
Lecture 10

MTH572/MTH472
Numerical Methods for PDEs

Alfa Heryudono

UMass Dartmouth

Main references (quotes):
Trefethen: NumPDE, ATAP, Spectral Methods in MATLAB
Fornberg: PS Guide
Leveque: NumPDE
Driscoll: Learning MATLAB

Solving time­dependent PDE: Method of Lines

A common and popular technique to numerically solve
time­dependent PDEs is by using a method called

Method of Lines.

◮ Discretize the space with Finite­Difference (or some
other methods)

◮ March the resulting system of ODEs in time using
Linear Multistep or Runge­Kutta methods.

Let’s take a 1­D advection equation

PDE:
∂u

∂t
=

∂u

∂x
for x ∈ [a, b)

IC: u(x,0) = u0(x) when t = 0
BC: u(b) = g(t) at x = b

As a simple example, we want to

◮ Discretize the interval [a, b] with n equally­spaced points.

◮ Use 3­point stencil based FD differentiation matrix.

◮ Advance the solution in time with Forward Euler.

Step 1: Discretize the interval [a, b] with n equally­spaced
points.

a

x1 x2

h

. . . xj
. . . xn−1 xn

b

Step 2: Approximate ∂u
∂x with 3­point stencil FD. For

simplicity, we can first form the system of ODEs all the way
to the boundary.



















u1

u2

u3
...

un−1

un



















t

=
1

2h



















−3 4 −1 · · · 0

−1 0 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 0 1

0 · · · 1 −4 3





































u1

u2

u3
...

un−1

un



















Now we need to remove the n­th row since the PDE is
only enforced at x1, . . . , xn−1. The boundary condition at x = xn

is un = g(t).

Step 3: Strip the last row and split the last column that is
affected by BC value separate from the system that
contains the unknowns. Note that un = g(t).



















u1

u2

u3
...

un−2

un−1



















t

=
1

2h



















−3 4 −1 · · · 0

−1 0 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 0 1

0 · · · 0 −1 0





































u1

u2

u3
...

un−2

un−1



















+
g(t)

2h



















0
0
0
...
0
1



















Step 4: March the system of ODEs in time

ut = Lu+ f(t) with initial condition at t = 0 to be u0

with Forward Euler Method, where

u =



















u1

u2

u3
...

un−2

un−1



















L =
1

2h



















−3 4 −1 · · · 0

−1 0 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 0 1

0 · · · 0 −1 0



















f(t) =
g(t)

2h



















0
0
0
...
0
1



















Things to do in class

1. With time­step k = 10−2, write the MATLAB code (with n = 50) to
simulate

∂u

∂t
=

∂u

∂x
for x ∈ [−1, 1)

u(x,0) = sin(πx) (IC) , u(1) = 0 (BC)

from t = 0 until t = 1. Redo the experiment with k = 10−1 . What will
happen to the solution ?

2. Compute the eigenvalues Λ of the matrix L and plot them on the
same figure along with the stability region of the FE method. Is it
possible to scale the time­step k such that kΛ are inside the stability
region of the FE ?

3. Redo problem 1, 2 with backward Euler, AB2, AM2, and BDF2.

4. With n = 200, simulate backward Euler and BDF2 again with
k = 5.10−2 . Compute ‖ · ‖∞ = |u − uexact|∞ at t = 1. Redo the simulation

with k = 10−2,5.10−3, 10−3 . Plot the ‖ · ‖∞ at t = 1 vs k in log style.
What is the slope of the error trend ?

5. Redo problem 1 and 2 with periodic boundary condition.

