

Lecture 3

MTH572/MTH472
Numerical Methods for PDEs Alfa Heryudono

LMass Dartmouth

Main references (quotes):
Trefethen: NumPDE, ATAP, Spectral Methods in MATLAB
FornBerg: PS Guide
Leveque: NumPDE
Driscoll: Learning MATLAB

Rectangular Domain in 2-D

An example of a 2-D rectangular domain a $\leq x \leq b, c \leq y \leq d$.
Tensor Product Grid

Solution values $\left\{u_{i j}\right\}$ can Be stored in a matrix U, which can also Be "vectorized" By stacking the columns of \mathbf{U} into a single column vector \underline{u}, i.e $\underline{u}=\operatorname{vec}(\mathbf{U})$. $\ln M A T L A B, \operatorname{vec}(U)=\mathbf{U}(:)$

$$
\mathrm{U}=\left[\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{n} \\
u_{21} & u_{22} & & u_{2 n} \\
\vdots & & \ddots & \\
u_{m 1} & u_{m 2} & \cdots & u_{m n}
\end{array}\right]
$$

A simple Example

Differentiation Matrices

Differentiate x and y directions independently.

Derivatives with respect to y
Ex: 3-point stencil, 2-nd order accurate. Note that the prime ' here means partial derivative with respect to y.

$$
\begin{aligned}
& {\left[\begin{array}{llll}
u_{1}^{\prime} & u_{4}^{\prime} & u_{7}^{\prime} & u_{0}^{\prime} \\
u_{2}^{\prime} & u_{5}^{\prime} & u_{8}^{\prime} & u_{11}^{\prime} \\
u_{3}^{\prime} & u_{6}^{\prime} & u_{9}^{\prime} & u_{12}^{\prime}
\end{array}\right] } \approx \frac{1}{2 h_{y}}\left[\begin{array}{ccc}
-3 & 4 & -1 \\
-1 & 0 & 1 \\
1 & -4 & 3
\end{array}\right]\left[\begin{array}{llll}
u_{1} & u_{4} & u_{7} & u_{0} \\
u_{2} & u_{5} & u_{8} & u_{11} \\
u_{3} & u_{6} & u_{9} & u_{12}
\end{array}\right] \\
& u_{y} u D_{y} u
\end{aligned}
$$

(D_{y}): Differentiation Matrix with respect to y In lexicographic ordering, the relation of $\underline{u}_{y}=D_{y} \underline{u}$, where $\underline{u}_{y}=\operatorname{vec}\left(U_{y}\right)$ and $\underline{u}=\operatorname{vec}(\mathbf{U})$, can Be written as
$\left[\begin{array}{l}u_{1}^{\prime} \\ u_{2}^{\prime} \\ u_{3}^{\prime} \\ u_{4}^{\prime} \\ u_{5}^{\prime} \\ u_{6}^{\prime} \\ u_{1}^{\prime} \\ u_{8}^{\prime} \\ u_{9}^{\prime} \\ u_{0}^{\prime} \\ u_{11}^{\prime} \\ u_{12}^{\prime}\end{array}\right]=\frac{1}{2 h_{y}}\left[\begin{array}{ccc|cc|cc|cc}-3 & 4 & -1 & & & & & & \\ -1 & 0 & 1 & & & & & & \\ 1 & -4 & 3 & & & & & \\ \hline & & & -3 & 4 & -1 & & & \\ & & -1 & 0 & 1 & & & & \\ & & & -4 & 3 & & & & \\ \hline & & & & -3 & 4 & -1 & & \\ & & & & -1 & 0 & 1 & & \\ \hline & & & & & & & 3 & \\ & & & & & & -3 & 4 & -1 \\ & & & & & & 0 & 1 \\ u_{3} \\ u_{3} \\ u_{4} \\ u_{5} \\ u_{6} \\ u_{7} \\ u_{8} \\ u_{9} \\ u_{10} \\ u_{11} \\ u_{12}\end{array}\right]$

The differentiation matrix with respect to y can Be concisely written using Kronecker product symBol as

$$
D_{y}=\ln \otimes D_{y}=I_{4} \otimes D_{y}
$$

where,

$$
I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad D_{y}=\frac{1}{2 h_{y}}\left[\begin{array}{ccc}
-3 & 4 & -1 \\
-1 & 0 & 1 \\
1 & -4 & 3
\end{array}\right]
$$

Derivatives with respect to x

An example using 3 -point stencil (2 -nd order accurate, see slides from the previous lecture). Note that the prime' here means partial derivative with respect to x

$$
\left[\begin{array}{lll}
u_{1}^{\prime} & u_{2}^{\prime} & u_{3}^{\prime} \\
u_{4}^{\prime} & u_{5}^{\prime} & u_{6}^{\prime} \\
u_{7}^{\prime} & u_{8}^{\prime} & u_{9}^{\prime} \\
u_{1}^{\prime} & u_{11}^{\prime} & u_{12}^{\prime}
\end{array}\right] \approx \frac{1}{2 h_{x}}\left[\begin{array}{cccc}
-3 & 4 & -1 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 1 & -4 & 3
\end{array}\right]\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
u_{4} & u_{5} & u_{6} \\
u_{7} & u_{8} & u_{9} \\
u_{1} & u_{11} & u_{12}
\end{array}\right]
$$

