
OpenMP, Part 2

EAS 520
High Performance Scientific Computing

University of Massachusetts Dartmouth

Spring 2015

EAS 520 (University of Massachusetts Dartmouth) Intro to OpenMP

References

This presentation is almost an exact copy of Dartmouth College's
openMP tutorial. The link can be found in:

http://www.dartmouth.edu/~rc/classes/intro_openmp/

Changes from the original document are related to compilers and job
submissions for UMass Dartmouth clusters.

EAS 520 (University of Massachusetts Dartmouth) Intro to OpenMP

http://www.dartmouth.edu/~rc/classes/intro_openmp/

How to Compile and run an OpenMP program
On the UMD cluster, the default gcc and gfortran compilers support
OpenMP.
Altneratively, you could load a different compiler via a module command:

$ module load eas520/compilers/gcc-4.8.2

Then you can compile the source code

$ gfortran -fopenmp -o hello-f hello-f.f90

and run the program

$./hello-f

The output should look like (thread calls order can be different)

Hello from thread 1, nthreads 4
Hello from thread 3, nthreads 4
Hello from thread 2, nthreads 4
Hello from thread 0, nthreads 4

EAS 520 (University of Massachusetts Dartmouth) Intro to OpenMP

Approaches to Parallelism Using OpenMP

Two main approaches:

• loop-level

• parallel regions

Loop-Level Parallelism:

• sometimes call fine-grained parallelism

• individual loops parallelized

• each thread assigned a unique range of the loop index

• execution starts on a single serial thread

• multiple threads are spawned inside a parallel loop

• after parallel loop execution is serial

• relatively easy to implement

(We gave simplistic examples of this last time.)
EAS 520 (University of Massachusetts Dartmouth) Intro to OpenMP

Continued..

Parallel Regions Parallelism:

• sometimes called coarse-grained parallelism

• any sections of codes can be parallelized (not just loops)

• using the thread identifier to distribute the work

• execution starts on a single serial thread

• multiple threads are started for parallel regions (not necessarily at a
loop)

• ends on a single serial thread

EAS 520 (University of Massachusetts Dartmouth) Intro to OpenMP

Shared vs Private Variables
• By default all variables in a loop share the same address space

• All threads can modify and access all variables (except the loop index)

• Can result in incorrect results

• Can use shared and private clauses with parallel for or parallel do

Example of Code with No Data Dependencies
Fortran Example

!$omp parallel do private(temp) shared(n,a,b,c)
do i = 1, n

temp = 2.0*a(i)
a(i) = temp
b(i) = c(i)/temp

enddo

C/C++ Example

#pragma omp parallel for private(temp) shared(n,a,b,c)
{

for(i=1; i<=n; i++) {
temp = 2.0*a[i];
a[i] = temp;
b[i] = c[i]/temp;

}
}

EAS 520 (University of Massachusetts Dartmouth) Intro to OpenMP

Example of Parallelizing a Loop:
Fortran Example: workshare.f90
program workshare

use omp_lib
implicit none
integer :: nthreads, tid, ncores, i
integer, parameter :: n = 100
real, dimension(n) :: a, b, c
character(LEN=50), parameter :: fmt = '(A, I2, A ,I3, A , F8.2)'

! some initializations
do i = 1, n

a(i) = i
b(i) = a(i)

end do

ncores = 8
call omp_set_num_threads(ncores)

!$omp parallel shared(a,b,c) private(i,tid)
tid = omp_get_thread_num()
if (tid .eq. 0) then

nthreads = omp_get_num_threads()
write(*,*) 'number of threads =', nthreads

end if

write(*,*) 'thread',tid,' starting...'

