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References

This presentation is almost an exact copy of Dartmouth College's
openMP tutorial. The link can be found in:

http://www.dartmouth.edu/~rc/classes/intro_openmp/

Changes from the original document are related to compilers and job
submissions for UMass Dartmouth clusters.
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How to Compile and run an OpenMP program
On the UMD cluster, the default gcc and gfortran compilers support
OpenMP.
Altneratively, you could load a different compiler via a module command:

$ module load eas520/compilers/gcc-4.8.2

Then you can compile the source code

$ gfortran -fopenmp -o hello-f hello-f.f90

and run the program

$ ./hello-f

The output should look like (thread calls order can be different)

Hello from thread 1, nthreads 4
Hello from thread 3, nthreads 4
Hello from thread 2, nthreads 4
Hello from thread 0, nthreads 4
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Approaches to Parallelism Using OpenMP

Two main approaches:

• loop-level

• parallel regions

Loop-Level Parallelism:

• sometimes call fine-grained parallelism

• individual loops parallelized

• each thread assigned a unique range of the loop index

• execution starts on a single serial thread

• multiple threads are spawned inside a parallel loop

• after parallel loop execution is serial

• relatively easy to implement

(We gave simplistic examples of this last time.)
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Continued..

Parallel Regions Parallelism:

• sometimes called coarse-grained parallelism

• any sections of codes can be parallelized (not just loops)

• using the thread identifier to distribute the work

• execution starts on a single serial thread

• multiple threads are started for parallel regions (not necessarily at a
loop)

• ends on a single serial thread
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Shared vs Private Variables
• By default all variables in a loop share the same address space

• All threads can modify and access all variables (except the loop index)

• Can result in incorrect results

• Can use shared and private clauses with parallel for or parallel do

Example of Code with No Data Dependencies
Fortran Example

!$omp parallel do private(temp) shared(n,a,b,c)
do i = 1, n

temp = 2.0*a(i)
a(i) = temp
b(i) = c(i)/temp

enddo

C/C++ Example

#pragma omp parallel for private(temp) shared(n,a,b,c)
{

for(i=1; i<=n; i++) {
temp = 2.0*a[i];
a[i] = temp;
b[i] = c[i]/temp;

}
}

EAS 520 (University of Massachusetts Dartmouth) Intro to OpenMP



Example of Parallelizing a Loop:
Fortran Example: workshare.f90
program workshare

use omp_lib
implicit none
integer :: nthreads, tid, ncores, i
integer, parameter :: n = 100
real, dimension(n) :: a, b, c
character(LEN=50), parameter :: fmt = '(A, I2, A ,I3, A , F8.2)'

! some initializations
do i = 1, n

a(i) = i
b(i) = a(i)

end do

ncores = 8
call omp_set_num_threads(ncores)

!$omp parallel shared(a,b,c) private(i,tid)
tid = omp_get_thread_num()
if (tid .eq. 0) then

nthreads = omp_get_num_threads()
write(*,*) 'number of threads =', nthreads

end if

write(*,*) 'thread',tid,' starting...'

!$omp do
do i = 1, n

c(i) = a(i) + b(i)
write(*,fmt) ' thread', tid, ': c(', i ,')=', c(i)

end do
!$omp end do nowait

write(*,*) 'thread',tid,' done.'
!$omp end parallel

end program workshare
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Example of Parallelizing a Loop

C/C++ Example

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
int main (int argc, char *argv[]) {

int nthreads, tid;

/* Fork a team of threads giving them their own copies of variables */
#pragma omp parallel private(nthreads, tid)
{

/* Obtain thread number */
tid = omp_get_thread_num();
printf("Hello World from thread = %d\n", tid);

/* Only master thread does this */
if (tid == 0)
{
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);
}

} /* All threads join master thread and disband */

}
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Basic OpenMP Functions

• omp_get_num_threads() - get the number of threads used in a
parallel region

• omp_get_thread_num() - get the thread rank in a parallel
region (0 to omp_get_num_threads() -1)

• omp_set_num_threads(nthreads) - set the number of
threads used in a parallel region

Fortran Example

!$omp parallel
write(*,*) ' Thread rank: ', omp_get_thread_num()

!$omp end parallel

C/C++ Example

# pragma omp parallel
{
printf("Thread rank: %d\n", omp_get_thread_num());

}
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Other OpenMP Clauses (firstprivate, lastprivate,
ordered)

firstprivate

• initialize a variable from the serial part of the code

• private clause doesn't initialize the variable

Fortran Example
j = jstart
!$omp parallel do firstprivate(j)
do i = 1, n

if(i == 1 .or. i == n) then
j = j + 1

endif
a(i) = a(i) + j

end do

C/C++ Example

j = jstart;
#pragma omp parallel for firstprivate(j)
{

for(i=1; i<=n; i++){
if(i == 1 || i == n)

j = j + 1;
a[i] = a[i] + j;

}
}
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Continued...

lastprivate

• thread that executes the ending loop index copies its value to the master (serial)
thread

• this gives the same result as serial execution

Fortran Example
!$omp parallel do lastprivate(x)
do i = 1, n

x = sin(pi*dx*real(i))
a(i) = exp(x)

end do
lastx = x

C/C++ Example
#pragma omp parallel for lastprivate(x)
{

for(i=1; i<=n; i++){
x = sin( pi * dx * (float)i );
a[i] = exp(x);

}
}
lastx = x;
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Continued...

ordered

• used when part of the loop must execute in serial order

• ordered clause plus an ordered directive

Fortran Example
!$omp parallel do private(myval) ordered
do i = 1, n

myval = do_lots_of_work(i)
!$omp ordered
write(*,*) i, myval
!$omp end ordered

end do
lastx = x
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Continued....

C/C++ Example
#pragma omp parallel for private(myval) ordered
{

for(i=1; i<=n; i++){
myval = do_lots_of_work(i);
#pragma omp ordered
{

printf("%d %d\n", i, myval);
}

}
}
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Reduction Operations

An example of a reduction operation is a summation:
Fortran Example

do i = 1, n
sum = sum + a(i)

end do

C/C++ Example

for(i=1; i<=n; i++){
sum = sum + a[i];

}

How reduction works:

• sum is the reduction variable

• cannot be declared shared

• threads would overwrite the value of sum

• cannot be declared private

• private variables don't persist outside of parallel region

• specified reduction operation performed on individual values from each thread
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Example of reduction clause

Fortran Example

!$omp parallel do reduction(+:sum)
do i = 1, n

sum = sum + a(i)
end do

C/C++ Example

#pragma omp parallel for reduction(+:sum)
{

for(i=1; i<=n; i++){
sum = sum + a[i];

}
}

Fortran Reduction Operands
Operator Initial Value

+ 0
* 1
- 0

.AND. .true.
.OR. .false.

.IEOR. 0
.IOR. 0

.IAND. All bits on
.EQV. .true.
MIN Largest positive #
MAX Most negative #

C/C++ Reduction Operands
Operator Initial Value

+ 0
* 1
- 0
& ˜0
| 0
ˆ 0

&& 1
|| 0
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