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References

This presentation is almost an exact copy of Dartmouth College's
Introduction to MPI tutorial. The link can be found in:

http://www.dartmouth.edu/~rc/classes/intro_mpi/

Changes from the original document are related to compilers and job
submissions for UMass Dartmouth clusters.
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Advantages of Parallel Programming

• Need to solve larger problems
• more memory intensive
• more computation
• more data intensive

• Parallel programming provides
• more CPU resources
• more memory resources
• solve problems that were not possible with serial program
• solve problems more quickly
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Parallel Computer Architectures

Two Basic Architectures

• Distributed Memory (ex. Compute cluster)
• collection of nodes which have multiple cores
• each node uses its own local memory
• work together to solve a problem
• communicate between nodes and cores via messages
• nodes are networked together

• Shared Memory Computer
• multiple cores
• share a global memory space
• cores can efficiently exchange/share data
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Parallel Programming Models

• Directives-based parallel programming language
• OpenMP (most widely used)
• High Performance Fortran (HPF)
• directives tell processor how to distribute data and work

across the processors
• directives appear as comments in the serial code
• implemented on shared memory architectures

• Message Passing (MPI)
• pass messages to send/receive data between processes
• each process has its own local variables
• can be used on either shared or distributed memory

architectures
• outgrowth of PVM software
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Pros and Cons of MPI

• Pros of MPI
• runs on either shared or distributed memory architectures
• can be used on a wider range of problems than OpenMP
• each process has its own local variables
• distributed memory computers are less expensive than large

shared memory computers

• Cons of MPI
• requires more programming changes to go from serial to

parallel version
• can be harder to debug
• performance is limited by the communication network

between the nodes
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Pros and Cons of OpenMP

• Pros of OpenMP
• easier to program and debug than MPI
• directives can be added incrementally - gradual parallelization
• can still run the program as a serial code
• serial code statements usually don't need modification
• code is easier to understand and maybe more easily maintained

• Cons of OpenMP
• can only be run in shared memory computers
• requires a compiler that supports OpenMP
• mostly used for loop parallelization
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Parallel Programming Issues

• Goal is to reduce execution time
• computation time
• idle time - waiting for data from other processors
• communication time - time the processors take to send and

receive messages

• Load Balancing
• divide the work equally among the available processors

• Minimizing Communication
• reduce the number of messages passed
• reduce amount of data passed in messages

• Where possible - overlap communication and computation

• Many problems scale well to only a limited number of processors
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Problem Decomposition
Two kinds of decompositions:

• Domain decomposition

• data divided into pieces of same size and mapped to different processors
• processor works only on data assigned to it
• communicates with other processors when necessary
• examples of domain (data) decomposition

• embarrassingly parallel applications (Monte Carlo simulations)
• finite difference calculations
• numerical integration

• Functional decomposition

• used when pieces of data require different processing times
• performance limited by the slowest process
• program decomposed into a number of small tasks
• tasks assigned to processors as they become available
• implemented in a master/slave paradigm
• examples of functional decomposition

• surface reconstruction from a finite element mesh
• searching images or data bases
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What is MPI ?

• MPI stands for Message Passing Interface

• library of functions (C/C++) or subroutines (Fortran)

• History
• Early message passing Argonne's P4 and Oak Ridge PVM in

1980s
• MPI-1 completed in May 1994
• MPI-2 completed in 1998

• parallel I/O
• C++/F90 bindings
• dynamic process management

• full MPI-2 implementations only recently

• MPI-2 features gradually added to MPI implementations
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Differences between versions of MPI
• Examples of Different Implementations

• MPICH - developed by Argonne Nationa Labs (freeware)
• MPI/LAM - developed by Indiana, OSC, Notre Dame (freeware)
• MPI/Pro - commerical product
• Apple's X Grid
• OpenMPI - MPI-2 compliant, thread safe

• Similiarities in Various Implementations
• source code compatibility (except parallel I/O)
• programs should compile and run as is
• support for heterogeneous parallel architectures

• clusters, groups of workstations, SMP computers, grids
• Difference in Various Implementations

• commands for compiling and linking
• how to launch an MPI program
• parallel I/O (from MPI-2)
• debugging

• Programming Approaches
• SPMD - Single Program Multiple Data (same program on all processors)
• MPMD- Multiple Program Multiple Data ( different programs on different

processors)
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