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Three areat classes of partial differential equations:

» Elliptic: time-independentt

Ex: —uy = £ (Poisson equation), u, = O (Laplace equation).
Application in electrostatics, static heat distrirution, static
distrisution of tensions.

» Pararolic: time-dependent and diffusive

Ex: Ut = Uy, ONe-dimensional heat equation that descrires
diffusion of a Quantity such as heat or salinity.

» Hypereolic: time-dependent and wavelike; finite speed
Of propaaation
Ex: ur = uy, one dimensional first order wave equation that
descrires advection of a Quantity u(x,t) at a constant
velocity -I. This equation is usually called advection
(transport) equation



Some PDEs sometimes are not that easy to fall into that
trichotomy.

Schré dineer equation Uy = iUy

Looks like a paragolic equation at first alance. However,
the equation is Nnot diffusive But dispersive. Instead of
decaying as time goes on, solutions tend to Break up
into oscillatory wave packets. (see Quantum mechanics)

MTH3LL: study "pure” finite-difference models for
> linear,

> constant-coefficient equations on an infinite
one-dimensional domain.

What you learned in that course is fundamental to an
understanding of the more complicated proslems.



Complications #rom practical prorlems

Multiple space dimensions,
System of equations,
Geometry of domains,
Boundary conditions,
Variagle coefficients,
Nonlinearity.
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NumPDE (collocation & Galerkin) roadmap:
ENis era, Beatles era, Disco era.

l. 1I950s: Finite-difference and/or volume methods.
2. 1960s: Finite-element methods.

3. 1970s:

» Spectral and pseudospectral methods.
» Spectral element methods.

» R.adial rasis function methods.

» Discontinuous Galerkin.




Popular approaches £or numerically solvinag PDEs

» Classical way. Set-up reaular arid in space and time.
Compute approximate solutions on the arid By marching
forward in time.

> Method of lines (MOL). Discretize the proelem with
respect to space, therery cenerating a system of
ODEs in t. Solve the system with popular ODE solvers.
MOL offers flexigility in choosinag method of choice
for spatial discretization

For this course (MTHSTL/HTL), we will Be concentrating
Mostly on finite-difference methods for spatial
discretizations.

Note: Not all finite difference methods can Be analyzed
with method of lines, But many can. However, this is
BeCOMING a8 PoiNt of view that is increasinaly important
for difficult proelems.




Spatial diseretization operators

Five ways of looking at finite finite-difference
formulas

|. Discrete approximation to derivatives (Taylor
expansions in MTHIL).

2. Derivatives of polynomial interpolants (Laarance
interpolatina polynomials MTH3LN.

3. Convolution fiters.

+

Toeplitz matrices.

S. Fourier multipliers.

Note: Some of those "ways" can Be done naturally in the
case Of infinite one-dimensional domains. Additionally, i£
the function to ge differentiated is smooth and
periadic, the derivation can ee simplified even further.




Continuous - Discrete Analoay

Corvtinuous

Domain 3, b]
Function u(x)
. 0
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"differentiation” matrix
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Note: Surindex 0 is heavily used in analysis (typically when you
deal with polynomials). However, in MATLAB | index starts
from I. So, make sure to check the size Of your proglem.



Differentiation Matrices

: To compute entries (dij) of differentiation matrix D.
To make life even simpler, the interval [a,8] is discretized
with N equal-spacing of size h. Hence, xp =3, x, =38 +h,
xp =8+2h,...,xj=8+}h,...Xn =8+ nh =b, where
h = (b —3a)/n Note that the total numeer of points is N +1.

Taylor expansion around x = x;

I/I(

u )()’)

3!

" 2

Evaluating the expansion at the neichBoring point x; | Gives

u(x) ~ u(x;) + (x—x))l—s— (x—x)-)a—i—...

h+ R +...

u’(xj) u”(xj) 2 u’”(x)-)
I AR

where u'(xj) can Be OBtained (assuming that u(x) is smooth
enouah) as

u(xjp) = ulx;) +

l l
uj ~ FWH T Y + O(h),

where u; stands £or u(x;).



Similarly, using the left neichzoring point x| aives

| |
uj ~ ~ R + oY + O(h),

> The constants I/h,—/k in front of function values
are called finite difference "weicghts"

» The stencil-size of this finite difference is 2 since
the value of derivative u)-’ can Be computed using
function values at 2 points x; or xj, (Or x; or x;_.

> the order of accuracy is one (the power of h in
ON.

Assemple everything together in a matrix style
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Thinas to do in class

[ With n =10, use the command spdiags in MATLAB to
create the differentiation matrix on the previous slide.

2. Test it to £ind the derivative of u(x) = e on the
interval [,ll. Compute || - [loo = U — Upraotloo TO Measure
the error of numerical derivative with respect the
exact derivative.

3. Using different values of n =10,I00,I000, - -, redo
prorlem 2 and plot the | - ||l Vs h IN l0g scale. DO you
orserve [t-order converaence (ie. O(h) or O(N ') ?

4. What will happen i£ you use the matrix on the periodic
function u(x) = sin(x) on the interval [O,2n] or
u(x) = sin(mx) on the interval [—,l] 7 How do you modity
the matrix to deal with periodicity ?

Tips: EQually-spaced points (nodes) can e aenerated with
the commands linspace and logspace (fOr loa scale).




