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Ordinary Differential Equation (ODE):

ue(t) = #(u(t),t)
or for simplicity (By droppina the arguments)
u =F
where

> t is the tive variarle.
> U is a real or complex scalar or vector function of t,ie

ut) € CN,NC> |
> u; denotes . 18 N > |, it should Be interpreted
component wise: (ul),...,u™)T = . u"T
dZu

utt denotes and sO on

F)
> £is a function that takes values in CN.

Historical Notes
Study of ODESs dates Back to Newton and Leigniz in the
IT0s and Euler in the [&th century. System of ODEs were

first considered By Laaranae in the [150s. Vector notation
Became standard around I890.



Classification of the right hand side function £:

Ut = ‘p(uat)

Linear:
£lu,t) = alt)hu+ B(t)

for some functions oft) and B(t). & B(t) =0 it is linear
and homoaeneous. In the vector case, (t) is an N x N
matrix and B(t) is an N—vector.

Otherwise it is nonlinear.

£(u,t) is independent of t

I£ £(u,t) is independent of u, the ODE reduces to an
indefinite intearal.



Initial Value Prorlems (IVP)

We shall provide initial data u(O) =up at t = O and loock for
solutions u(t) on some interval t € [O,T], T > O.

Initial Value Proelem
Given £ as descriged in the previous slide, T > O, and
uo € CN, find a differentiarle function u(t) defined for
t € [0, T] such that

I H(O) = Uup,

2. ue(t) = £(u(t),t) for all t € [O,T]

The choice of t = O as a starting point introduces No loss
of aenerality, since any other to could Be treated By the
chanae of variagles t’/ =t —to.

The ODE arove is of first order (contains only a first
derivative with respect to t). However, any hicher-order
ODE can Be reduced to an equivalent system of first-order
of ODEs.




Existence and Uniqueness for the IVP (Cauchy 182+4)

Standard assumptions for £ to ensure the existence and
uniQueness for the [VP.

Lipschitz Condition

£ is conttinuous with respect to t and satisfies a
(uniform) Lipschitz condition with respect to u This
means that there exists a constant L > O such that for
all u,v e CN and t € [O,T],

1w, t) — (v, B[ <Lllu—v]|

where |.|| denotes some Nnorm on the set of N—vectors.
> N =I, ||.|| is usually just the agsolute value |.|

> N > 72, the most important examples of norms are |||,
-2, 8nd |-l oo-

Sufficient Condition: % exists and is Bounded iN the Norm
By L foralluec CN and t € [O, Tl



Popular Numerical Methods for IVP

| Linear Muktisteps Methods (LMM).
2. Runge-Kutta (RK) Methods.
3. Exponential Intearator Methods.

In this class, we will concentrate on LMM only.

Continuous-Discrete Syweol Conventions:
Continuous Discrete
Time Step At k, k>0
Time t=4to,ty...,tn t=0,k,...,nk,Nn >0
Solution values u(tn) "
Function values £(u(tn),tn) £V, tn) =4

Note: We use k for time step (ie. At) and h for Ax for
spatial step. The supersceripts in V™ and £" are Nnot exponents!



Linear Multistep Formulas

trnts
Pl)dt = J qt)dt

trts—i

tnts this

ltnsa) — uftnee) = |

trhts—

ue (t)dt :J

trhts—i

q(t) is an interpolating polynomials that interpolates £ A
LMM is essenttially a formula for caleulating each new value
V™ from some of the previous values 1O, - -, v" and

£O LN

Popular Examples (Recall your MTH3L2)

s: Numeer of Steps.  p: Order of accuracy.

Name s P Type Formula

Forward Euler [ 1 Explicit v™T=0v"+kp"
Backward Euler [ 1 Iwplicit o™ =™ + ket
Trapezoid |2 Iwplicit o™ =" + K (80 0

Explicit Midpoint 22 2 Explicit ™2 =" + 2kt

INn MTH3LL, utilize Taylor expansions to £ind p.



Characteristic/Generating Polynomials for LMM

Let Z denote a tive shift operator.

Continuous Discrete
Shift uOnce  Zut) =u(t +k) Zu ="
Zut) =ult —k) Zu" =™

Shift £ Once  Z#u(t),t) =fUu(t +k),t+k) 2=
Shift u Twice ZTu(t) = u(t +2k) ZEyn =T
Example: Forward Euler
VM = 1" L kPN Becomes Zu" = V" 4 kPN
which can ge written as (Z —)v" =k or
p(ZW" —ko(Z2)4" =0

where p(z) =z —I| and o(z) =1



Characteristic/Generating Polynomials for LMM

Several examples of Characteristic Polynomials

s: Numeer of Steps.
p: Order of accuracy.

Name s p Type  Polynomials

Forward Euler | | Explicit p(z)=z—-1 o(z)=I
Backward Euler I | Iwplicit p(z)=z2z—-I oz)=12
Trapezoid | 2 Iwplicit p(z)=2z—1 o(z)=5(z+
Explicit Midpoint 22 2 Explicit p(z)=2%—| o(z)=22

Linear multistep formulas are connected with the
approximation of the function |0az By the rational

; p(z) _
function o) atz=I



Linear Multistep Formulas and R.ational Approximation

Theorem
A linear multistep formula with o(l) # O has order of
accuracy p if and only i

R(z) = % =logz + O((lfl)wl)
|

:(l_l)_i

as z — | K is consistent if and only i

(z—N%+ §(z—l)3 — 4 O((z— 1P

p(N =0 and p’(l) = o(l)
See Trefethen’'s NumPDE rROOK for the proof. As an
example, for trapezoid, p(l) =0 and p'(l) =1 = o(l) and
el BN Pt SO IPSE S PSS
g(l)_%(z—kl)_(?— ) Z(Z ) +._|.(7’ ) 8(7. DT +...

Comparing it with the series of loaz, the coetficient
starts to disaaree for the term (z —I)3. Hence, p =2



Mathematica: Mapping a unit disk under a rational function

For example, in Forward Euler case, R (z) =z —|.
> Define R (z)
Rlz_] =z - 1;
> Define the unit disk with center at (O,0)
disk = Disk[{0, 0}, 1];
> Map the unit disk under R (z).

ParametricPlot [Block[{w = u + I v}, {Re[R[w]], Im[R[w]]}],
Element [{u, v}, disk], PlotRange -> 3]




Thinas to do in class

| Check the Lipschitz condition for the initial value proelem
ut = ucos(t), u(O) =1 and £ind the constant L.

2. Assuming K,m and y* are constants, rewrite

K * — —
m:f;(ky), y(O) =8, %(O)=8

as first order system. Then check the Lipschitz condition and £ind the
constant L.

3. Verify the p(z), 0(z) and R.(z) for Forward, Backward Euler, Trapezoid,
and Midpoint as well as their order of accuracy p.

4. Given a unit circe [z] <= centered at the oriain in the complex plane,
£ind its map under the R (z) for forward, Backward Euler, trapezoid,
and midpoint. Plot the circle refore and after the map.

S. Solve the IVP ut = ucos(t), u(O) = with Forward, Backward,
Trapezoid, and Midpoint with k = Ol for t € [O,l]. The exact solution
is u(t) = es"t). Compare the error |u(l) — v(l)|. Compute the error for
k=10"3,510-3,10"%,510~% For each method, plot Error vs k in
loGloa scale. What does the slope tell you 7

Tips: You ean use the command Series[ ] in Mathematica t0 generate

the series of R (z) = % around z =|.




