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Problem Our mission

How do we simulate the dynamics of the tear film 7

M)
PA
C |112.5-|| Air
'S5
L
0.02-0.05 N

(units: microns) - - .
Interference fringes.

Get insight from 1-D case first.
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Problem 1-D model formulation

y'=hgd

X=X'(t)

Physical parameters: Braun et al.

y Constants Description
> " =5mm half the width of the palpebral fissure (x direction)
d =5 pum

thickness of the tear film away from ends
€= i, ~ 1073 small parameter for lubrication theory
l_hl (X1 t,) Um = 10-30 cm/s maximum speed across the film
y= ' L'"/Upn =0.05s time scale for real blink speeds

og = 45 mN/m surface tension

|—
\ n= 1073 Pa's viscosity

p= 103 kg/m3

density
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@ Inside the film

o Viscous incompressible parallel flow inside the film.
@ Inertial terms and gravity are neglected.
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@ On the impermeable wall at y = 0, we have the boundary conditions

v=0, u=puy,
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@ Inside the film

o Viscous incompressible parallel flow inside the film.
@ Inertial terms and gravity are neglected.

o At the wall

@ On the impermeable wall at y = 0, we have the boundary conditions
v=0, u=puy,
@ At the free surface

o Simplified normal stress condition at y = h(x, t)

pP= _ShXX7 S =

o Kinematic condition
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Free surface evolution
he+gx=0o0n X(t) <x <1,

where

h
q:/ u(x,y,t)dy
0

@ The stress-free case.

h3
q(Xa t) - thxx (? + ﬂh2>

Boundary conditions

h(X(t),t) = h(1,t) = hg q(X(t),t) = Xeho + Qiop q(1,t) = — Qpor-
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Free surface evolution
he+gx=0o0n X(t) <x <1,

where

h
q:/‘ﬂ&%ﬂw
0

@ The stress-free case.
h3

- hxxx
ot t) = St

+ﬁ#>

@ The uniform stretching limit (USL).

K3 ( 33

—x h 1)
q(X t) 12 1+ m) (thxx) th % 2 (1 + m)

Boundary conditions
h(X(t)7 t) = h(17 t) = hO q(X(t)a t) = XthO + Qtop CI(L t) = _Qbot-
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Fully open 2/3 open 1/3 open Closed

Berke and Mueller (98), Heryudono et al (07)

«— upstroke ——> —— "downstroke,

RS
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filixdfanctions
@ Flux proportional to lid motion (FPLM) (Jones et al (05))
Qtop = _Xthe7 Qbot =0

@ Add in lacrimal gland supply and punctal drainage approximated by
Gaussians.

a = Lacrimal Glan
b = superior lacrimal punctum
¢ = superior lacrimal canal

d = lacrimal sac € f

e = inferior lacrimal punctum

f = inferior lacrimal canal g
g = nasolacrimal canal

Picture is taken from the Wikipedia commons
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©® Moving boundary problem.
o Fixed grid scheme is not convenient.

Heryudono et al Computations for the tear film 9 /33



©® Moving boundary problem.
o Fixed grid scheme is not convenient.
© Fourth-order in space.

@ Roundoff errors in computing high derivatives.
o Stiffness.
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©® Moving boundary problem.
o Fixed grid scheme is not convenient.
© Fourth-order in space.
@ Roundoff errors in computing high derivatives.
o Stiffness.
© Nonlinearity.
@ Implicit method.
© Third-order boundary conditions.
@ Imposing boundary conditions (BCs).
o Stability.
© Variable resolution and/or accurate high-order derivatives near
boundaries.
@ Adaptive scheme may be needed.

Heryudono et al Computations for the tear film 9 /33



We transform the PDE into a fixed domain [—1,1] via

1—x

The equations (e.g. Stress free case) become
1-¢ 2
He= T3 XeHe = <L x) Q

o (i) (% o)

H(£1,t) = ho, Q(-1 ) = Xeho + Qtops Q(1,
H(&,0) = hm + (ho — hm)E™

£e[-1,1].
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Spectral collocation methods

Advantages Disadvantages

@ Global high accuracy for @ Dense differentiation
smooth function. matrices.

o Fast matrix-vector @ Must use nodes with
algorithm via FFT. special distributions.

