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Problem Our mission

How do we simulate the dynamics of the tear film ?
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Interference fringes.

Get insight from 1-D case first.
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Problem 1-D model formulation

y’=h  d0

y’=h  d0

y’

x’

g

d
y’=h’(x’,t’)

x’=L’

x’=X’(t’)

Physical parameters: Braun et al.

Constants Description

L′ = 5 mm half the width of the palpebral fissure (x direction)
d = 5 µm thickness of the tear film away from ends

ε = d
L′

≈ 10−3 small parameter for lubrication theory

Um = 10–30 cm/s maximum speed across the film
L′/Um = 0.05 s time scale for real blink speeds
σ0 = 45 mN/m surface tension

µ = 10−3 Pa·s viscosity

ρ = 103 kg/m3 density
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Problem Assumptions

Inside the film

Viscous incompressible parallel flow inside the film.
Inertial terms and gravity are neglected.
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At the wall

On the impermeable wall at y = 0, we have the boundary conditions

v = 0, u = βuy ;
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Problem Assumptions

Inside the film

Viscous incompressible parallel flow inside the film.
Inertial terms and gravity are neglected.

At the wall

On the impermeable wall at y = 0, we have the boundary conditions

v = 0, u = βuy ;

At the free surface

Simplified normal stress condition at y = h(x , t)

p = −Shxx , S =
ε3σ

µUm

Kinematic condition

Heryudono et al (1Mathematical Sciences, U of Delaware and 2College of Optometry, Ohio State U)Computations for the tear film 5 / 33



Problem Free surface evolution

ht + qx = 0 on X (t) ≤ x ≤ 1,

where

q =

∫ h

0

u(x , y , t)dy

The stress-free case.

q(x , t) = Shxxx

(

h3

3
+ βh2

)

Boundary conditions

h(X (t), t) = h(1, t) = h0 q(X (t), t) = Xth0 + Qtop q(1, t) = −Qbot .
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Problem Free surface evolution

ht + qx = 0 on X (t) ≤ x ≤ 1,

where

q =

∫ h

0

u(x , y , t)dy

The stress-free case.

q(x , t) = Shxxx

(

h3

3
+ βh2

)

The uniform stretching limit (USL).

q(x , t) =
h3

12

(

1 +
3β

h + β

)

(Shxxx ) + Xt

1 − x

1 − X

h

2

(

1 +
β

h + β

)

Boundary conditions

h(X (t), t) = h(1, t) = h0 q(X (t), t) = Xth0 + Qtop q(1, t) = −Qbot .
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Problem Realistic lid motion
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Berke and Mueller (98), Heryudono et al (07)
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Problem Flux functions

Flux proportional to lid motion (FPLM) (Jones et al (05))

Qtop = −Xthe , Qbot = 0

Add in lacrimal gland supply and punctal drainage approximated by
Gaussians.

Picture is taken from the Wikipedia commons
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Problem Numerical difficulties

1 Moving boundary problem.

Fixed grid scheme is not convenient.
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Problem Numerical difficulties

1 Moving boundary problem.

Fixed grid scheme is not convenient.

2 Fourth-order in space.

Roundoff errors in computing high derivatives.
Stiffness.
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Problem Numerical difficulties

1 Moving boundary problem.

Fixed grid scheme is not convenient.

2 Fourth-order in space.

Roundoff errors in computing high derivatives.
Stiffness.

3 Nonlinearity.

Implicit method.

4 Third-order boundary conditions.

Imposing boundary conditions (BCs).
Stability.
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Problem Numerical difficulties

1 Moving boundary problem.

Fixed grid scheme is not convenient.

2 Fourth-order in space.

Roundoff errors in computing high derivatives.
Stiffness.

3 Nonlinearity.

Implicit method.

4 Third-order boundary conditions.

Imposing boundary conditions (BCs).
Stability.

5 Variable resolution and/or accurate high-order derivatives near
boundaries.

Adaptive scheme may be needed.
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Problem Transformation into a fixed domain

We transform the PDE into a fixed domain [−1, 1] via

ξ = 1 − 2
1− x

1 − X (t)
.

The equations (e.g. Stress free case) become

Ht =
1 − ξ

L − X
XtHξ −

(

2

L − X

)

Qξ

Q = S

(

2

L − X

)3 (

H3

3
+ βH2

)

Hξξξ

H(±1, t) = h0, Q(−1, t) = Xth0 + Qtop , Q(1, t) = −Qbot ,

H(ξ, 0) = hm + (h0 − hm)ξm.

ξ ∈ [−1, 1].

Heryudono et al (1Mathematical Sciences, U of Delaware and 2College of Optometry, Ohio State U)Computations for the tear film 10 / 33



Spectral collocation methods

Advantages

Global high accuracy for
smooth function.

Fast matrix-vector
algorithm via FFT.

