
Marie Curie FP7 Program
Uppsala University Dept of Information Technology

Division of Scientific Computing
Box 337, SE-751 05 Uppsala, Sweden
http://www.it.uu.se

FEM-RBF: A Geometrically Flexible, Efficient Numerical Solution Technique

for Partial Differential Equations with Mixed Regularity

Project Final Report
Final Publishable Summary Report

Project Acronym: FEMRBF
Project Reference: 235730
Researchers: Alfa Heryudono (alfa.heryudono@it.uu.se)

Elisabeth Larsson (elisabeth.larsson@it.uu.se)
Project Website: https://www.it.uu.se/research/project/rbf/
Project Duration: June 1, 2010 – June 30, 2012

1 About This Report . 2
2 Introduction . 3
3 Hybrid FEM-RBF scheme . 3

3.1 One Dimensional Case . 4
3.2 Two Dimensional Case . 5

4 RBF Interpolant and Differentiation Matrices . 6
5 PDE Collocation in the RBF Regions . 8

5.1 Finite Difference Mode . 8
5.2 Partition of Unity . 10

6 Numerical Experiments . 12
6.1 RBF-FD as a Full Poisson Solver . 12
6.2 Notes on Cases when nloc = N . 14
6.3 RBF-PU as a Full Poisson Solver . 15

7 Hybrid FEM-RBF for Smooth Problems . 18
7.1 Numerical Experiments in 1 Dimension . 19
7.2 Numerical Experiments in 2 Dimension . 19

8 On-going Software Project . 22
9 Conclusion . 23
10 MATLAB Codes . 24
11 MATLAB Codes . 25

1

1 About This Report

The purpose of this document is to report research work done by the PI (Alfa Heryudono) and Co-PI (Elisabeth
Larsson) at the Department of Information Technology, Division of Scientific Computing, Uppsala University in
Sweden. The PI visited Uppsala in 3 time durations: June 2010 - August 2011 (15 months), January 2012 (1 month),
and Summer 2012 (1 month) under Marie Curie FP7 program.

The main theme of the report is about numerical study in using hybrid method for solving elliptic partial dif-
ferential equations whose solutions exhibit mixed regularities. The hybrid scheme is based on finite element and
meshfree radial basis function collocation methods. Due to the size and complexity of the project, we created sev-
eral subprojects. Each subproject leaded us to new observations and results for future publications. The subprojects
along with collaborators are listed below:

Research Subprojects
Subproject Description Collaborators
RBF stability and Differentiation matrices 2D-3D Lehto, Fornberg
conditioning issue MATLAB code development Lehto
FEM-RBF hybrid methods Coupling techniques

MATLAB code development
Preliminary theory Målqvist

Partition of unity RBF collocation
Coupling technique
MATLAB code development
Iterative solver Von-Sydow, Ramage
Non-circular partitions Safdari-Vaighani
Fortran package Tillenius

Multiple boundary conditions Resampling technique Safdari-Vaighani
Fictitious points Safdari-Vaighani

Adaptivity Adaptive RBF-PU
Adaptive RBF-FD Driscoll

In this report, we put more emphasis on general overview, preliminary results, practical guides, and figures.
Details of mathematical derivations are excluded in this report. For mathematical rigor, readers may consult refer-
ences provided in the bibliography section. Some of new results will be included in our on-going work for future
publications:

1. Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis
function. E. Larsson, E. Lehto, A. Heryudono, and B. Fornberg. Uppsala technical report 2012. To be submitted
to SISC.

2. Partition of unity method for radial basis function collocation problems. E. Larsson and A. Heryudono. In
preparation

3. Hybrid finite element and radial basis function collocation methods for elliptic partial differential equations.
E. Larsson and A. Heryudono. In preparation.

4. Iterative domain decomposition scheme for RBF-based partition of unity method. E. Larsson, A. Ramage, L.
Von-Sydow, and A. Heryudono. In preparation.

5. A numerical study of radial basis function methods for solving the generalized Rosenau equation. A. Safdari-
Vaighani, A. Golbabai, A. Heryudono, and E. Larsson, Submitted to Numerical Methods for PDE, under
revision.

Results of this research have also been disseminated in the form of talks at international conferences. Those
conferences include the 2011 NSF-CBMS Radial Basis Function conference, Society of Industrial and Applied Math-
ematics (SIAM) sectional conference, and American Mathematical Society (AMS) sectional meeting.

The PI wants to thank Uppsala’s Division of Scientific Computing for its hospitality and for providing the best
research environment for visiting researchers. The PI feels that Uppsala is his second home and he will surely visit
Uppsala again in the future. Special thanks also to Mrs. Carina Lindgren for helping us in administrative work
related to this project. We want to thank UPPMAX for providing us access to MATLAB distributed computing
engine in high performance computing cluster. Finally, the PI and co-PI want to thank CORDIS Marie Curie FP7 for
providing generous support for this project.

2

2 Introduction

Problems that exhibit solutions with different regularities on localized regions are often encountered in many sci-
entific applications related to solid mechanics, acoustics, and electromagnetic. In those applications, we often have
to deal with solving non-periodic time-independent partial differential equations (PDEs) on complex geometries.
Furthermore, due to the underlying physical properties such as defects, cracks, and/or material imperfections, so-
lutions may be hard to resolve around the troubled regions. Methods for numerically simulating solutions of such
problems must be able to efficiently resolve features around the defects. In the mean time, solutions away from the
defects must also be computed as accurate as possible. The goal of this project is to develop and analyze techniques
suitable for solving such problems with optimal computational costs and respectable accuracy by combining two
powerful methods: finite element (FE) and radial basis function (RBF).

Global approximation methods such as radial basis function methods have proven extremely useful in the nu-
merical solution of boundary value problems in high dimensions. They can be implemented on a flexible mesh and
nodes adaptivity can be easily accomplished by adding or deleting points as necessary. RBF methods have been
widely used for scattered data interpolation in high dimensions; see [4, 10, 39] and references therein for theory
and implementation. Recently RBF collocation methods for PDEs, based on global, non-polynomial interpolants,
have been developed [21, 22, 24, 25]. The RBF methods are referred to as meshfree methods since they may be im-
plemented on scattered sets of collocation sites (commonly called centers) and are not tied to structured grids as are
pseudospectral methods. In this way, RBF methods overcome some limitations of pseudospectral methods. RBF
collocation methods for steady PDEs have become well established; see [6, 11, 23–25] and references therein.

Although the adaptive RBF [8, 18, 19] method is very promising to be used as a main solver for problems
with defects, hybridizing it with finite element methods may have big impact on overall computational cost and
efficiency. Around the defect regions, where solutions are less smooth and even ”classical” solutions do not exist,
the finite element methods will be utilized. Away from those regions, where solutions are smooth and classical
solutions can be computed in collocation way, RBF methods will be used. The hybrid method can be constructed
by decomposing the computational domains into FEM and RBF sub domains. Those sub domains will result in
interface regions, i.e regions where two different methods meet. Solutions must match in terms of continuity and
normal derivatives there. This approach combines the strengths of both the finite element methods in the regions,
where solutions have less regularities, with the flexibility of RBF methods where required for smooth solution
regions. We numerically study and analyze techniques to couple the two methods in a stable way.

3 Hybrid FEM-RBF scheme

In this section, we give a brief introduction to hybrid finite element and radial basis function collocation method for
linear elliptic problems. In order to make our illustration simpler and easy to understand throughout this report,
we use Poisson equation as examples. The method essentially involves three main steps:

1. The computational domain is decomposed into FEM subdomains and RBF subdomains. FEM subdomains
are regions where the underlying solutions are less smooth and/or where classical solutions do not exist.
FEM domains may contain cracks and/or defects due to physical anomalies of the underlying problems. On
the other hand, RBF subdomains are regions where solutions are known to be smooth. We also assume that
locations of FEM and RBF domains are determined beforehand, i.e. the method does not detect regularity of
solution and does not automatically decompose domain into FEM and RBF subdomains in an adaptive way.

2. FEM subdomains are then tringulated using finite number of elements and the underlying elliptic problems
in those subdomains are discretized in FEM way. RBF regions are discretized by placing RBF nodes. RBF
interpolants generated using those nodes are then used to collocate the elliptic problems there. All necessary
FEM matrices as well as RBF differentiation matrices are generated for later use in the assembling step. The
domain decomposition will result in the formation of interface regions which connect unknown values u and

the normal derivatives ∂u
∂n from different subdomains.

3. FEM matrices and RBF differentiation matrices are used to assemble global matrix operator of the PDE. De-
pending on whether the underlying problem is linear or non-linear, we obtain the global solution by solving
system of linear or non-linear equations.

The following subsections 3.1 and 3.2 will describe the 3 steps above for simple 1D and 2D Poisson equations
respectively for the case of 2 subdomains where solutions are smooth everywhere.

3

3.1 One Dimensional Case

Consider a 1D Poisson equation on interval [a, c] with Dirichlet boundary conditions at each end points

−u′′ = f for a < x < c,

u(a) = α u(c) = β.

We decompose the interval into two subintervals: [a, b] and [b, c]. Solution in [a, b] is spanned by FEM basis and
solution in [b, c] is spanned by RBFs. This implies that the PDE in subinterval [a, b] is formulated in weak sense and
the PDE in subinterval [b, c] is formulated in collocation sense. Note that in the 1D case, one may have more options
in choosing the type of collocation method. Instead of using RBF, pseudospectral collocation or finite difference

method may also be used. The point x = b is the interface point, where we connect u and ∂u
∂n (normal derivative).