@ Powerful theory (potential @ Hard to apply in problems
theory, orthogonal involving irregular
functions) geometry.
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Spectral collocation methods Lagrange representation

HO H1 Hn
e S, S, e S, e o
X0 x1 Xn

[Tizo k;é'(x - Xk)
H(x) = Hiti(x), ¢ = =521
JZ_; JJ ’ Hk:o,k;ﬁj(xj — Xk)

The Lagrange polynomial ¢; corresponding to the node x; has the property

1, j=k .
li(xk) = ,k=0...,n.
i) {O , otherwise, J
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pectral collocation methods Choice of nodes and Runge Phenomenon

Node locations  x;, j=0,1,

N Comments

xj=—1+ ZNJ equi-spaced
Xj = —cos (”—,\{) Chebyshev
is equispaced points 1s Chebyshev points
| 2l i
T 0.5 -
4] ol |
max error = 5.9001 - —0.5 max error = 0.017523 —
1 i o5 ° o5 1

Interpolating f(x) = 1/(1 + 16x2) with N = 16 nodes
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Spectral collocation methods Potential theory

equispaced points Chebyshev points
1 1
0.5 0.5
-05 -05
-1 -1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
X X

Analyticity of f(x) inside the region bounded by the smallest equipotential
curve that contains [—1, 1]

Heryudono et al Computations for the tear film 14 / 33



Spectral collocation methods Differentiation matrices

Computing k-th derivative = Matrix-Vector product

Up U(()k)
D(k) i S
uy u,(\f)

where,
1) _ pyqo. (2 _
D" = ti(xi), Dj E( i), etc.

Trefethen (2000), Spectral Methods in MATLAB, Welfert (97), Baltensperger & Trummer (02)
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pectral collocation methods Convergence comparisons with FD

2-nd order

Spectral

Spectral convergence for the first
derivative of f(x) = 1/(1 + 16x?) ]
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Spectral collocation methods Method of Lines & Stability regions

Spectral discretization in space and standard ODE in time.

Adams-Bashforth Adams-Moulton

X1 x2 xn ! m 2 /%
0.5
6 4 2 )

ur=u, xe€l-1,1
u(l,t) =

~—
]
s
°
S

backward diferentiation Runge-Kutta

Elt:D

=

()

-0 0 10 20 30 -4 -2 0 2

AtA(D) = stability
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Overcoming difficulties Enlarging time step restriction

Properties.
@ Extreme eigenvalues of Chebyshev differentiation matrices: O(N?).

@ Minimal spacing of N Chebyshev nodes:
Axmin = 1 — cos(n/N) = O(N~2).
@ Explicit time marching scheme — At = O(N~2).

Kosloff & Tal-Ezer (93)

@ Map Chebyshev points to a set points with larger minimal spacing.
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Overcoming difficulties Enlarging time step restriction

Properties.
@ Extreme eigenvalues of Chebyshev differentiation matrices: O(N?).

@ Minimal spacing of N Chebyshev nodes:
AXpin = 1 — cos(m/N) = O(N~2).
@ Explicit time marching scheme — At = O(N~2).
Kosloff & Tal-Ezer (93)

@ Map Chebyshev points to a set points with larger minimal spacing.

@ Roundoff reduction
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Overcoming difficulties Kosloff & Tal-Ezer symmetric mapping

Consider a symmetric transformation

v=gleio) = T weel-L1 ac@)

By using chain rule, we obtain

o1 u
dy  g'(§a)dg
for any given f € C[—1,1].

a=1-5+0(N3), ¢>0 = Aty = O(N?)
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Overcoming difficulties Kosloff & Tal-Ezer non-symmetric mapping

R 1 (208 +a—-0
v=glgon) = (s (L0 Cp) . veetn
where a: and [ control distribution points near £ =1 and £ = —1 respectively. If

«a = 3, we end up having back to standard symmetric mapping.
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Overcoming difficulties Reducing roundoff error

Properties.

@ Roundoff error in computing derivatives with Chebyshev
differentiation matrices:

O(N2k),
where k is the order of derivative.

@ Mostly happens near boundaries.

Don & Solomonoff (97)
Choice of parameter :

|Ine|
— sech !
a = sec ( N

where € is the machine precision.
Roundoff error reduction = O((N |Ine|)¥)
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Overcoming difficulties A test problem

Let f(x) be a smooth function on the interval [—1, 1] defined by

F(x) =1 - gy (2m* (x* = 1) + m(x® = 7) — 6)x*™*2,

The graphs of f(x) for m = 10 and its derivatives.

(x) (x) @) P T

x 10
8 100 1
6 50 1000 0.5
4 0 0
00
> -50 S -0.5
-100 -
s} 0 1
-1 s} 1 -1 0 1 -1 0 1 -1 0 1
X X X X

Heryudono et al Computations for the tear film 22 /33



Overcoming difficulties A test problem

=

10
xlO7 %
5
IR N
5 10°
-5 g
£ 10°
-10 10710
-15
15 107
-1 -05 0 0.5 1
X
_((f3 2\ (3 Dashed
ax = ((5 + prH)rd),
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lines are the theoretical
roundoff effects

23 /33



Imposing boundary conditions Fictitious point method

Fornberg (06)

Cheﬁyshevlnodes br map!ped CHebyshév nodés
L] . . . L] L ] L]
X, Xy
fictitious point fictitious point
L} L] L ] L] L] L] L]
bl . I R Kt ™

@ Scale Chebyshev points such that x; and xy—1 become —1 and 1 respectively.
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Imposing boundary conditions Fictitious point method

Fornberg (06)

Cheﬁyshevlnodes br map!ped CHebyshév nodés
L] . . . L] L ] L]
X, Xy
fictitious point fictitious point
L} L] L ] L] L] L] L]
bl . I R Kt ™

! !
-1 -08 06 -04 -02 o] 02 04 06 08 1

@ Scale Chebyshev points such that x; and xy—1 become —1 and 1 respectively.

