

Lecture 10

MTH572/MTH472
Numerical Methods for PDEs Alfa Heryudono

LMass Dartmouth

Main references (quotes):
Trefethen: NumPDE, ATAP, Spectral Methods in MATLAB
Fornberg: PS Guide
Leveque: NumPDE
Driscoll: Learning MATLAB

Solving time-dependent PDE: Method of Lines
A common and popular technique to numerically solve time-dependent PDEs is by using a method called

Method of Lines.

- Discretize the space with Finite-Difference (or some other methods)
- March the resulting system of ODEs in time using Linear Multistep or Runge-Kutta methods.

Let's take a I-D advection equation
PDF: $\frac{\partial u}{\partial t}=\frac{\partial u}{\partial x}$ for $x \in[a, b)$
IC: $u(x, O)=u_{0}(x)$ when $t=O$
$B C: \quad u(b)=g(t) \quad$ at $x=b$
As a simple example, we want to

- Discretize the interval $[a, b]$ with n equally-spaced points.
- Use 3-point stencil Based FD differentiation matrix.
- Advance the solution in time with Forward Euler.

Step I: Discretize the interval [a, b] with n equally-spaced points.

Step 2: Approximate $\frac{\partial u}{\partial x}$ with 3-point stencil FD. For simplicity, we can first form the system of ODEs all the way to the Boundary.

$$
\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{n-1} \\
u_{n}
\end{array}\right]_{t}=\frac{1}{2 h}\left[\begin{array}{ccccc}
-3 & 4 & -1 & \cdots & 0 \\
-1 & 0 & 1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & -1 & 0 & 1 \\
0 & \cdots & 1 & -4 & 3
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{n-1} \\
u_{n}
\end{array}\right]
$$

Now we need to remove the n-th row since the PDE is only enforced at x_{1}, \ldots, x_{n-1}. The Boundary condition at $x=x_{n}$ is $u_{n}=g(t)$.

Step 3: Strip the last row and split the last column that is affected By BC value separate from the system that contains the unknowns. Note that $u_{n}=g(t)$.

$$
\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{n-2} \\
u_{n-1}
\end{array}\right]_{t}\left[\begin{array}{ccccc}
-3 & 4 & -1 & \cdots & 0 \\
-1 & 0 & 1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & -1 & 0 & 1 \\
0 & \cdots & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{n-2} \\
u_{n-1}
\end{array}\right]+\frac{g(t)}{2 h}\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

Step 4: March the system of ODEs in time
$\underline{u}_{t}=L \underline{u}+\underline{f}(t)$ with initial condition at $t=O$ to $\operatorname{Be} \underline{u}_{0}$ with Forward Euler Method, where

$$
\underline{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{n-2} \\
u_{n-1}
\end{array}\right] \quad \mathrm{L}=\frac{1}{2 h}\left[\begin{array}{ccccc}
-3 & 4 & -1 & \cdots & 0 \\
-1 & 0 & 1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & -1 & 0 & 1 \\
0 & \cdots & 0 & -1 & 0
\end{array}\right] \quad \underline{f}(t)=\frac{g(t)}{2 h}\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

Things to do in class

1. With time-step $k=1 O^{-2}$, write the MATLAB code (with $n=50$) to simulate

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{\partial u}{\partial x} \text { for } x \in[-1, \mid) \\
u(x, O) & =\sin (\pi x)(\mid C), \quad u(\mid)=O(B C)
\end{aligned}
$$

from $t=O$ until $t=1$. Redo the experiment with $k=1 O^{-1}$. What will happen to the solution?
2 Compute the eigenvalues 1 of the matrix L and plot them on the same figure along with the stability region of the FE method. Is it possible to scale the time-step k such that $k \Lambda$ are inside the stability region of the FE?
3. Redo problem 1,2 with Backward Euler, $A B 2, A M 2$, and $B D F 2$
4. With $n=200$, simulate Backward Euler and BDF2 aGain with $k=5.10^{-2}$. Compute $\|\cdot\|_{\infty}=\left|\underline{u}-\underline{u}_{\text {exact }}\right|_{\infty}$ at $t=1$. Redo the simulation with $k=1 O^{-2}, 5.1 O^{-3}, 1 O^{-3}$. Plot the $\|\cdot\|_{\infty}$ at $t=I$ vs k in loG style. What is the slope of the error trend?
5. Redo problem I and 2 with periodic Boundary condition.