!$omp do
do i = 1, n

c(i) = a(i) + b(i)
write(*,fmt) ' thread', tid, ': c(', i ,')=', c(i)

end do
!$omp end do nowait

write(*,*) 'thread',tid,' done.'
!$omp end parallel

end program workshare

EAS 520 (University of Massachusetts Dartmouth) Intro to OpenMP

Example of Parallelizing a Loop

C/C++ Example

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
int main (int argc, char *argv[]) {

int nthreads, tid;

/* Fork a team of threads giving them their own copies of variables */
#pragma omp parallel private(nthreads, tid)
{

/* Obtain thread number */
tid = omp_get_thread_num();
printf("Hello World from thread = %d\n", tid);

/* Only master thread does this */
if (tid == 0)
{
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);
}

} /* All threads join master thread and disband */

}

EAS 520 (University of Massachusetts Dartmouth) Intro to OpenMP

Basic OpenMP Functions

• omp_get_num_threads() - get the number of threads used in a
parallel region

• omp_get_thread_num() - get the thread rank in a parallel
region (0 to omp_get_num_threads() -1)

• omp_set_num_threads(nthreads) - set the number of
threads used in a parallel region

Fortran Example

!$omp parallel
write(*,*) ' Thread rank: ', omp_get_thread_num()

!$omp end parallel

C/C++ Example

pragma omp parallel
{
printf("Thread rank: %d\n", omp_get_thread_num());

}
EAS 520 (University of Massachusetts Dartmouth) Intro to OpenMP

Other OpenMP Clauses (firstprivate, lastprivate,
ordered)

firstprivate

• initialize a variable from the serial part of the code

• private clause doesn't initialize the variable

Fortran Example
j = jstart
!$omp parallel do firstprivate(j)
do i = 1, n

if(i == 1 .or. i == n) then
j = j + 1

endif
a(i) = a(i) + j

end do

C/C++ Example

j = jstart;
#pragma omp parallel for firstprivate(j)
{

for(i=1; i<=n; i++){
if(i == 1 || i == n)

j = j + 1;
a[i] = a[i] + j;

}
}

EAS 520 (University of Massachusetts Dartmouth) Intro to OpenMP

Continued...

lastprivate

• thread that executes the ending loop index copies its value to the master (serial)
thread

• this gives the same result as serial execution

Fortran Example
!$omp parallel do lastprivate(x)
do i = 1, n

x = sin(pi*dx*real(i))
a(i) = exp(x)

end do
lastx = x

C/C++ Example
#pragma omp parallel for lastprivate(x)
{

for(i=1; i<=n; i++){
x = sin(pi * dx * (float)i);
a[i] = exp(x);

}
}
lastx = x;

EAS 520 (University of Massachusetts Dartmouth) Intro to OpenMP

Continued...

ordered

• used when part of the loop must execute in serial order

• ordered clause plus an ordered directive

Fortran Example
!$omp parallel do private(myval) ordered
do i = 1, n

myval = do_lots_of_work(i)
!$omp ordered
write(*,*) i, myval
!$omp end ordered

end do
lastx = x

EAS 520 (University of Massachusetts Dartmouth) Intro to OpenMP

Continued....

C/C++ Example
#pragma omp parallel for private(myval) ordered
{

for(i=1; i<=n; i++){
myval = do_lots_of_work(i);
#pragma omp ordered
{

printf("%d %d\n", i, myval);
}

}
}

EAS 520 (University of Massachusetts Dartmouth) Intro to OpenMP

Reduction Operations

An example of a reduction operation is a summation:
Fortran Example

do i = 1, n
sum = sum + a(i)

end do

C/C++ Example

for(i=1; i<=n; i++){
sum = sum + a[i];

}

How reduction works:

• sum is the reduction variable

• cannot be declared shared

• threads would overwrite the value of sum

• cannot be declared private

• private variables don't persist outside of parallel region

• specified reduction operation performed on individual values from each thread

EAS 520 (University of Massachusetts Dartmouth) Intro to OpenMP

Example of reduction clause

Fortran Example

!$omp parallel do reduction(+:sum)
do i = 1, n

sum = sum + a(i)
end do

C/C++ Example

#pragma omp parallel for reduction(+:sum)
{

for(i=1; i<=n; i++){
sum = sum + a[i];

}
}

Fortran Reduction Operands
Operator Initial Value

+ 0
* 1
- 0

.AND. .true.
.OR. .false.

.IEOR. 0
.IOR. 0

.IAND. All bits on
.EQV. .true.
MIN Largest positive #
MAX Most negative #

C/C++ Reduction Operands
Operator Initial Value

+ 0
* 1
- 0
& ˜0
| 0
ˆ 0

&& 1
|| 0

EAS 520 (University of Massachusetts Dartmouth) Intro to OpenMP