@ Form interpolant based on new nodes.
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Imposing boundary conditions Fictitious point method

Fornberg (06)

Cheﬁyshevlnodes br map!ped CHebyshév nodés
L] . . . L] L ] L]
X, Xy
fictitious point fictitious point
L} L] L ] L] L] L] L]
bl . I R Kt ™

! !
-1 -08 06 -04 -02 o] 02 04 06 08 1

@ Scale Chebyshev points such that x; and xy—1 become —1 and 1 respectively.
@ Form interpolant based on new nodes.

@ Solve up and uy in terms of unknown u; based on boundary conditions. Then
incorporate them in the differentiation matrices.
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H at discretized points.

Ho
Hy

H=|
Hn_1
Hy

k-th partial derivatives of H(&, t) at unknown points £,..{y_2 can be written as

HK) — pky

D) already contains information about Hy, H;, Hy—1 and Hy which are
obtained from boundary conditions.

= In our simulations, only works for linear case.
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Imposing boundary conditions Differential algebraic form

H and Q each has its own interpolant. No fictitious points needed.

Ho Qo
Hy Q1
H = : Q= :
Hy-1 Qn-1
Hpn Qn

H® = pWy and QK = pkQ

Ho, Hn, Qo and Qp are known from boundary conditions and hence only values
of H at inner nodes &;, where i =1,.., N — 1, need to be found.

=> The system of eqs is twice as large
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Imposing boundary conditions Differential algebraic form

v [Hel _ [V 0] [He] _ ADMH + BDM Q
Q] [0 0] Q]  [C(3H*+ BH?*)(DOH)-Q
A, B, and C are all (N —1) x (N — 1) matrix with elements

1 -2 o 2\’
=iy B x9S (k)

foralli,j=1,.,N—1. Mis a singular 2(N — 1) x 2(N — 1) matrix called mass
matrix.

= Solve DAE of index 1 with DASPK or odel5s in MATLAB.

Heryudono et al Computations for the tear film 27 / 33



Imposing boundary conditions Modified spectral collocation method

@ No fictitious points needed.

@ Set Q

L 1-¢H & H3 343
Q=X 5<1+H—+5>+5<1+H+5)

2 3
S (1 _X> Heee

@ When computing Q¢, use Q(—1,t) = X¢ho + Qtop, Q(1,t) = — Qbpor.

@ Solve the initial value problem at inner nodes

1-¢ 2
H; = XeHe — [ ——
T XxTE <1—X>Q§

with ode solver odelbs.

= possible connection with penalty method.
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Imposing boundary conditions Homogenization of BCs

Homogenization can be done by shifting variables H and @ such that

H=H-hy
Q=Q—(a+b).

It is clear that H(41,t) = 0. In order to find a and b such that Q(+1,t) = 0, we
end up solving 2 x 2 system of linear equations consisting of a+ b = Q(1,t) and
—a+ b= Q(-1,1).

= Our simulations work with/without homogenization.
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Parameters N =351, A = 0.1, 3 =10"2, S =2 x 1072, hyg = 13, he = 0.6, and initial volume
Vo = 2.576. Our simulation is done in MATLAB with odel5s as ODE solver.

fully open (zoom)

Opening phase

5.9 103.52

The closing phase

hx)

IS

-1 -0.5 o 0.5 1
x
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Numerical results Partial blinks results: FPLM + Gaussians

0.7,
0.5
2
= 0.7
0.3
‘experimental 1=238.84
0.5
0.1] -
-1 -0.75 -05 -0.25 0 0.25 0.5 0.75 1 =
X 0.3
S =2 x 107 case at various times
0.1]
0.75 1

[
-1 -075 -05 -0.25 0 025 05
X

S=8x10"°

More results = Braun's talk today !!

Interference fringes.
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Numerical results Conservation of volume

t vs Absolute Errors of Volume

: ‘ ‘
FD N=2500 ]
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Ongoing research Things to be done

@ What happen with fictitious point method in the nonlinear case ?
@ Adaptive radial basis functions with MOL (Driscoll & Heryudono (06)).
@ Adaptive space-time radial basis functions.

@ 2-D simulation.
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