Powerful theory (potential
theory, orthogonal
functions)

Disadvantages

Dense differentiation
matrices.

Must use nodes with
special distributions.

Hard to apply in problems
involving irregular
geometry.
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Spectral collocation methods Lagrange representation

H0 H1 Hn

x0 x1 xn

H(x) =
n

∑

j=0

Hj`j(x), `j =

∏n
k=0,k 6=j (x − xk)

∏n
k=0,k 6=j (xj − xk)

The Lagrange polynomial `j corresponding to the node xj has the property

`j(xk) =

{

1 , j = k ,

0 , otherwise,
j , k = 0..., n.
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Spectral collocation methods Choice of nodes and Runge Phenomenon

Node locations xj , j = 0, 1, ...,N Comments

xj = −1 + 2j
N

equi-spaced

xj = −cos
“

πj
N

”

Chebyshev

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5
equispaced points

max error = 5.9001

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5
Chebyshev points

max error = 0.017523

Interpolating f (x) = 1/(1 + 16x2) with N = 16 nodes
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Spectral collocation methods Potential theory

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

equispaced points

x

y

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Chebyshev points

x

y

Analyticity of f (x) inside the region bounded by the smallest equipotential
curve that contains [−1, 1]

Heryudono et al (1Mathematical Sciences, U of Delaware and 2College of Optometry, Ohio State U)Computations for the tear film 14 / 33



Spectral collocation methods Differentiation matrices

H
′

(x) =
n

∑

j=0

Hj`
′

j(x), H
′′

(x) =
n

∑

j=0

Hj`
′′

j (x)

Computing k-th derivative ⇒ Matrix-Vector product



 D(k)











u0
...

uN






=







u
(k)
0
...

u
(k)
N






,

where,

D
(1)
ij = `

′

j(xi ), D
(2)
ij = `

′′

j (xi ), etc.

Trefethen (2000), Spectral Methods in MATLAB, Welfert (97), Baltensperger & Trummer (02)
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Spectral collocation methods Convergence comparisons with FD
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Spectral collocation methods Method of Lines & Stability regions

Spectral discretization in space and standard ODE in time.

x1 x2 xn

un
u1 u2

example :

ut = ux x ∈ [−1, 1)

u(1, t) = 0

⇓

ût = D̃û

∆tΛ(D̃) ⇒ stability
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Overcoming difficulties Enlarging time step restriction

Properties.

Extreme eigenvalues of Chebyshev differentiation matrices: O(N 2).

Minimal spacing of N Chebyshev nodes:
∆xmin = 1 − cos(π/N) = O(N−2).

Explicit time marching scheme → ∆t = O(N−2).

Kosloff & Tal-Ezer (93)

Map Chebyshev points to a set points with larger minimal spacing.
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Overcoming difficulties Enlarging time step restriction

Properties.

Extreme eigenvalues of Chebyshev differentiation matrices: O(N 2).

Minimal spacing of N Chebyshev nodes:
∆xmin = 1 − cos(π/N) = O(N−2).

Explicit time marching scheme → ∆t = O(N−2).

Kosloff & Tal-Ezer (93)

Map Chebyshev points to a set points with larger minimal spacing.

Roundoff reduction
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Overcoming difficulties Kosloff & Tal-Ezer symmetric mapping

Consider a symmetric transformation

ψ = g(ξ;α) =
sin−1(αξ)

sin−1(α)
, ψ, ξ ∈ [−1, 1], α ∈ (0, 1).

By using chain rule, we obtain

df

dψ
=

1

g ′(ξ;α)

df

dξ

for any given f ∈ C 1[−1, 1].

α = 1 − c
N2 + O(N−3), c > 0 ⇒ ∆ψmin = O(N−1)
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Overcoming difficulties Kosloff & Tal-Ezer non-symmetric mapping

ψ = g(ξ;α, β) =
1

a

(

sin−1

(

2αβξ + α− β

α+ β

)

− b

)

, ψ, ξ ∈ [−1, 1]

where α and β control distribution points near ξ = 1 and ξ = −1 respectively. If

α = β, we end up having back to standard symmetric mapping.
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Overcoming difficulties Reducing roundoff error

Properties.

Roundoff error in computing derivatives with Chebyshev
differentiation matrices:

O(N2k ),

where k is the order of derivative.

Mostly happens near boundaries.

Don & Solomonoff (97)
Choice of parameter :

α = sech

(

|lnε|

N

)

,

where ε is the machine precision.
Roundoff error reduction ⇒ O((N |lnε|)k)
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Overcoming difficulties A test problem

Let f (x) be a smooth function on the interval [−1, 1] defined by

f (x) = 1 − h0−1
6(m+1) (2m

2(x2 − 1) + m(x2 − 7) − 6)x2m+2.