The problem turns into:

−u′′
FEM = f for a < x ≤ b,

uFEM(a) = α,

∂uFEM

∂n
=

∂uRBF

∂n
, and uFEM = uRBF at x = b,

−u′′
RBF = f for b < x < c,

uRBF(c) = β.

(1)

The domain decomposition of the interval [a, c] can be illustrated by the figure below. In order to avoid confusion,
vertices in the FE region are denoted by x and nodes in the RBF domain are denoted by ξ. Furthermore, solutions
in the FE domain and RBF domain are denoted by u and w respectively.

b bbb b

x1 = a xi

xN = ξ1 = b

ξ j ξM = c

u1 ui uN = w1 wj wM

Figure 1: The 1D interval is decomposed into 2 subdomains. FE region on the left and RBF region on the right.
Discretization nodes in each subdomain are denoted by symbols x and ξ respectively. Solutions in each subdomain
are denoted by symbols u and w respectively.

From now on, we drop the subscript terms FEM and RBF on u to simplify our mathematical symbols. As usual,
for the PDE in the FEM region, we multiply the solution by the test function v and integrate by parts to obtain

b∫

a

u′v′dx =

b∫

a

f v + v(b)u′(b)− v(a)u′(a),

or by using inner product notation

< u′, v′ >=< f , v > +v(b)u′(b)− v(a)u′(a).

By letting φi to be a hat function centered at xi

φi(x) =

{

1 + x−xi
xi−xi−1

xi−1 ≤ x < xi

1 − x−xi
xi+1−xi

xi ≤ x ≤ xi+1
,

solution and its first derivative in the FEM region can be spanned by the tent bases as

u =
N

∑
′

i=1

uiφi,

∂u

∂x
=

N

∑
′

i=1

ui
∂φi

∂x
.

4

Note that the term ′ in the sum means that functions centered at the end points of the interval: i.e. φ1 and φN are
half tent. If we discretize the FEM domain with equally-spaced points with equal spacing h, the FEM system matrix
can be written as

1

h

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

u2

u3
...

uN−1

uN

=

< f , φ2 >

< f , φ3 >

...
< f , φN−1 >

< f , φN >

+

u1/h
0
...
0

ux(xN)

.

The FEM system matrix above cannot be solved independently as a standalone boundary value problem due to the
unavailability of ux(xN) value on the right hand side. That information will be supplied by matching ux(xN) from
the first derivative of RBF interpolant at the interface point xN = b:

ux(xN = ξ1 = b) =
M

∑
j=1

d1
1jwj,

where d1
1j are entries of RBF differentiation matrix (first derivative with respect to x, see section 5.1) at xN and wj

are unknown RBF solutions at points ξ j in the RBF domain. Note that discretization points in the RBF region does
not have to be equally-spaced. RBF system matrix at ξ2, · · · , ξM−1 is given by

−d2
21 · · · −d2

2M−1
...

. . .
...

−d2
M−11 · · · −d2

M−1M−1

w2
...

wM−1

 =

f (ξ2)
...

f (ξM−1)

+

0
...

d2
M−1Mβ

 ,

where d2
ij are entries of RBF second derivative (with respect to x) matrix as explained in section 5.1. The FE and RBF

system matrices along with condition at the interface are then assembled into “global” system matrices as

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1 − hd1

11 · · · −hd1
1M−1

−d2
21 · · · −d2

2M−1
...

. . .
...

−d2
M−11 · · · −d2

M−1M−1

u2

u3
...

uN−1

uN

w2
...

wM−1

=

h < f , φ2 >

h < f , φ3 >

...
h < f , φN−1 >

h < f , φN >

f (ξ2)
...

f (ξM−1)

+

α
0
...
0

hβd1
1M

0
...

βd2
M−1M

,

which can then be solved with a suitable linear solver. In the global system matrix above, the continuity condition
uN = w1 is simultaneously satisfied.

3.2 Two Dimensional Case

Hybridizing FEM and RBF-FD method in 2D is similar as in the 1D case. Consider the 2D Poisson equation:

−∆u = f in Ω,

u = g on ∂Ω,
(2)

where Ω (see the Figure 2 as an example) consists of 2 regions: Ω1 (Finite element region) and Ω2 (RBF region).
The interface curve Ω12 separates mesh and meshfree regions. Points at the interface are both FEM nodes and RBF
nodes. The Poisson equation (2) can be written as the following:

−∆uFEM = f in Ω1,

uFEM = uRBF, and
∂uFEM

∂n
=

∂uRBF

∂n
at the interface ∂Ω12,

−∆uRBF = f in Ω2,

uRBF = g on ∂Ω.

5

bc

bc bc
bcbc
bc

bc bc
bc
bc

bc

bc
bc

bc
bc

bc
bc

bc
bc bc

bc

bc

bc

bc

bc
bc

bc
bc

bc bc bcbc

bc

bc

bc

bc

bc

bc
bc

bc bc

bc
bc

bc

bc bc
bc bc

bc
bc
bc

bc

bc
bc

bc
bc

bc
bc

bc

bc

bc bc bc

bc

bc

bc

bc
bc
bc
bc
bc bc bc bc bc

bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc

bcbcbcbcbcbcbcbc
bc
bc
bc
bc
bc

bc

⊕ bc

Ω

∂Ω

bc
bc
bc
bc
bc

bcbc bc
⊕x1

x8

x41 x18

x21

x33

x35

x27

x2

x11

FE region

Figure 2: A 2D irregular domain is decomposed into 2 subdomains: FE region and RBF (meshfree) region. White
nodes are RBF points inside the domain and grey nodes are RBF boundary points. Note that sizes of points are
made bigger for easy visualization.

As usual, the solution in the FEM domain can be written as

uFEM =
N

∑
′

i=1

uF
i vi(x),

∂uFEM

∂n
=

N

∑
′

i=1

uF
i

∂vi(x)

∂n
.

Note that the term ′ in the sum means that basis functions centered at points which lie on the interface are cutted
tents. The vi(x) is linear on each triangle and take the value 0 at all nodes xj except at xi. The PDE is then multiplied

with test function v (v is spanned by vi(x)) and integrate over domain Ω. Due to the compact support property of
the test function vi’s, we end up only to integrate over Ω1

−
∫

Ω1

∆uFEMvdA =
∫

Ω1

f vdA.

By using Green’s identity applied to the left hand side term of the equation above, the weak formulation of the
PDE on Ω1 can be written as

∫

Ω1

∇uFEM · ∇vdA −
∫

∂Ω12

∂uFEM

∂n
vdΓ =

∫

Ω1

f vdA. (3)

To couple with RBF method, we need to replace ∂uFEM
∂n with ∂uRBF

∂n in the equation above. Note that uFEM = uRBF

will automatically be satisfied at interface points. Assembling the system matrix can be done in similar way as in
the 1D case. FEM discretization of (3) will result in under-determined FEM system matrix. What we need now
are differentiation matrices to form RBF system matrix to be augmented to the FEM system matrix such that the
global system matrix for the hybrid method can be solved. The following sections describe how to generate RBF
interpolants and differentiation matrices.

4 RBF Interpolant and Differentiation Matrices

In this section, we briefly discuss how to form an RBF interpolant and to compute its derivatives. Given a set Ξ of
n distinct RBF nodes called centers xc

1, . . . , xc
n in R

d, the RBF interpolant takes the form

s(x) =
n

∑
k=1

λkφk(x), (4)

6

where φk(x) is a radial basis function centered at xc
k. While there are a large number of known RBFs, the RBFs

that are infinitely differentiable and contain a free shape parameter ε have been the most widely used. The inverse
multiquadric (IMQ) and Gaussian (GA) which represent this category of RBF are given respectively by

(IMQ): φk(x) =
1

√

1 + ε2‖x − xk‖2
, (GA): φk(x) = e−ε2‖x−xk‖2

, (5)

where ‖ · ‖ represents Euclidean distance.
The coefficients λk are determined by enforcing the interpolation condition

s(xk) = u(xk), (6)

at a set of nodes that coincide with the centers. Enforcing the interpolation conditions at n centers results in a n × n
linear system

Aλλλ = u, (7)

where

A =

φ1(xc
1) · · · φn(xc

1)
...

. . .
...

φ1(xc
n) · · · φn(xc

n)

 , and u =

u(x1)
...

u(xn)

 . (8)

The matrix A is known as the interpolation matrix. In the case of Gaussian RBF, A is positive definite and therefore
invertible [27]. For further study of RBF, one may consult books by Buhmann [4], Wendland [39], and Fasshauer
[10].

Differentiation operator matrices can be formed in a straightforward way. As an example, first derivative oper-
ator with respect to x can be written as

D = Ax A−1, (9)

where

Ax =

φ1
x(xc

1) · · · φn
x (xc

1)
...

. . .
...

φ1
x(xc

n) · · · φn
x (xc

n)

 . (10)

The matrix vector product Du will result in an approximation of the first derivative of u(x) at x1, x2, · · · , xn, respec-
tively. Note that the first row of D in (9) contains the differentiation matrix elements needed to compute sx(x1), the
second row for sx(x2), and so on. In other words, at any desired point x, evaluating sx(x) is the same as multiplying
first derivative weights at x and function values given by

sx(x) =
[
φ1

x(x) · · · φn
x (x)

]

φ1(xc
1) · · · φn(xc

1)
...