Transposing the matrix gives

$$
\begin{aligned}
{\left[\begin{array}{llll}
u_{1}^{\prime} & u_{4}^{\prime} & u_{1}^{\prime} & u_{10}^{\prime} \\
u_{2}^{\prime} & u_{5}^{\prime} & u_{8}^{\prime} & u_{1 \prime}^{\prime} \\
u_{3}^{\prime} & u_{6}^{\prime} & u_{9}^{\prime} & u_{12}^{\prime}
\end{array}\right] } & \approx\left[\begin{array}{llll}
u_{1} & u_{4} & u_{7} & u_{10} \\
u_{2} & u_{5} & u_{8} & u_{11} \\
u_{3} & u_{6} & u_{9} & u_{12}
\end{array}\right]\left[\begin{array}{l}
D_{x} \\
u_{x}
\end{array}\right]^{\top} \\
& =U D_{x}^{\top}
\end{aligned}
$$

$\left(D_{x}\right)$: Differentiation Matrix with respect to x In lexicographic ordering, the relation of $\underline{u}_{x}=D_{x} \underline{u}$, where $\underline{u}_{x}=\operatorname{vec}\left(U_{x}\right)$ and $\underline{u}=\operatorname{vec}(\mathbf{U})$, can Be written as
$\left[\begin{array}{l}u_{1}^{\prime} \\ u_{2}^{\prime} \\ u_{3}^{\prime} \\ u_{4}^{\prime} \\ u_{5}^{\prime} \\ u_{6}^{\prime} \\ u_{1}^{\prime} \\ u_{8}^{\prime} \\ u_{9}^{\prime} \\ u_{10}^{\prime} \\ u_{11}^{\prime} \\ u_{12}^{\prime}\end{array}\right]=\frac{1}{2 h_{x}}\left[\begin{array}{lll|lll|lll|lll}-3 & & & 4 & & & -1 & & & 0 & & \\ & -3 & & & 4 & & & -1 & & & 0 & \\ \hline-1 & & -3 & & & 4 & & & -1 & & & 0\end{array}\right]\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{5} \\ \\ \\ \hline 0\end{array}\right.$

The differentiation matrix with respect to x can Be concisely written using Kronecker product symbol as

$$
D_{x}=D_{x} \otimes I_{m}=D_{x} \otimes I_{3}
$$

where,

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad D_{x}=\frac{1}{2 h_{x}}\left[\begin{array}{cccc}
-3 & 4 & -1 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 1 & -4 & 3
\end{array}\right]
$$

Kronecker Product

- The Kronecker product \otimes of two matrices A and B is computed in MATLAB By the command krone (A, B).
- If A and B are of dimensions $p \times q$ and $r \times s$ respectively, then $A \otimes B$ is the matrix of dimension $p r \times q s$ with $p \times q$ Block form, where the i, j block is $a_{i j} \beta$. For example:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \otimes\left[\begin{array}{ll}
a & B \\
c & d
\end{array}\right]=\left[\begin{array}{cc|cc}
a & B & 2 a & 2 B \\
c & d & 2 c & 2 d \\
3 a & 3 B & 4 a & 4 B \\
3 c & 3 d & 4 c & 4 d
\end{array}\right]
$$

- Useful properties:
- $\operatorname{vec}(A X B)=\left(B^{\top} \otimes A\right) \operatorname{vec}(X)$
- If A is an $n \times n$ matrix and B is an $m \times m$ matrix, the Kronecker "sum" can Be defined as

$$
A \oplus B:=A \otimes I_{m}+I_{n} \otimes B
$$

- To ven or not to ven, that is your choice. Choose the one that makes implementation and analysis easier.

Things to do in class

1. With domain $[-1,1] \times[-1,1], n=m=11, h_{x}=h_{y}=h=2 /(n-1)$, create second-order accurate differentiation matrices that represent $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}$, and Δ i.e $\mathbf{D}_{x}, \mathrm{D}_{\boldsymbol{y}}$, and Laplacian $\mathrm{L}=\mathrm{D}_{x x}+\mathrm{D}_{y y}$ respectively.
2. Test those operators to find the numerical derivatives of $u(x, y)=e^{-\left(x^{2}+\frac{1}{2} y^{2}\right)}$. Compute $\|\cdot\|_{\infty}$ to measure the error of numerical derivatives with respect the exact derivatives.
3. Using different values of $n=10,100,1000$, redo problem 2 and plot the $\|\cdot\|_{\infty}$ vs h in log scale. Do you observe $2^{\text {nd -order convergence (i.e. } \mathcal{O}\left(h^{2}\right) \text {)? }}$
4. Redo (I)-(3) for periodic function $u(x, y)=\sin (\pi x) \cos (\pi y)$.

Tips: In MATLAB, 2D tensor product Grid can Be Generated using the command meshgrid.

