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Ordinary Differential Equation (ODE):

ut(t) = f(u(t),t)

or for simplicity (by dropping the arguments)

ut = f

where

I t is the time variable.

I u is a real or complex scalar or vector function of t, i.e
u(t) ∈ CN,N ≥ 1.

I ut denotes du
dt

. If N > 1, it should be interpreted

component wise: (u(1), . . . ,u(N))Tt = (u
(1)
t , . . . ,u

(N)
t )T .

utt denotes d2u
dt2 , and so on.

I f is a function that takes values in CN .

Historical Notes

Study of ODEs dates back to Newton and Leibniz in the

1670s and Euler in the 18th century. System of ODEs were

first considered by Lagrange in the 1750s. Vector notation

became standard around 1890.



Classification of the right hand side function f:

ut = f(u,t)

Linear:

f(u,t) = α(t)u + β(t)

for some functions α(t) and β(t). If β(t) = 0 it is linear

and homogeneous. In the vector case, α(t) is an N×N

matrix and β(t) is an N−vector.

Otherwise it is nonlinear.

Autonomous:

f(u,t) is independent of t

If f(u,t) is independent of u, the ODE reduces to an

indefinite integral.



Initial Value Problems (IVP)

We shall provide initial data u(0) = u0 at t = 0 and look for

solutions u(t) on some interval t ∈ [0,T],T > 0.

Initial Value Problem

Given f as described in the previous slide, T > 0, and

u0 ∈ CN, find a differentiable function u(t) defined for

t ∈ [0,T] such that

1. u(0) = u0,

2. ut(t) = f(u(t),t) for all t ∈ [0,T]

The choice of t = 0 as a starting point introduces no loss

of generality, since any other t0 could be treated by the

change of variables t ′ = t − t0 .

The ODE above is of first order (contains only a first

derivative with respect to t). However, any higher-order

ODE can be reduced to an equivalent system of first-order

of ODEs.



Existence and Uniqueness for the IVP (Cauchy 1824)

Standard assumptions for f to ensure the existence and

uniqueness for the IVP.

Lipschitz Condition

f is continuous with respect to t and satisfies a

(uniform) Lipschitz condition with respect to u. This

means that there exists a constant L > 0 such that for

all u, v ∈ CN and t ∈ [0,T],

‖f(u,t) − f(v,t)‖ ≤ L‖u − v‖

where ‖.‖ denotes some norm on the set of N−vectors.

I N = 1, ‖.‖ is usually just the absolute value | . |

I N ≥ 2, the most important examples of norms are ‖.‖1,
‖.‖2, and ‖.‖∞ .

Sufficient Condition: ∂f
∂u

exists and is bounded in the norm

by L for all u ∈ CN and t ∈ [0,T].



Popular Numerical Methods for IVP

1. Linear Multisteps Methods (LMM).

2. Runge-Kutta (RK) Methods.

3. Exponential Integrator Methods.

In this class, we will concentrate on LMM only.

Continuous-Discrete Symbol Conventions:

Continuous Discrete

Time Step ∆t k, k > 0

Time t = t0,t1, . . . ,tn t = 0, k, . . . ,nk, n ≥ 0

Solution values u(tn) υn

Function values f(u(tn),tn) f(υn,tn) = fn

Note: We use k for time step (i.e. ∆t) and h for ∆x for

spatial step. The superscripts in υn and fn are not exponents!



Linear Multistep Formulas

u(tn+s) − u(tn+s−1) =

∫tn+s

tn+s−1

ut(t)dt =

∫tn+s

tn+s−1

f(t)dt =

∫tn+s

tn+s−1

q(t)dt

q(t) is an interpolating polynomials that interpolates f. A

LMM is essentially a formula for calculating each new value

υn+1 from some of the previous values υ0, · · · , υn and

f0, . . . , fn .

Popular Examples (Recall your MTH362)

s: Number of Steps. p: Order of accuracy.

Name s p Type Formula

Forward Euler 1 1 Explicit υn+1 = υn + kfn

Backward Euler 1 1 Implicit υn+1 = υn + kfn+1

Trapezoid 1 2 Implicit υn+1 = υn + k
2
(fn + fn+1)

Explicit Midpoint 2 2 Explicit υn+2 = υn + 2kfn+1

In MTH362, utilize Taylor expansions to find p.