. . .
...

φ1(xc
n) · · · φn(xc

n)

−1

︸ ︷︷ ︸

first derivative weights of s(x)

u(x1)
...

u(xn)

 . (11)

Differentiation matrices Dk for higher derivatives of order k can be formed in a similar fashion. The use
of RBF differentiation matrices to solve time-independent and/or time dependent problem is the core of RBF-
Pseudospectral (RBF-PS) methods [9]. Compared to polynomial-based PS method [2, 5, 12, 20, 37], RBF-PS do
not need to be in its polynomial limit and may use non-smooth bases or bases with larger ε if needed. Based on this
fact, one may see RBF-PS method as the generalization of polynomial-based PS method.

In this project, we have developed stable and accurate spatial discretization operators formed by RBF differen-
tiation matrices based on RBF-QR [14, 17]. The RBF-QR technique is used to circumvent the ill-conditioning issue
[3, 31] of the interpolation matrix due to the use of flat RBFs (cases when ǫ → 0). Manuscript 1 listed in the project
summary is the outcome of this project.

7

5 PDE Collocation in the RBF Regions

The way we collocate PDEs in the RBF regions are based on the choice between two methods: finite difference mode
[13, 36, 40] and partition of unity.

5.1 Finite Difference Mode

This method has the following features:

1. Flexibility in laying out points for discretizing a domain.

2. Unstructured local stencils with flexible stencil sizes.

3. Simple method for computing stencil weights: i.e. elements of differentiation matrices.

4. Similar computational costs with finite difference.

5.1.1 Discretization

The discretize step consists of three ingredients: laying out points, compute local interpolants, and form differenti-
ation matrices. As a simple example, Figure 2 illustrates N = 101 collocation points (40 of them on the boundary)
in the RBF region on a irregular domain in 2D. Let X = {x1, . . . , xN} be a set of RBF collocation points and let
Lj = {xk}, where k ∈ {1, . . . , N}, be a set of RBF points to form stencil weights at x j. Note that Lj ⊂ X contains
several neighbor points of x j including xj itself. The number of local points nloc in each Lj can be the same for all j
or different at each j. In our case, we set nloc to be the same in order to guarantee that all local interpolants provide
more or less the same approximation order. Moreover, we call the point x j the master node of the set Lj. All other
nloc − 1 points in the set Lj are slave nodes.

A particular stencil on Figure 2 has been magnified to show an example of a stencil formed by the set L1. In
that case, x1 is the master node of L1 = {x1, x21, x8, x18, x2, x27, x33, x35, x11, x41} with nloc = 10. Slave nodes in
L1 can be obtained using neighbor search algorithm. Notice that points in L1 are still listed with respect to their
global indices, i.e globInd(L1) = {1, 21, 8, 18, 2, 27, 33, 35, 11, 41}. However, when working locally, for convenience
one may want to reindex using local indices locInd(L1) which runs from 1 to nloc. Mapping from local indices
locInd(L1) to globInd(L1) and vice versa can be done using pointers.

5.1.2 Local RBF Interpolants

Working in local indices, the RBF local interpolant with master node x j takes the form

sj(x) =
nloc

∑
k=1

λkφk(x), (12)

where φk(x) is a radial basis function centered at xk. Suppose we want to interpolate a function f on Lj, the
coefficients λ are determined by enforcing the interpolation condition

sj(xk) = f (xk), (13)

resulting in a nloc × nloc linear system

Aλ = f , (14)

to be solved for RBF expansion coefficients λ. The matrix A with entries

aℓk = φk(xℓ), ℓ, k = 1, . . . , nloc (15)

is called the local interpolation matrix.
Since λ = A−1 f , the local interpolant sj(x) evaluated at any point x can be written in Lagrange formulation as

sj(x) =
nloc

∑
k=1

Ψk(x) fk, (16)

8

where

Ψ =
[
Ψ1(x) · · · Ψnloc(x)

]
=

[
φ1(x) · · · φnloc(x)

]

 A−1

 , (17)

and Ψ is a vector containing interpolation weights at x. RBF basis shapes can also be changed by tweaking ε. Deal-
ing with small ε is one of the challenging problems in RBF research since the basis becomes flatter and therefore
closer to being linearly dependent. This eventually leads to severe ill-conditioning issue of A. Small ε cases unravel
interesting connection between spectral and RBF approximations. In the limit ε → 0 the RBF interpolant is equiva-
lent to the minimal-degree Lagrange interpolating polynomial [7]. In higher dimensions, the limit may not exist but
when it does it is a multivariate polynomial [15, 26, 32]. Conditions where RBF approximations produce spectral
accuracy are discussed in [16, 17, 29, 30, 41].

5.1.3 Differentiation Matrices

Computing derivatives of local interpolants sj is straightforward. As an example, weights of first derivative with
respect to x evaluated at x is given by

[sj(x)]x =
nloc

∑
k=1

Ψk
x(x) fk, (18)

where

Ψx :=
[

Ψ1
x(x) · · · Ψ

nloc
x (x)

]
=

[

φ1
x(x) · · · φ

nloc
x (x)

]

 A−1

 , (19)

Computing higher derivatives or derivatives with respect to other independent variables can be done in the same
manner. As an example

Ψxx :=
[
Ψ1

xx(x) · · · Ψ
nloc
xx (x)

]
=

[
φ1

xx(x) · · · φ
nloc
xx (x)

]

 A−1

 , (20)

Ψy :=
[

Ψ1
y(x) · · · Ψ

nloc
y (x)

]

=
[

φ1
y(x) · · · φ

nloc
y (x)

]

 A−1

 . (21)

Note that since the local interpolation matrix A only needs to be inverted once, one may want to compute
weights Ψx, Ψy, Ψxx, · · · at x and stack them as a matrix

ΨM :=

φ1
x(x) · · · φ

nloc
x (x)

φ1
y(x) · · · φ

nloc
y (x)

φ1
xx(x) · · · φ

nloc
xx (x)

· · ·

 A−1

 . (22)

Derivative weights of local interpolants sj can be assembled to form a global differentiation matrices. As an
example, suppose we want to form the first derivative matrix operator with respect to x. The steps for computing
elements of the sparse differentiation matrix D can be described as the following: First, for every xj, we create its
interpolation matrix Aj using RBF centers in the neighborhood set Lj. Second, when the inverse of Aj is known,
elements of the local derivative operator of row j of D can be easily computed. D will have nlocN nonzero entries.
As an example, let us take the stencil L1 with master node x1 from Figure 2. Local interpolation matrix for the
stencil L1 and differentiation weights at x1 are given by

9

A1 =

φ1(x1) φ21(x1) · · · · · · φ41(x1)
φ1(x21) φ21(x21) · · · · · · φ41(x21)

...
. . .

...
...

. . .
...

φ1(x41) φ21(x41) · · · · · · φ41(x41)

,

[
d1,1 d1,21 · · · d1,41

]
=

[
φ1

x(x1) φ21
x (x1) · · · φ41

x (x1)
]

 A−1
1

 .

(23)

The next step is to fill in entries of the first row of D, where only entries at column {1, 21, 8, 18, 2, 27, 33, 35, 11, 41}
are non zeros. We redo the same procedure to fill in elements in other rows of D. Higher order differentiation
matrices can be computed in the same manner. Note that computing entries for each row of D is an embarrassingly
parallel process. Thus, the computation can be distributed to multiple computing cores. The differentiation matrices
are also sparse containing nlocN non zero entries.

5.2 Partition of Unity

The partition of unity method for numerically solving Boundary Value Problems (BVPs) on regular and/or irregular
geometry has gained popularity due to the work of Babuška and Melenk [1]. In this method, the geometry Ω is
covered by overlapping patches {Ωj} that correspond to a partition of unity {wj} subordinate to the cover. The
global solution on the domain is then approximated by ansatz

u(x) =
M

∑
j=1

wj(x)uj(x), (24)

where uj is the local approximant on patch Ωj and

M

∑
j=1

wj(x) = 1. (25)

The formulation (24) offers greater flexibilities to adjust local approximants uj by any combinations of the following:

1. Enlarging or shrinking patches. [h type version].

2. Choosing function spaces for the local approximants uj tailored to the properties of the PDEs. [p type version]

In the same reference, Babuška and Melenk also pointed out that the global solution u inherits not only the approx-
imation properties of the local spaces uj but also the smoothness of the partition of unity.

Incorporating localized RBF interpolation into the partition of unity method to solve boundary value problems is
straightforward. We can call the method RBF-PU method. It essentially uses RBF interpolants as local approximants
uj. The ansatz can then be collocated to satisfy the BVPs. Without loss of generality, let us describe the method in
solving equation (2). We proceed with the backbone of PUM collocation scheme of four procedures:

Discretize - - Cover - - Collocate - - Solve

to solve u on Ω. The details are described below.

5.2.1 Discretize

Domain of computation is discretized by laying out points inside the domain and on its boundary. Figure 3 shows
an example of a discretized irregular domain Ω with an almost uniform distribution of points.

10

Figure 3: Left: Irregular domain is discretized with an almost uniform distribution points. Right: Domain is
covered by overlapping disks generated from boxes of level 3.

