
Lecture 1

MTH572/MTH472
Numerical Methods for PDEs

Alfa Heryudono

UMass Dartmouth

Main references (quotes):
Trefethen: NumPDE, ATAP, Spectral Methods in MATLAB
Fornberg: PS Guide
Leveque: NumPDE
Driscoll: Learning MATLAB

Three great classes of partial differential equations:

◮ Elliptic: time­independent

Ex: −uxx = f (Poisson equation), uxx = 0 (Laplace equation).
Application in electrostatics, static heat distribution, static
distribution of tensions.

◮ Parabolic: time­dependent and diffusive

Ex: ut = uxx, one­dimensional heat equation that describes
diffusion of a quantity such as heat or salinity.

◮ Hyperbolic: time­dependent and wavelike; finite speed
of propagation

Ex: ut = ux, one dimensional first order wave equation that
describes advection of a quantity u(x,t) at a constant
velocity ­1. This equation is usually called advection
(transport) equation.

Some PDEs sometimes are not that easy to fall into that
trichotomy.

Schrödinger equation ut = iuxx

Looks like a parabolic equation at first glance. However,
the equation is not diffusive but dispersive. Instead of
decaying as time goes on, solutions tend to break up
into oscillatory wave packets. (see quantum mechanics)

MTH362: study “pure” finite­difference models for

◮ linear,

◮ constant­coefficient equations on an infinite
one­dimensional domain.

What you learned in that course is fundamental to an
understanding of the more complicated problems.

Complications from practical problems

◮ Multiple space dimensions,
◮ System of equations,
◮ Geometry of domains,
◮ Boundary conditions,
◮ Variable coefficients,
◮ Nonlinearity.

NumPDE (collocation & Galerkin) roadmap:
Elvis era, Beatles era, Disco era.

1. 1950s: Finite­difference and/or volume methods.

2. 1960s: Finite­element methods.

3. 1970s:

◮ Spectral and pseudospectral methods.
◮ Spectral element methods.
◮ Radial basis function methods.
◮ Discontinuous Galerkin.

Popular approaches for numerically solving PDEs

◮ Classical way. Set­up regular grid in space and time.
Compute approximate solutions on the grid by marching
forward in time.

◮ Method of lines (MOL). Discretize the problem with
respect to space, thereby generating a system of
ODEs in t. Solve the system with popular ODE solvers.
MOL offers flexibility in choosing method of choice
for spatial discretization.

For this course (MTH572/472), we will be concentrating
mostly on finite­difference methods for spatial
discretizations.

Note: Not all finite difference methods can be analyzed
with method of lines, but many can. However, this is
becoming a point of view that is increasingly important
for difficult problems.

Spatial discretization operators

Five ways of looking at finite finite­difference
formulas

1. Discrete approximation to derivatives (Taylor
expansions in MTH112).

2. Derivatives of polynomial interpolants (Lagrange
interpolating polynomials MTH361).

3. Convolution filters.

4. Toeplitz matrices.

5. Fourier multipliers.

Note: Some of those “ways” can be done naturally in the
case of infinite one­dimensional domains. Additionally, if
the function to be differentiated is smooth and
periodic, the derivation can be simplified even further.

Continuous ­ Discrete Analogy

Continuous Discrete
Domain [a, b] a = x1 < x2 < · · · < xn = b

Function u(x) 1­D vector u ≈







u1
...

un







Diff operator
∂

∂x
“differentiation” matrix

D =







d11 · · · d1n
...

. . .
...

dn1 · · · dnn







Diff operation
∂u
∂x

matrix­vector product

~u ′ ≈







u ′

1
...

u ′

n






=







d11 · · · d1n
...

. . .
...

dn1 · · · dnn













u1
...

un







Note: Subindex 0 is heavily used in analysis (typically when you
deal with polynomials). However, in MATLAB, index starts
from 1. So, make sure to check the size of your problem.

Differentiation Matrices

Goal: To compute entries (dij) of differentiation matrix D.
To make life even simpler, the interval [a,b] is discretized
with n equal­spacing of size h. Hence, x0 = a, x1 = a+ h,
x2 = a+ 2h, . . . , xj = a+ jh, . . . ,xn = a+ nh = b, where
h = (b − a)/n. Note that the total number of points is n+ 1.

Taylor expansion around x = xj

u(x) ≈ u(xj) +
u ′(xj)

1!
(x− xj) +

u ′′(xj)

2!
(x − xj)

2 +
u ′′′(xj)

3!
(x − xj)

3 + . . .

Evaluating the expansion at the neighboring point xj+1 gives

u(xj+1) ≈ u(xj) +
u ′(xj)

1!
h +

u ′′(xj)

2!
h2 +

u ′′′(xj)

3!
h3 + . . .

where u ′(xj) can be obtained (assuming that u(x) is smooth
enough) as

u ′

j ≈
1
h
uj+1 −

1
h
uj +O(h),

where uj stands for u(xj).

Similarly, using the left neighboring point xj−1 gives

u ′

j ≈ −
1
h
uj−1 +

1
h
uj +O(h),

◮ The constants 1/h,−1/h in front of function values
are called finite difference “weights”.

◮ The stencil­size of this finite difference is 2 since
the value of derivative u ′

j can be computed using
function values at 2 points xj or xj+1 (or xj or xj−1).

◮ the order of accuracy is one (the power of h in
O(h)).

Assemble everything together in a matrix style

~u ′ ≈



















u ′

0
u ′

1
u2
...

u ′

n−1
u ′

n



















= Du =
1
h



















−1 1 0 · · · 0

0 −1 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 0 −1 1

0 · · · 0 −1 1





































u0

u1

u2
...

un−1

un



















Things to do in class

1. With n = 10, use the command spdiags in MATLAB to
create the differentiation matrix on the previous slide.

2. Test it to find the derivative of u(x) = e−x2
on the

interval [−1, 1]. Compute ‖ · ‖∞ = |u− uexact|∞ to measure
the error of numerical derivative with respect the
exact derivative.

3. Using different values of n = 10, 100, 1000, · · · , redo
problem 2 and plot the ‖ · ‖∞ vs h in log scale. Do you
observe 1st­order convergence (i.e. O(h) or O(n−1)) ?

4. What will happen if you use the matrix on the periodic
function u(x) = sin(x) on the interval [0,2π] or
u(x) = sin(πx) on the interval [−1, 1] ? How do you modify
the matrix to deal with periodicity ?

Tips: Equally­spaced points (nodes) can be generated with
the commands linspace and logspace (for log scale).