Characteristic/Generating Polynomials for LMM

Let Z denote a time shift operator.

Continuous Discrete

Shift u Once Zu(t) = u(t + k) Zυn = υn+1

Z−1u(t) = u(t − k) Zυn = υn−1

Shift f Once Zf(u(t),t) = f(u(t + k),t + k) Zfn = fn+1

Shift u Twice Z2u(t) = u(t + 2k) Z2υn = υn+2

Example: Forward Euler

υn+1 = υn + kfn becomes Zυn = υn + kfn .

which can be written as (Z − 1)υn = kfn or

ρ(Z)υn − kσ(Z)fn = 0

where ρ(z) = z − 1 and σ(z) = 1.



Characteristic/Generating Polynomials for LMM

Several examples of Characteristic Polynomials

s: Number of Steps.

p: Order of accuracy.

Name s p Type Polynomials

Forward Euler 1 1 Explicit ρ(z) = z − 1 σ(z) = 1

Backward Euler 1 1 Implicit ρ(z) = z − 1 σ(z) = z

Trapezoid 1 2 Implicit ρ(z) = z − 1 σ(z) = 1
2
(z + 1)

Explicit Midpoint 2 2 Explicit ρ(z) = z2 − 1 σ(z) = 2z

Linear multistep formulas are connected with the

approximation of the function logz by the rational

function
ρ(z)
σ(z) at z = 1.



Linear Multistep Formulas and Rational Approximation

Theorem

A linear multistep formula with σ(1) 6= 0 has order of

accuracy p if and only if

R(z) =
ρ(z)

σ(z)
= logz+O((z − 1)p+1)

= (z − 1) −
1

2
(z − 1)2 +

1

3
(z − 1)3 − · · ·+Θ((z − 1)p+1)

as z → 1. It is consistent if and only if

ρ(1) = 0 and ρ ′(1) = σ(1)

See Trefethen’s NumPDE book for the proof. As an

example, for trapezoid, ρ(1) = 0 and ρ ′(1) = 1 = σ(1) and

R(z) =
z − 1

1
2
(z + 1)

= (z − 1) −
1

2
(z − 1)2 +

1

4
(z − 1)3 −

1

8
(z − 1)4 + . . .

Comparing it with the series of logz, the coefficient

starts to disagree for the term (z − 1)3 . Hence, p = 2.



Mathematica: Mapping a unit disk under a rational function

For example, in Forward Euler case, R(z) = z − 1.

I Define R(z)

R[z_] := z - 1;
I Define the unit disk with center at (0,0)

disk = Disk[{0, 0}, 1];
I Map the unit disk under R(z).

ParametricPlot[Block[{w = u + I v}, {Re[R[w]], Im[R[w]]}],
Element[{u, v}, disk], PlotRange -> 3]



Things to do in class

1. Check the Lipschitz condition for the initial value problem

ut = u cos(t), u(0) = 1 and find the constant L.

2. Assuming K,m and y∗ are constants, rewrite

ytt = −
K

m
(y − y∗), y(0) = a, yt(0) = b

as first order system. Then check the Lipschitz condition and find the

constant L.

3. Verify the ρ(z), σ(z) and R(z) for Forward, Backward Euler, Trapezoid,

and Midpoint as well as their order of accuracy p.

4. Given a unit circle |z| <= 1 centered at the origin in the complex plane,

find its map under the R(z) for forward, backward Euler, trapezoid,

and midpoint. Plot the circle before and after the map.

5. Solve the IVP ut = u cos(t), u(0) = 1 with Forward, Backward,

Trapezoid, and Midpoint with k = 0.1 for t ∈ [0, 1]. The exact solution

is u(t) = esin(t) . Compare the error |u(1) − υ(1)|. Compute the error for

k = 10−3,5.10−3, 10−2,5.10−2 . For each method, plot Error vs k in

loglog scale. What does the slope tell you ?

Tips: You can use the command Series[ ] in Mathematica to generate

the series of R(z) =
ρ(z)
σ(z)

around z = 1.