5.2.2 Cover

The goal of this partition covering scheme is to cover the domain with patches. In two dimensional cases, quadtree
type subdivisions can be used as a simple partitioning scheme. We begin by covering the domain with a square
box. We call this box a level 0 box. We then naturally divide the level 0 box into 4 boxes of level 1 and continue this
subdivision process up to the desired level k. At this point, the domain is covered by 4k non-overlapping boxes of
level k. Any boxes, which are lying entirely outside the domain, are deleted. To make the scheme even simpler, any
boxes, whose midpoints are outside the domain, are also deleted. As an alternative, one may also subdivide/refine
boxes which are crossed by boundary.

The next step is to create some overlapping of boxes. This can be done by enlarging the area of each box. In
addition to square overlapping patches, we can also form overlapping disks by setting their radiuses to be half of
diameters of the corresponding boxes. The bookkeeping process must also be done. For every discretization point,
we have to record which disks it belongs to. For every disk partition, we have to record which points lie inside.

Figure 4: Left: A point can be a member for at least one disk. Right: Each disk has its own points to generate local
RBF interpolants.

Finding a good cover for irregular domain can be a challenge. In the case where the domain is quasi uniformly
discretized, we prefer to have covers which have consistent percentage of overlapping and consistent node density
(i.e. number of nodes per partition) throughout the domain. This makes our life easier in guarantying identical
quality of approximations on each partition. However, this ideal case breaks down in regions near boundaries. For
example, if covers away from boundary curves can enjoy 10% overlap with approximately nloc nodes per partition,
covers that are crossed by boundaries usually have bigger overlaps with some of their neighboring covers and
larger node density to accommodate uncovered nodes or uncovered area. Uncovered nodes in most cases lie inside
deleted boxes described in previous section.

In addition to discretize and then cover, another idea is to cover the domain first and then fill in each box with
approximately nloc points. If we fill each partition with identical distribution of nodes, then boxes away from
boundaries will have periodic/isotropic like structures. RBF approximation on cover with this special case can be
computed once and used on other covers of the same type thus saving computational costs. As usual, covers near
boundaries are specially treated. If needed, one may also freely fill in each partition with different distribution of
nodes.

11

We also have to pay attention on regions in the domain as well as line segments on boundary curves with no
RBF nodes in them. Those regions and line segments must also be covered. In short, nothing in the domain and on
the boundary is left uncovered. Figure 5 shows a simple procedure to cover the boundary of an irregular domain.

Figure 5: The domain is covered by non overlapping boxes. Due to curve boundary, some boundary regions are not
covered. Boxes that cross boundary curve are then enlarged to guarantee full covering. Diameter of those corrected
boxes are then used to determine radiuses of overlapping disks.

5.2.3 Collocate and Solve

At every discretization point we collocate ansatz (24) to satisfy (2):

−∆u(xi) =
M

∑
j=1

wj(xi)∆uj(xi) + 2∇uj(xi) · ∇wj(xi)+

uj(xi)∆wj(xi) = f (xi) xi ∈ Ω,

u(xi) =
M

∑
j=1

wj(xi)uj(xi) = g(xi) xi ∈ ∂Ω.

(26)

All operators ∆ and ∇ for u are generated using RBF-FD differentiation matrices. Values of ∆w and ∇v at each
point can be computed exactly. Equation (26) leads us to solve sparse linear system either using direct or iterative
methods. Manuscript 2 and 4 listed in the project summary are currently in preparation to disseminate our results
about RBF collocation-based partition of unity method. We are also preparing MATLAB educational toolbox for
this purpose (see the screenshot in section 8).

6 Numerical Experiments

All our numerical experiments are carried out in MATLAB (tested on version 2008 - 2012) on a MacPro workstation.
Since RBF local interpolants and RBF-FD differentiation matrices for a particular stencil can be computed separately
from other stencils, we use commands such as parfor and spmd in MATLAB’s parallel computing toolbox to dis-
tribute independent jobs. Those embarrassingly parallel processes carry over to the RBF-PU since local interpolants
and differentiation matrices for a particular cover can also be computed separately from other covers.

6.1 RBF-FD as a Full Poisson Solver

The RBF-FD differentiation matrices described in section 5.1 can easily be utilized for solving boundary value prob-
lems. As a basic test problem, we solve equation (2) where ∂Ω (see the left part of Figure 6) is a starfish like shape
with parametric equation

rb(θ) = 0.8 + 0.1(sin(6θ) + sin(3θ)), θ ∈ [0, 2π). (27)

The collocation process involves three steps. First, we discretize the domain with N = Ni + Nb points, where Ni

is the number of interior points and Nb is the number of boundary points. The Poisson equation is then collocated

12

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

y
N = 363

0 100 200 300

0

100

200

300

Figure 6: Left: An example of starfish like domain discretized with N = 363 uniformly distributed nodes. Right:
Sparsity distribution of the system matrix with stencil size nloc = 21.

at the interior points using RBF-FD stencils for approximating the Laplacian. This results in an under-determined
system of size Ni × N. By augmenting the system with Nb equations from the boundary condition we end up with
an N × N linear system of equations. Finally, we solve the linear system to obtain the nodal solution values. As in
the finite difference case, the system matrix is sparse. The right part of Figure 6 shows an example of the sparsity
distribution of a system matrix with N = 363 and stencil size nloc = 21 after a minimal degree reordering.

The process of distributing RBF points uniformly can for example be carried out by treating nodes as being
connected by springs that repel and attract one another until an equilibrium state is achieved [28]. The forcing
function and boundary condition of (2) are chosen such that the exact solutions are the following smooth functions

u1(x, y) = sin(πx) sin(πy), (Test case 1)

u2(x, y) = (x2 + y2 − 0.25)2. (Test case 2)

Figure 7 shows numerical experiments for the two test cases, where the total number of points N is kept fixed.
The accuracy of the numerical solutions of (2) with respect to the stencil sizes (nloc) for ε = 0.1 can be seen in the
two leftmost subfigures.

4 6 8 10 12 14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

slope = −1.699

√

n
loc

||.
|| ∞

N = 363

RBF−QR
RBF−Direct

4 6 8 10 12 14
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

slope = −4.067

√

n
loc

||.
|| ∞

N = 363

RBF−QR
RBF−Direct

4 6 8 10 12 14

10
−10

10
−8

10
−6

10
−4

10
−2

slope = −1.630

√

n
loc

||.
|| ∞

N = 363

RBF−QR
RBF−Direct

Figure 7: Comparisons of convergence trends for RBF-QR and RBF-Direct with respect to the square root of the
stencil sizes

√
nloc when solving the Poisson equation. The two leftmost subfigures are for Test case 1 and Test case

2 respectively with ε = 0.1. The right subfigure is for Test case 1 with ε = 1.

For RBF-QR the convergence trends in both cases are spectral of the form

‖ · ‖∞ ∝ exp(s
√

nloc), s < 0,

with slopes s around −1.7 for Test case 1 and −4.1 for Test case 2. The results are compared with using RBF-Direct
(in double precision). As can be seen in the figures, RBF-Direct does not converge due to severe ill-conditioning.
The rightmost subfigure shows the result for Test case 1 with the larger shape parameter value ε = 1. In that case,

13

RBF-Direct agrees with the results obtained with RBF-QR for smaller stencil sizes before leveling off again due to
the conditioning issue.

6.2 Notes on Cases when nloc = N

With RBF-FD, one may experiment to enlarge all stencil sizes all the way up to the total number of points N. In that
case, the RBF-FD method will turn into global RBF method with a dense system matrix. In [17], Fornberg, Larsson,
and Flyer pointed out that clustering points toward the boundary is a crucial step to maintain the stability of the
global RBF interpolant especially when small shape parameter is used. In other words, the convergence trends
should remain flat after hitting the machine precision.

The question of When do RBF interpolants behave like polynomial interpolants ? has stimulated research activity in
this subject. At least in one dimensional case, this is indeed the case. When the basis is flat, i.e cases where ε → 0,
Driscoll and Fornberg [7] pointed out that one dimensional RBF interpolant is equivalent to Lagrange interpolating
polynomial. Their surprising observations open the door to analyze the stability of RBF interpolant using poten-
tial theory. When Gaussian RBFs are used, Platte and Driscoll [30] showed that RBF interpolant generated using
equally-spaced centers on unit interval can be transformed into polynomials. Their method also allows us to de-
termine best distribution of nodes suitable for one particular shape parameter to prevent the Runge phenomenon.
Cases for higher dimensions are much subtler. In [15] Fornberg, Wright, and Larsson made some observations and
conjectured that Gaussian RBF interpolants will never diverge as ε vanishes. Schaback [32] also showed that the
RBF interpolant is equivalent to multivariate Boor/Ron polynomial.

In addition to clustering inner points towards the boundary, our numerical experiments also show that one
should avoid overcrowding boundary points. As a simple example, suppose we solve equation (2) on a unit disk
with N = Ni + Nb, where Ni inner points (a subset of Halton points) and Nb boundary points (equally-spaced).
Figure 8 shows the discretization points before and after clustering for the case Ni = 721 and Nb = 154.

Figure 8: Left: A subset of 721 Halton points inside a unit disk is used as RBF inner nodes. In addition, 154 boundary
points are distributed equally on the perimeter. Right: The Halton points are clustered toward the boundary with
a mapping function r̃i = sin(π

2 ri). The boundary points are left intact.

