvals), the_max);
 #pragma omp end critical
 call more_work_on_a(a)
}
Thread Control Continued

Sections/Section

- A section of code that is run by only one thread
- Sections are performed in parallel

Fortran Example

```
!$omp parallel
!$omp sections
  !$omp section
  call init_field(field)
  !$omp section
  call check_grid(grid)
!$omp end sections
!$omp end parallel
```

C/C++ Example

```
#pragma omp parallel
{
  #pragma omp sections
  {
    #pragma omp section
    init_field(field);
  }
  #pragma omp section
  check_grid(grid);
}
```