Project 2

Linear and Nonlinear Boundary Value Problems (1D and 2D)
Deadline and submission information are available in mycourses
All problems are of equal weights

Name : \qquad

1. Use second-order accurate (non-periodic) finite difference method to solve the following two dimensional boundary value problem

$$
\begin{aligned}
-u_{x x}-\frac{3}{2} u_{y y}-\frac{1}{4} u & =f(x, y) & & (x, y) \in \Omega \\
u & =g(x, y) & & (x, y) \in \partial \Omega
\end{aligned}
$$

where $\bar{\Omega}=[-1,1] \times[-1,1]$ and $g(x, y)=\sin (\pi x) \cos (\pi y)$. The right hand side function $f(x, y)$ is derived by "plugging" in the exact solution $u_{\mathrm{ex}}(x, y)=\sin (\pi x) \cos (\pi y)$ to the PDE operator. Please review the "Things to Do in Class" from Lecture 4.
(a) Following Lecture 4, solve the numerical solution \underline{u} for $n=m=30$, plot the solution, and compute the $\left\|\underline{u}-\underline{u}_{\mathrm{ex}}\right\|_{\infty}$.
(b) Do the convergence test and plot the trend in $\log \log$ scale. Do you get second-order convergence? (Check the slope)
(c) Redo part (a) and (b) with fourth-order FDM.
2. Use second-order accurate (non-periodic) finite difference method to solve the following two dimensional boundary value problem

$$
\begin{aligned}
\left(1-\frac{1}{4} x\right) u_{x x}+\left(1+\frac{1}{2} y\right) u_{y y} & =f(x, y) & & (x, y) \in \Omega \\
u & =g(x, y) & & (x, y) \in \partial \Omega
\end{aligned}
$$

where $\bar{\Omega}=[-1,1] \times[-1,1]$ and $g(x, y)=\sin (\pi x) \cos (\pi y)$. The right hand side function $f(x, y)$ is derived by "plugging" in the exact solution $u_{\mathrm{ex}}(x, y)=\sin (\pi x) \cos (\pi y)$ to the PDE operator. Please review the "Things to Do in Class" from Lecture 4.
(a) Following Lecture 4, solve the numerical solution \underline{u} for $n=m=30$, plot the solution, and compute the $\left\|\underline{u}-\underline{u}_{e x}\right\|_{\infty}$.
(b) Do the convergence test and plot the trend in loglog scale. Do you get second-order convergence? (Check the slope)
(c) Redo part (a) and (b) with fourth-order FDM.
3. Use second-order accurate (non-periodic) finite difference method to solve the following two dimensional eigenvalue problem

$$
\begin{aligned}
-\Delta u & =\lambda u \quad(x, y) \in \Omega, \\
u & =0 \quad(x, y) \in \partial \Omega
\end{aligned}
$$

where $\bar{\Omega}=[-1,1] \times[-1,1]$.
(a) Find three largest (in magnitude) eigenvalues.
(b) Plot the eigenvectors that correspond to eigenvalues from part (a).
(c) Redo part (a) and (b) with fourth-order FDM.
4. Use second-order accurate (non-periodic) finite difference method to solve the following two dimensional boundary value problem

$$
\begin{aligned}
-\Delta u & =f(x, y) & & (x, y) \in \Omega \\
u & =g(x, y) & & (x, y) \in \partial \Omega
\end{aligned}
$$

where $\bar{\Omega}$ is an L shape domain defined by $\bar{\Omega}=\{[-1,1] \times[-1,1]\} \backslash\{(0,1] \times(0,1]\}$ and $g(x, y)=\sin (\pi x) \cos (\pi y)$. The right hand side function $f(x, y)$ is derived by "plugging" in the exact solution $u_{\mathrm{ex}}(x, y)=\sin (\pi x) \cos (\pi y)$ to the PDE operator. Please review the "Things to Do in Class" from Lecture 4.
(a) Following Lecture 4, solve the numerical solution \underline{u}, plot the solution, and compute the $\left\|\underline{u}-\underline{u}_{\mathrm{ex}}\right\|_{\infty}$.
(b) Do the convergence test and plot the trend in loglog scale. Do you get second-order convergence ? (Check the slope).