For testing convergence, we vary inner points Ni. The boundary points are equally-spaced with Nb =
2π
qi

, where

qi can be chosen as filling distance of the unclustered/clustered inner points or average minimum distance of inner
points. For Poisson equation with smooth known exact solutions as references, Figure 9 shows that the convergence

is evidently spectral with respect to
√

N, i.e. the convergence trends follow

‖ · ‖∞ ∝ exp(a
√

N), a < 0. (28)

However, as can be observed in Figure 9, the spacing rule Nb =
2π
qi

seems not to be working well when
√

N ≥ 20.

The error is growing and the location of ‖ · ‖∞ seems to occur at random locations, i.e not always at inner points
near boundary points. This problem might be created by putting too many points on the boundary. We experiment
by fixing the number of Ni, use the rule Nb = 2π

qi
as usual, and then remove the boundary points one by one until

we find the best minimum global error of the solution. Figure 10 shows that the best accuracy is achieved when the
ratio Nb/Ni is around 10% for cases Ni = 721, 910, 1218.

14

0 10 20 30 40 50
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

a = −1.672

N1/2

||.
|| ∞

0 10 20 30 40 50
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

a = −1.719

N1/2

||.
|| ∞

0 10 20 30 40 50
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

a = −1.452

N1/2

||.
|| ∞

Figure 9: Left: Spectral convergence trend where the qi is set using filling distance of clustered inner points. Middle:
Case where qi is set using filling distance of unclustered inner points. Right: Case where qi is set using average
minimum distance of inner points.

60 70 80 90 100 110 120 130 140 150

−10

−8

−6

−4

−2

0

2

4

N
b

lo
g1

0(
||.

|| ∞
)

N
i
 = 721

70 80 90 100 110 120 130 140 150 160 170 180
−10

−8

−6

−4

−2

0

2

4

N
b

lo
g1

0(
||.

|| ∞
)

N
i
 = 910

75 85 95 105 115 125 135 145 155 165 175 185
−9

−7

−5

−3

−1

1

N
b

lo
g1

0(
||.

|| ∞
)

N
i
 = 1218

Figure 10: Given a fixed Ni clustered points, overcrowding boundary points seems to result in poor accuracy for
the global solution unless the ratio Nb/Ni are kept to about 10%.

6.3 RBF-PU as a Full Poisson Solver

We test RBF-PU method for solving 2D and 3D of equation (2) on irregular domains. Partition of unity weight
function wj for each cover Ωj is constructed using Shepard’s formulation [33] as the following:

wj(x) =
ψj(x)

M

∑
ℓ=1

ψj(x)

,

where compactly supported Wendland’s functions [38] are used for ψj(x). In particular, we use (in terms of radius
measured from disk center)

ψ(r) =

{

(4r + 1)(1− r)4 r < R

0 otherwise,
(29)

where R is radius of support. One may also try another Wendland’s function such as

ψ(r) =

{

(35r2 + 18r + 3)(1− r)6 r < R

0 otherwise.

In all our numerical experiments, we use (29) since we only need up to continuous second derivatives for wj.
For our problems, we have freedom in choosing node distribution. Therefore, the process of covering domains is

separated from the process of discretizing them. One have a choice to lay out RBF points either “globally” through-
out the domain based on a particular node distribution or “locally” by filling out each partition with its own node

15

distribution. One of many widely used examples for globally generating scattered points is by using Halton points
on a unit box. By scaling the unit box to enclose an irregular domain, we remove Halton points outside the domain
and keep the inside points. Boundary points are generated independently. For testing purposes, we also use ver-
tices from mesh generators such as DISTMESH [28] to create uniformly distributed RBF nodes. In practice, however,
costly mesh generation should be avoided to keep the spirit of meshfree methods alive. Even though one prefers
to use available mesh generation software (due to nice GUI and solid object manipulation capability) to discretize a
complicated 2D/3D objects, good quality meshes are not needed since RBF method is also mesh tolerant.

6.3.1 Two Dimensional Case

As a test problem, we solve (2) on a domain with parametric equation

rb(θ) = 0.9 + 0.1 sin(6θ) + 0.02 sin(9θ), (30)

where the forcing function f and boundary condition g are chosen such that the exact solution is

u(r, θ) =
1

0.25r2 + 1
. (31)

Sparsity distribution of the RBF-PU system matrix and the solution can be seen in Figure 11.

Figure 11: Left: An example of sparsity distribution of RBF-PU system matrix. Middle: Solution on starfish domain.
Right: log10 error distribution on the domain for N = 1105.

We divide our error convergence tests into 3 cases. One case for showing algebraic convergence and two cases
for spectral convergence. The convergence test measures how error of numerical solutions (compared to known
exact solutions) decreases with respect to total number of nodes N or total number of local nodes nloc. Note that

for dimension greater than one, we should measure the error convergence with respect N1/d or n1/d
loc , where d is

dimension. However, if we prefer to keep using N or nloc, then we should expect the rates to be d times slower
compared to one dimensional cases.

We are now showing how absolute error decreases algebraically with respect to N. In this numerical experiment,
quasi-uniform points are used. Each cover (disk) should contain the same nloc points. However, due to the shape
of irregular geometry, some covers may contain couple of points greater than nloc due to boundary control process
described in section 5.2.2. For a fixed number nloc, we vary N by setting N = N̺ = ̺N0, where N0 is a chosen fixed
integer number and ̺ is the desired positive integer multiplier.

The next step is to choose the size of nonoverlapping boxes that cover our domain such that the corresponding
overlapping disks (each has radius rloc) contain at least nloc RBF nodes each. This can be done by satisfying the
condition such that local node density in each partition is the same as the global node density. The density relation
is given by

N

A =
nloc

πr2
loc

→ ̺N0

A =
nloc

πr2
loc

, (32)

where A is the total area of the domain. rloc can then be written as

rloc =
r0√

̺
, where r2

0 =
nlocA
πN0

. (33)

16

Thus, setting N to be ̺ times of N0 will result in having radius of partitions ̺−1/2 smaller than r0 in order to keep

constant density relation. Covering the domain with nonoverlapping boxes of level k with side length
√

2rloc is

essentially the same as having a bounding box of level 0 with side length ℓ = 2(k−0.5).
The left figure in Figure 12 shows algebraic convergence trend with N0 = 160 using nloc = 21, 28, 45, 66 corre-

sponds to one-half up to fourth order of convergence, i.e. N−3/2, N−2, N−3, N−4 respectively.

10
2

10
3

10
4

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

N−1.7

N−2.3

N−3.1

N−3.8

N

||.
|| ∞

2 4 6 8 10
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

Local RBF−Direct

Local RBF−QR

a = −3.014

n
loc
1/2

||.
|| ∞

N = 1105

4 5 6 7 8
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

Local RBF−Direct

Local RBF−QR

a = −5.538

n
loc
1/2

||.
|| ∞

Np = 103

Figure 12: Error convergence trends of local RBF based on partition of unity method. Left: Algebraic convergence
trend where domain is partitioned with overlapping disks using 21, 28, 45, 66 local points respectively. Middle:
Spectral convergence obtained by using a fixed total number of points (N = 1105) and disks overlapping are
increased based on number of local points nloc. Right: Spectral convergence obtained by using a fixed total number
of partitions (Np = 103) and local points nloc are varied. Without RBF-QR, rounding errors kick in sooner to prevent
convergence.

For the first spectral convergence test, the domain is quasi-uniformly discretized using a fixed N = 1105 nodes.
The domain is covered with partitions of level 4 that each contains nloc = 15. In other words, the nonoverlapping
boxes are generated with

r2
loc =

nlocA
πN

=
15A

π1105
.

The ‖ · ‖∞ is then computed. We then recompute ‖ · ‖∞ for cases nloc = 20, 25, 30, · · · , 85. Note that while incremen-
tally increasing nloc (therefore increasing rloc) using k–nearest neighbor search, the center of partitions are left intact.
This will result in heavily overlapped partitions especially for larger nloc. Figure 12 shows that the convergence is
evidently spectral.

For the second test, we are going with different route. The domain is first covered with fixed number of par-
titions Np. In our example, we choose Np = 103. These partitions have fixed radiuses and overlaps. Boxes of
corresponding partitions are then filled in with RBF nodes such that each partition will contain nloc. Figure 12 shows
the spectral convergence.

6.3.2 Three Dimensional Case

Our preliminary results for solving Poisson equations on three dimensional solid domain are computed without
using boundary control technique and RBF-QR as in our two dimensional examples. The absent of boundary
control technique is purely for simplicity. With the absence of boundary control technique, there are possibilities
where some regions on the surface of the domain are uncovered. In order to make sure that our three dimensional
domain is fully covered, we examine projection of the 3D domain onto several two dimensional planes.

Our test is carried out on a solid sphere. The sphere is discretized as the following: On the surface, RBF nodes
are laid out based on minimum energy distribution. In this case, we can think of RBF nodes as point charges of
same types. Their mutual repulsive forces allow them to freely move (restricted on the surface) to find equilibrium
positions until minimum total potential energy is achieved. Sloan and Womersley [34, 35] have used this technique
to obtain good interpolation points on a sphere.

For inner points, we can follow similar approaches as in two dimensional cases. For example, we can choose
uniform nodes distribution where nodes density for each partition is roughly the same as the global node density.

17

A second choice will be to use non-uniformly distributed Halton points in a box [−1, 1]× [−1, 1]× [−1, 1] where
points located outside the unit ball are discarded. The third choice will be by filling each partition with different
distribution of points. For simplicity and testing purposes, we choose the first approach. Figure 13 shows an
example of cover partitions of a solid sphere and log10 error distribution of numerical solution compared to known
exact solution.