The graphs of f (x) for m = 10 and its derivatives.
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x
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Overcoming difficulties A test problem

−1 −0.5 0 0.5 1
−15

−10

−5

0

x 10
7 q

x

x

qx = (( f 3

3 + βf 2)f (3))x

0 50 100 150
10

−15

10
−10

10
−5

10
0

10
5

10
10

N

m
ax

 e
rr

or

 

 

q
x

f(3)(x)

f(2)(x)

f(1)(x)

Dashed lines are the theoretical
roundoff effects
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Imposing boundary conditions Fictitious point method

Fornberg (06)

Scale Chebyshev points such that x1 and xN−1 become −1 and 1 respectively.
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Imposing boundary conditions Fictitious point method

Fornberg (06)

Scale Chebyshev points such that x1 and xN−1 become −1 and 1 respectively.

Form interpolant based on new nodes.
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Imposing boundary conditions Fictitious point method

Fornberg (06)

Scale Chebyshev points such that x1 and xN−1 become −1 and 1 respectively.

Form interpolant based on new nodes.

Solve u0 and uN in terms of unknown uj based on boundary conditions. Then

incorporate them in the differentiation matrices.
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Imposing boundary conditions Fictitious point method

H at discretized points.

H =















H0

H1

...
HN−1

HN















k-th partial derivatives of H(ξ, t) at unknown points ξ2..ξN−2 can be written as

H(k) = D(k)H

D(k) already contains information about H0, H1, HN−1 and HN which are
obtained from boundary conditions.

⇒ In our simulations, only works for linear case.
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Imposing boundary conditions Differential algebraic form

H and Q each has its own interpolant. No fictitious points needed.

H =















H0

H1

...
HN−1

HN















Q =















Q0

Q1

...
QN−1

QN















.

H(k) = D(k)H and Q(k) = D(k)Q

H0, HN , Q0 and QN are known from boundary conditions and hence only values
of H at inner nodes ξi , where i = 1, ..,N − 1, need to be found.

⇒ The system of eqs is twice as large
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Imposing boundary conditions Differential algebraic form

M

[

Ht

Qt

]

=

[

I 0
0 0

] [

Ht

Qt

]

=

[

AD(1)H + BD(1)Q

C ( 1
3H3 + βH2)(D(3)H) − Q

]

A, B , and C are all (N − 1) × (N − 1) matrix with elements

Aij =
1 − ξi

L − X (t)
, Bij =

−2

L − X (t)
, Cij = S

(

2

L − X (t)

)3

.

for all i , j = 1, ..,N − 1. M is a singular 2(N − 1) × 2(N − 1) matrix called mass
matrix.

⇒ Solve DAE of index 1 with DASPK or ode15s in MATLAB.
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Imposing boundary conditions Modified spectral collocation method

No fictitious points needed.

Set Q

Q = Xt

1 − ξ

2

H

2

(

1 +
β

H + β

)

+
H3

12

(

1 +
3β

H + β

)

[

S

(

2

1 − X

)3

Hξξξ

]

When computing Qξ, use Q(−1, t) = Xth0 + Qtop ,Q(1, t) = −Qbot .

Solve the initial value problem at inner nodes

Ht =
1 − ξ

1 − X
XtHξ −

(

2

1 − X

)

Qξ

with ode solver ode15s.

⇒ possible connection with penalty method.

Heryudono et al (1Mathematical Sciences, U of Delaware and 2College of Optometry, Ohio State U)Computations for the tear film 28 / 33



Imposing boundary conditions Homogenization of BCs

Homogenization can be done by shifting variables H and Q such that

Ĥ = H − h0

Q̂ = Q − (aξ + b).

It is clear that Ĥ(±1, t) = 0. In order to find a and b such that Q̂(±1, t) = 0, we
end up solving 2 × 2 system of linear equations consisting of a + b = Q(1, t) and
−a + b = Q(−1, t).

⇒ Our simulations work with/without homogenization.
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Numerical results Full blink results (FPLM)

Parameters N = 351, λ = 0.1, β = 10−2, S = 2 × 10−5, h0 = 13, he = 0.6, and initial volume
V0 = 2.576. Our simulation is done in MATLAB with ode15s as ODE solver.

Opening phase
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fully open (zoom)

−1 −0.5 0 0.5 1
0

0.4

0.8

1.2

h(
x,

t)

x

t
t

5.9 103.52
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Numerical results Partial blinks results: FPLM + Gaussians

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
0

0.1

0.3

0.5

0.7

x

h(
x,

t)
t=133.68

t=238.84

t=344

experimental
data

S = 2 × 10−5 case at various times

Interference fringes.

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
0
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0.7

x

h(
x,

t)

t=238.84

S = 8× 10−6

More results ⇒ Braun’s talk today !!
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Numerical results Conservation of volume
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Ongoing research Things to be done

What happen with fictitious point method in the nonlinear case ?

Adaptive radial basis functions with MOL (Driscoll & Heryudono (06)).

Adaptive space-time radial basis functions.

2-D simulation.
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