Figure 13: Left: Discretization points and partition covers of a solid sphere. Right: Distribution of log10 errors for
the case N = 1120.

Figure 14 shows spectral convergence trends

‖ · ‖∞ ∝ exp(a · n1/3
loc), a < 0. (34)

for 2 numerical tests: (1) Fixed total number of points N and then enlarge partition sizes, (2) Fixed number of
partition and their radiuses and then enlarge the number of local points nloc. Note that in experiment (2), the total
number of points N changes.

3 5 7 9
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

a = −1.408

n
loc
1/3

||.
|| ∞

N = 1120

2 3 4 5 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

a = −2.898

n
loc
1/3

||.
|| ∞

N
p
 = 432

2 4 6 8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

a = −2.898

a = −1.408

n
loc
1/3

||.
|| ∞

N = 1120 vs N
p
 = 432

Figure 14: Convergence trends for solving 3D Poisson equation on a sphere with RBF-PU.

7 Hybrid FEM-RBF for Smooth Problems

For 1D case, the code is very simple and is provided in section 10. In the 2D case, we use MATLAB PDE toolbox to
generate mesh in the finite element domain and to easily access stiff matrices and all needed functions (e.g. forcing
functions), which are already computed on those meshes.

18

7.1 Numerical Experiments in 1 Dimension

Let us first solve equation (1) with hybrid finite element and pseudospectal method on interval [−1, 1] with interface
point at x = −0.5. The finite element region is discretized with 61 equally spaced points and the pseudospectral
region is discretized with 51 Chebyshev points. The forcing function f is chosen based on taking the negative
Laplacian of the exact solution

u(x) = exp(− cos(3π(x − 0.5)))− 2x − sin(π(x + 0.5)).

Dirichlet boundary conditions are enforced based on the exact solution value at the two end points. Figure 15
shows numerical result and error distribution. As expected the errors are typically higher in the neighborhood of
the interface point.

0 30 60 90

0

30

60

90

nz = 2677
−1 −0.5 0 0.5 1

−1

0

1

2

3

4

x

u(
x)

−1 −0.5 0 0.5 1
10

−8

10
−7

10
−6

10
−5

10
−4

x

||.
|| ∞

Figure 15: Left: Sparsity profile of the 1D FEM-PS system matrix. Middle: Numerical solution. Right: Error
distribution on the interval. Notice that the error is typically higher at and around the interface point.

For the second experiment, we replace pseudospectral method with RBF-FD method. The interface point is
slightly changed to x = −0.325. The finite element region is discretized with 28 equally-spaced points and RBF
region is discretized with 54 points. Points in the RBF region are not tied to specific grid. Indeed, we first generate
equally spaced points and then jiggle them randomly. The stencil size for RBF-FD is nloc = 11. Figure 16 shows
numerical solution and error distribution using the hybrid method.

0 30 60 80

0

30

60

80

nz = 656
−1 −0.5 0 0.5 1

−1

0

1

2

3

4

x

u(
x)

−1 −0.5 0 0.5 1
10

−6

10
−5

10
−4

10
−3

10
−2

x

||.
|| ∞

Figure 16: Left: Sparsity profile of the 1D FEM-RBF system matrix. The stencil size for the RBF-FD method is 11.
Middle: Numerical solution. Right: Error distribution on the interval. As usual, the error is typically higher at and
around the interface point.

Note that finite element and RBF only share a point at the interface. This creates a one sided difference style
stencils for the RBF-FD in the neighborhood of the interface point. One may instead have an option to let the RBF
method taking several FE points inward as RBF points to form centered difference style stencils around the interface
region. We do not have this option for the FEM-PS since the Chebyshev points cannot be altered. To generate Figure
16, one can use MATLAB codes provided in section 10.

7.2 Numerical Experiments in 2 Dimension

We utilize MATLAB PDE toolbox for getting all triangular meshes and matrices needed for creating FEM system
matrix in the finite element region. In the PDE toolbox, basic elliptic equation with generalized Neumann (Robin

19

BCs) is given by

−∇ · (c∇u) + au = f on Ω,

n · (c∇u) + q̄u = ḡ on ∂Ω12,

where n is the outward unit normal, c is a constant and ḡ, q̄ are functions defined on ∂Ω12. Again, deriving from the
Green’s identity, we will have

∫

Ω

(c∇u) · ∇v + auvdA −
∫

∂Ω12

(−q̄u + ḡ)vdΓ =
∫

Ω

f vdA

to get the matrix system in the form

(K + M + Q)U = F + G, (35)

where entries of those matrices are:

Kij =
∫

Ω

(c∇vj) · ∇vidA (Stiffness matrix), Mij =
∫

Ω

avjvidA (Mass matrix),

Qij =
∫

∂Ω12

q̄vjvidΓ, Fi =
∫

Ω

f vidA, Gi =
∫

∂Ω12

ḡvidΓ.

In our case, c = 1, a = 0, q̄ = 0 and ḡ = n · (c∇uRBF) at the interface. The discretized values of ḡ = ḡ1, ḡ2, · · · , ḡNb

are constants that contain normal derivatives of uRBF at points on the interface. Hence,

Gi =
∫

∂Ω

ḡividΓ.

If we let Vi =
∫

∂Ω
vidΓ, we can write G in matrix form as

G =

V1 0
. . .

0 VNb

RBF normal derivative matrix at the interface

u1
...

uNb

w2
...

wM

.

As usual, the under-determined system of equations (35) will be augmented by RBF system matrix. In this prelimi-
nary result, we will use RBF-FD (without RBF-QR) to discretize the PDE in the RBF region instead of RBF-PU.

As a simple test problem, we solve equation (2) where ∂Ω (see the most left figure of Figure 17) is a starfish like
shape with parametric equation

rb(θ) = 1 + 0.1(sin(6θ) + sin(3θ)), θ ∈ [0, 2π). (36)

The domain is decomposed into 2 subdomains: A disk with radius r = 0.5 for FE and the rest of the domain for
RBF. Those subdomains only share points at the interface. Figure 17 shows the case with 146 FE vertices and 392
RBF nodes. The middle and right figures of Figure 17 shows sparsity distribution of the assembled system matrix
(RBF stencil size is nloc = 35) before and after minimal degree ordering. In MATLAB, the command for applying
approximate minimal degree ordering to a sparse matrix is amd. The forcing function of the Poisson equation and
Dirichlet boundary condition are chosen based on the exact solution

u(x, y) = exp(−20(x2 + y2))− x2 + y3. (37)

Numerical solution and error distribution obtained from this hybrid method can be seed in Figure 18.
Following the numerical experiment in 1 dimensional case, one may want to avoid the one sided difference

stencils for the RBF-FD in the region around interface by letting RBF method to take several points inward the FE
region as interpolation points. The left part of Figure 19 shows nodes distribution with 224 FE points and 492 RBF
points. The RBF is allowed to use FE points between radiuses r = 0.35 and r = 0.5. Numerical solution and error
distribution are shown in Figure 20.

20

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

y

0 253 506

0

253

506

nz = 11924
0 253 506

0

253

506

nz = 11924

Figure 17: Left: A 2D irregular domain is decomposed into 2 subdomains: a disk with radius 0.5 (FE region) and
starfish with a hole (RBF region). Note that FE and RBF only share points at the interface (the perimeter of the disk).
Right: Sparsity distribution of the system matrix of the hybrid method before and after minimal degree ordering.

−1

0

1

−1
0

1
−2

−1

0

1

x
y

u(
x,

y)

−1 0 1
−5

−4

−3

−2

−1

x

||.
|| ∞

Figure 18: Numerical solution and error distribution obtained using hybrid FE-RBF with one sided difference RBF-
FD stencils in the neighborhood of interface.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

y

0 300 600

0

300

600

nz = 13152
0 300 600

0

300

600

nz = 13152

Figure 19: Left: A 2D irregular domain is decomposed into 2 subdomains: a disk with radius 0.5 (FE region) and
starfish with a hole (RBF region). RBF method is allowed to use FE points between radiuses r = 0.35 and r = 0.5
to form more centered difference like stencils. Right: Sparsity distribution of the system matrix of the hybrid method
before and after minimal degree ordering.

21

−1

0

1

−1
0

1
−2

−1

0

1

x
y

u(
x,

y)

−1 0 1
−5

−4

−3

−2

−1

x

||.
|| ∞

Figure 20: Numerical solution and error distribution obtained using hybrid FE-RBF with centered difference RBF-
FD stencils in the neighborhood of the interface.

8 On-going Software Project

All codes as part of this research will be integrated into the MATLAB toolbox called RBF-PDETool (currently devel-
oped by the PI and E. Larsson) based on Adaptive local RBF, RBF-QR, and RBF partition of unity method. The
software will provide an easy to use GUI as well as access to its MATLAB commands. The software screen-
shot for our very early version can be seen in Figure 21. Users should be able to generate RBF differentiation
matrices, to select solver for solving boundary and/or initial boundary value problems, to specify boundary con-
ditions, and to simulate solutions. If users have accesses to MATLAB Parallel Computing Toolbox, the differen-
tiation matrices can be assembled in embarrassingly parallel way using multiple CPU and GPU cores to speed
up computations. The toolbox will have options to run ready to use example problems (templates) which can be
used as teaching and research tools. Results and codes will be disseminated on our publicly accessible website
https://www.it.uu.se/research/project/rbf/ in the future.

Figure 21: Version 0.03 of our MATLAB Toolbox called RBF-PDETool

22

9 Conclusion

Researchers who are working in the field of numerical methods for PDEs may find this project interesting. Indeed,
the stable RBF-QR algorithm for generating differentiation matrices is the bread and butter of all our numerical ex-
periments using RBF-FD, RBF-PU, and FEM-RBF hybrid on irregular geometry. RBF-QR algorithm provides highly
accurate approximation in regions where solutions are smooth. Furthermore, by using either RBF-FD or RBF-PU as
a standalone solver for smooth problems, we can now numerically observe algebraic and spectral convergence of
the RBF collocation method. In the past, these convergence trends were hindered by ill-conditioning issues.

However, there are still many things unexplored in this project that may lead to new findings and directions.
Our on-going projects include:

1. Finding better coupling techniques among partitions that will lead to efficient iterative solver.

2. Experimenting with multiple boundary conditions.

3. Testing the FEM-RBF with non-smooth solutions in the FEM regions.

4. 3D FEM-RBF using COMSOL FEM modules.

5. Eigenvalue stability for time-dependent problems.

6. Theory and error estimates.

At last, this report may look a bit like our day to day practical guide research diary without detailed mathematics.
We like to make it that way such that researchers and students who are new to RBF can easily experiment with this
new hybrid method. We provide the one dimensional FEM-RBF MATLAB code and we hope that readers (or their
students) may try it. Other codes are available upon requests and we will include them in our future publications
or on our website to support reproducible research. We hope that researchers and students who read this report
may find this project useful and will eventually become our future collaborators!

23

10 MATLAB Codes

Program 1: femrbf1d.m

N = 8 1 ; % T o t a l number o f p o i n t s
a = −1; c = 1 ; % I n t e r v a l end p o i n t s
Nf = 2 8 ; % Number o f FE p o i n t s
j igg leRB Fpt s = t rue ; % S e t t o t r u e t o randomly j i g g l e RBF p o i n t s
No = 3 ; % Number o f FE p o i n t t a k e n as RBF p o i n t s (c o u n t i n g e x c l u d e x=b)
nloc = 1 1 ; % RBF−FD s t e n c i l s i z e

x = l in sp ace (a , c ,N) . ’ ; % G e n e r a t e e q u a l l y−s p a c e d p o i n t s [a , c]
h = (c−a) / (N−1); % s p a c i n g .
ep = 0.075/ h ; % RBF s h a p e p a r a m e t e r .
b = x (Nf) ; % p o i n t a t i n t e r f a c e .
i f j igg leRB Fpt s , x (Nf+1: end) = x (Nf+1: end) + 0 . 5∗h∗ (2∗ rand (N−Nf , 1) − 1) ; end

% FEM S t i f f n e s s Matr ix
e = ones (Nf−1 , 1) ; K1 = spdiags ([−e 2∗e −e] , −1:1 , Nf−1, Nf−1);
K1 (end , end) = 1 ; % C o r r e c t due t o h a l f h a t f u n c t i o n on t h e r i g h t .

% G e n e r a t e RBF−FD D i f f e r e n t i a t i o n m a t r i c e s
xrbf = x (Nf−No : end) ; xrb f = xrbf (:) ; Nr = length (xrb f) ;
[D1 , D2]= deal (sp al loc (Nr , Nr , nloc∗Nr)) ;
for i =1:Nr

dx = xrbf (i) − xrbf . ’ ; r2 = dx . ˆ 2 ;
[sor t r2 , idx] = s o r t (r2) ; idx = idx (1 : nloc) ;
r2 = r2 (idx) ; dx = dx (idx) ;
dxmat = bsxfun (@minus , xrb f (idx) , xrb f (idx) . ’) ;
A = 1./ sq r t (1 + (ep∗dxmat) . ˆ 2) ; % RBF I n t e r p o l a t i o n m atr ix (IMQ−RBF)
D1(idx , i) = (−ep ˆ2∗dx .∗A(1 , :) . ˆ 3) /A; % 1 s t Deriv m atr ix
D2(idx , i) = (epˆ2∗(−1+2∗(ep∗dx) . ˆ 2) . ∗A(1 , :) . ˆ 5) /A; % 2nd Deriv m atr ix

end
D1 = D1 . ’ ; D2 = D2 . ’ ; D2 = −D2 ;

% Assemble FEM+RBF m a t r i c e s
A = blkdiag (K1 , D2 ((No+ 2) : Nr−1 ,(No+ 2) : Nr−1)) ;
A(Nf−1,Nf−(No+ 1) : end) = A(Nf−1,Nf−(No+ 1) : end)−h∗D1(No+1 , 1 : Nr−1);
A(Nf : end , Nf−(No+ 1) : Nf−1) = D2 ((No+ 2) : Nr−1 , 1 : (No+ 1)) ;

% FEM RHS
xfem = x (1 : Nf) ; Ff = zeros (Nf , 1) ;
Ff (1) = quad (@(y) F i n t (y , xfem , 1) , xfem (1) , xfem (2)) ;
Ff (Nf) = quad (@(y) F i n t (y , xfem , Nf) , xfem (Nf−1) , xfem (Nf)) ;
for i =2: Nf−1

Ff (i) = quad (@(y) F i n t (y , xfem , i) , xfem (i −1) , xfem (i + 1)) ;
end
Ff = h∗Ff (2 : end) ; Ff (1) = Ff (1) + uexact (xfem (1)) ; % add l e f t BC
Ff (end) = Ff (end) + h∗D1(No+1 ,Nr)∗ uexact (xrb f (Nr)) ;

% RBF RHS
Fr = f (xrb f ((No+ 2) : Nr−1)) − D2 ((No+ 2) : Nr−1,Nr)∗ uexact (xrb f (Nr)) ;

% Combine RHS and s o l v e
F = [Ff ; Fr] ; u = A\F ;

% FEM S o l u t i o n
uf = zeros (Nf , 1) ; uf (1) = uexact (xfem (1)) ; uf (2 : Nf) = u (1 : Nf−1);
% RBF S o l u t i o n
ur = zeros (Nr , 1) ; ur (1 : (No+1)) = u (Nf−(No+ 1) : Nf−1);
ur ((No+ 2) : Nr−1) = u (Nf : end) ; ur (Nr) = uexact (xrb f (Nr)) ;

% P l o t sys t em m atr ix
f igu re (’ P o s i t i o n ’ , [1 0 0 100 1000 3 0 0])
subplot (1 , 3 , 1) ; spy (A)
% P l o t FE and RBF s o l u t i o n s
subplot (1 , 3 , 2)
p lot (xfem , uf , ’−∗k ’ , xfem , uexact (xfem) , ’−−r ’) ; hold on ;
p lot (xrbf , ur , ’−ob ’ , xrbf , uexact (xrb f) , ’−−r ’)
p lot (x , min ([uf ; ur])∗ ones (N, 1) −0 . 1 , ’ . ’ , ’ m arker facecolor ’ , ’ k ’)
xlim ([a−0.01 c + 0 . 0 1]) ; xlab el (’ x ’) ; ylabel (’u (x) ’)
% P l o t e r r o r d i s t r i b u t i o n
subplot (1 , 3 , 3)
semilogy (xfem , abs (uf−uexact (xfem)) , ’−∗k ’) ; hold on
semilogy (xrbf , abs (ur−uexact (xrb f)) , ’−ob ’) ; grid on ;
xlim ([a−0.01 c + 0 . 0 1]) ; xlab el (’ x ’) ; ylabel (’ | | . | | {\ i n f t y } ’)

24

11 MATLAB Codes

Program 2: subroutines needed by femrbf1d.m

function y = uexact (x)
y = exp(−cos (3∗ pi ∗ (x − 0 . 5))) − 2∗x − sin (pi ∗ (x + 0 . 5)) ;

function f f = f (x)
f f = (−pi ˆ 2) ∗ (cos (pi∗x) + 4 . 5∗ exp (sin (3∗ pi∗x)) . ∗ (1 + cos (6∗ pi∗x) − 2∗ sin (3∗ pi∗x))) ;

function yy = Hat1D (xx , x , i)
% E q u a l l y s p a c e d x
N = length (x) ;
yy = zeros (size (xx)) ;

switch i
case 1

f l a g r i g = xx >= x (1) & xx < x (2) ;
yy (f l a g r i g) = 1 − (xx (f l a g r i g)−x (1)) . / (x(2)−x (1)) ;

case N
f l a g l e f = xx <= x (N) & xx > x (N−1);
yy (f l a g l e f) = 1 + (xx (f l a g l e f)−x (N)) . / (x (N)−x (N−1)) ;

otherwise
f l a g r i g = xx >= x (i) & xx < x (i + 1) ;
yy (f l a g r i g) = 1 − (xx (f l a g r i g)−x (i)) . / (x (i +1)−x (i)) ;
f l a g l e f = xx <= x (i) & xx > x (i −1);
yy (f l a g l e f) = 1 + (xx (f l a g l e f)−x (i)) . / (x (i)−x (i −1)) ;

end

function F = F i n t (xx , x , i)
F = f (xx) . ∗ Hat1D (xx , x , i) ;

25

Bibliography

[1] I. Babuška and J.M. Melenk. The partition of unity method. Internat. J. Numer. Methods Engrg., 40(4):727–758,
1997. ISSN 0029-5981. 5.2

[2] J.P. Boyd. Chebyshev and Fourier spectral methods. Dover Publications Inc., Mineola, NY, second edition, 2001.
ISBN 0-486-41183-4. 4

[3] J.P. Boyd and K. Gildersleeve. Numerical experiments on the condition number of the interpolation matrices
for radial basis functions. Appl. Numer. Math., 61(4):443–459, 2011. ISSN 0168-9274. 4

[4] M. D. Buhmann. Radial basis functions: theory and implementations, volume 12 of Cambridge Monographs on Applied
and Computational Mathematics. Cambridge University Press, Cambridge, 2003. ISBN 0-521-63338-9. 2, 4

[5] C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral methods in fluid dynamics. Springer Series in
Computational Physics. Springer-Verlag, New York, 1988. ISBN 0-387-17371-4. 4

[6] A.H.-D. Cheng, M.A. Golberg, E.J. Kansa, and G. Zammito. Exponential convergence and h-c multiquadric
collocation method for partial differential equations. Numer. Methods Partial Differential Equations, 19(5):571–
594, 2003. ISSN 0749-159X. 2

[7] T. Driscoll and B. Fornberg. Interpolation in the limit of increasingly flat radial basis functions. Computers and
Mathematics with Applications, 43:413–422, 2002. 5.1.2, 6.2

[8] T. A. Driscoll and A. Heryudono. Adaptive residual subsampling methods for radial basis function interpola-
tion and collocation problems. Computers and Mathematics with Applications, 53:927–939, 2007.
http://www.mathworks.com/matlabcentral/fileexchange/authors/23817. 2

[9] G.E. Fasshauer. RBF collocation methods as pseudospectral methods. In Boundary elements XXVII, volume 39
of WIT Trans. Model. Simul., pages 47–56. WIT Press, Southampton, 2005. 4

[10] G.E. Fasshauer. Meshfree approximation methods with MATLAB, volume 6 of Interdisciplinary Mathematical Sci-
ences. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007. ISBN 978-981-270-634-8; 981-270-634-8.
With 1 CD-ROM (Windows, Macintosh and UNIX). 2, 4

[11] A.I. Fedoseyev, M.J. Friedman, and E.J. Kansa. Improved multiquadric method for elliptic partial differential
equations via PDE collocation on the boundary. Comput. Math. Appl., 43(3-5):439–455, 2002. ISSN 0898-1221.
Radial basis functions and partial differential equations. 2

[12] B. Fornberg. A practical guide to pseudospectral methods, volume 1 of Cambridge Monographs on Applied and Com-
putational Mathematics. Cambridge University Press, Cambridge, 1996. ISBN 0-521-49582-2. 4

[13] B. Fornberg and E. Lehto. Stabilization of RBF-generated finite difference methods for convective PDEs. J.
Comput. Phys., 230(6):2270–2285, 2011. ISSN 0021-9991. 5

[14] B. Fornberg and C. Piret. A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput., 30
(1):60–80, 2007/08. ISSN 1064-8275. 4

[15] B. Fornberg, G. Wright, and E. Larsson. Some observations regarding interpolants in the limit of flat radial
basis functions. Comput. Math. Appl., 47(1):37–55, 2004. ISSN 0898-1221. 5.1.2, 6.2

[16] B. Fornberg, N. Flyer, and J.M. Russell. Comparisons between pseudospectral and radial basis function deriva-
tive approximations. IMA J. Numer. Anal., 30(1):149–172, 2010. ISSN 0272-4979. 5.1.2

26

[17] B. Fornberg, E. Larsson, and E. Flyer. Stable computations with Gaussian radial basis functions. SIAM J. Sci.
Comput., 33(2):869–892, 2011. ISSN 1064-8275. 4, 5.1.2, 6.2

[18] A.R.H. Heryudono. Adaptive radial basis function methods for the numerical solution of partial differential equations,
with application to the simulation of the human tear film. ProQuest LLC, Ann Arbor, MI, 2008. ISBN 978-0549-
81391-0. Thesis (Ph.D.)–University of Delaware. 2

[19] A.R.H. Heryudono and T.A. Driscoll. Radial basis function interpolation on irregular domain through confor-
mal transplantation. J. Sci. Comput., 44(3):286–300, 2010. ISSN 0885-7474. 2

[20] J. Hesthaven, S. Gottlieb, and D. Gottlieb. Spectral Methods for Time-Dependent Problems. Cambridge University
Press, 2007. ISBN 0521792118. 4

[21] E. J. Kansa. Multiquadrics - a scattered data approximation scheme with applications to computational fluid
dynamics I: Surface approximations and partial derivative estimates. Computers and Mathematics with Applica-
tions, 19(8/9):127–145, 1990. 2

[22] E. J. Kansa. Multiquadrics - a scattered data approximation scheme with applications to computational fluid
dynamics II: Solutions to parabolic, hyperbolic, and elliptic partial differential equations. Computers and Math-
ematics with Applications, 19(8/9):147–161, 1990. 2

[23] E. J. Kansa and Y. C. Hon. Circumventing the ill-conditioning problem with multiquadric radial basis functions:
applications to elliptic partial differential equations. Comput. Math. Appl., 39(7-8):123–137,2000. ISSN 0898-1221.
2

[24] E.J. Kansa and Y.C. Hon, editors. Radial basis functions and partial differential equations. Elsevier Science B.V.,
Amsterdam, 2002. Comput. Math. Appl. 43 (2002), no. 3-5. 2

[25] E. Larsson and B. Fornberg. A numerical study of some radial basis function based solution methods for elliptic
PDEs. Comput. Math. Appl., 46(5-6):891–902, 2003. ISSN 0898-1221. 2

[26] E. Larsson and B. Fornberg. Theoretical and computational aspects of multivariate interpolation with increas-
ingly flat radial basis functions. Comput. Math. Appl., 49(1):103–130, 2005. ISSN 0898-1221. 5.1.2

[27] C. Micchelli. Interpolation of scattered data: Distance matrices and conditionally positive definite functions.
Constructive Approximation, 2:11–22, 1986. 4

[28] P-O. Persson and G. Strang. A simple mesh generator in Matlab. SIAM Rev., 46(2):329–345 (electronic), 2004.
ISSN 0036-1445. 6.1, 6.3

[29] R.B. Platte. How fast do radial basis function interpolants of analytic functions converge? IMA J. Numer. Anal.,
31(4), 2011. 5.1.2

[30] R.B. Platte and T.A. Driscoll. Polynomials and potential theory for Gaussian radial basis function interpolation.
SIAM J. Numer. Anal., 43(2):750–766 (electronic), 2005. ISSN 0036-1429. 5.1.2, 6.2

[31] R. Schaback. Error estimates and condition numbers for radial basis function interpolation. Advances in Com-
putational Mathematics, 3:251–264, 1995. 4

[32] R. Schaback. Limit problems for interpolation by analytic radial basis functions. Journal of Computational and
Applied Mathematics, 212:127–149, 2008. 5.1.2, 6.2

[33] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968
23rd ACM national conference, ACM ’68, pages 517–524, New York, NY, USA, 1968. ACM. 6.3

[34] I.H. Sloan and R.S. Womersley. The search for good polynomial interpolation points on the sphere. In Numer-
ical analysis 1999 (Dundee), volume 420 of Chapman & Hall/CRC Res. Notes Math., pages 211–229. Chapman &
Hall/CRC, Boca Raton, FL, 2000. 6.3.2

[35] I.H. Sloan and R.S. Womersley. Extremal systems of points and numerical integration on the sphere. Adv.
Comput. Math., 21(1-2):107–125, 2004. ISSN 1019-7168. 6.3.2

[36] A. I. Tolstykh and D. A. Shirobokov. On using radial basis functions in a “finite difference mode” with appli-
cations to elasticity problems. Comput. Mech., 33(1):68–79, 2003. ISSN 0178-7675. 5

27

[37] L.N. Trefethen. Spectral methods in MATLAB, volume 10 of Software, Environments, and Tools. Society for Indus-
trial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. ISBN 0-89871-465-6. 4

[38] H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal
degree. Adv. Comput. Math., 4(4):389–396, 1995. ISSN 1019-7168. 6.3

[39] H. Wendland. Scattered data approximation, volume 17 of Cambridge Monographs on Applied and Computational
Mathematics. Cambridge University Press, Cambridge, 2005. ISBN 978-0521-84335-5; 0-521-84335-9. 2, 4

[40] G.B. Wright and B. Fornberg. Scattered node compact finite difference-type formulas generated from radial
basis functions. J. Comput. Phys., 212(1):99–123, 2006. ISSN 0021-9991. 5

[41] J. Yoon. Spectral approximation orders of radial basis function interpolation on the Sobolev space. SIAM J.
Math. Anal., 33(4):946–958 (electronic), 2001. ISSN 0036-1410. 5.1.2

28

	About This Report
	Introduction
	Hybrid FEM-RBF scheme
	One Dimensional Case
	Two Dimensional Case

	RBF Interpolant and Differentiation Matrices
	PDE Collocation in the RBF Regions
	Finite Difference Mode
	Partition of Unity

	Numerical Experiments
	RBF-FD as a Full Poisson Solver
	Notes on Cases when nloc = N
	RBF-PU as a Full Poisson Solver

	Hybrid FEM-RBF for Smooth Problems
	Numerical Experiments in 1 Dimension
	Numerical Experiments in 2 Dimension

	On-going Software Project
	Conclusion
	MATLAB Codes
	MATLAB Codes

